三角形知识点复习归纳总结

合集下载

三角形知识点复习总结

三角形知识点复习总结

21D CB AD CB A三角形复习⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义. ⒉ 三角形的分类: (1)按边分类: (2)按角分类:⒊ 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.三角形 等腰三角形不等边三角形 底边和腰不相等的等腰三角形等边三角形 三角形 直角三象形 斜三角形 锐角三角形 钝角三角形 _C_B _AD CB A(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.⒋ 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1,根据具体情况使用以下任意一种方式表示:① AD 是∆ABC 的角平分线; ② AD 平分∠BAC ,交BC 于D ;③ 如果AD 是∆ABC 的角平分线,那么∠BAD =∠DAC =21∠BAC .(2)三角形的中线表示法:如图1,根据具体情况使用以下任意一种方式表示: ①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③如果AE 是∆ABC 的中线,那么BE=EC =21BC . (3)三角线的高的表示法:如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是∆ABC 的高;② AM 是∆ABC 中BC 边上的高;③ 如果AM 是∆ABC 中BC 边上高,那么AM ⊥BC ,垂足是E ; ④ 如果AM 是∆ABC 中BC 边上的高,那么∠AMB =∠AMC =90︒.⒌ 在画三角形的三条角平分线,三条中线,三条高时应注意:(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.图5图6ABCD E 图1图221B AC MD⒍三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.⒎ 三角形的角与角之间的关系: (1)三角形三个内角的和等于180︒;(2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180°. 推论:直角三角形的两个锐角互余。

(完整版)初中三角形知识点总结

(完整版)初中三角形知识点总结

图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角平等边;等边平等角;大角对大边;大边对大角。

4、三角形的面积三角形的面积 = 1×底×高2考点二、全等三角形1、全等三角形的观点能够完整重合的两个三角形叫做全等三角形。

2、三角形全等的判断三角形全等的判断定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS”)。

(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS”)。

直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的地点,不改变其形状大小的图形变换叫做全等变换。

全等变换包含一下三种:(1)平移变换:把图形沿某条直线平行挪动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折 180°,这类变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转必定的角度到另一个地点,这类变换叫做旋转变换。

考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边平等角)推论 1:等腰三角形顶角均分线均分底边并且垂直于底边。

三角形知识点复习总结

三角形知识点复习总结

三角形复习1.三角形的定义:由不在同一亶线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点•组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内 角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ ABC,三角形ABC 的边AB 可用边AB 所对的 角C 的小写字母C 表示,AC 叮用b 表示,BC 町用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接:(2) 三角形是一个封闭的图形:(3) A ABC 是三角形ABC 的符号标记,单独的△没有意义•2.三角形的分类:(1)按边分类: (2)按角分类:I 等边三角形不等边三勿形直角三欽形锐角三角形钝角三角形3. 三角形的主要线段的定义:(1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法J 是厶ABC 的BC 匕的中线.-DC 巧 BC.注意:①三角形的中线是线段:② 三角形三条中线全在三角形的内部: ③ 三角形三条中线交于三角形内部一点: ④ 中线把三角形分成两个而积相等的三角形.<2)三角形的角平分线 三角形一个内角的平分线匂它的对边相交,这个角顶点与交点之间的线段 表示法J 是AABC 的ZBAC 的平分线.等腰三角形底边和腰不相等的等腰三角形三角形AD C注意:①三角形的角平分线是线段:② 三角形三条角平分线全在三角形的内部; ③ 三角形三条角平分线交于三角形内部一点: ④ 用角器画三角形的角平分线.(3) 三角形的高 从三角形的一个顶点向它的对边所在的宜线作垂线,顶点和垂足之间的线段.表示法J 是A ABC 的BC 上的高线. 丄BC 于D.3. Z ADB=Z ADC=90\注意:①三角形的高是线段:② 锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③ 三角形三条高所在直线交于一点•4. 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1.根据具体情况使用以下任意一种方式表示:① AD 是ABC 的角平分线: ② AD 平分BAC,交BC 于D :③ 如果人D 是ABC 的角平分线,那么DAU 丄BAC.2⑵三角形的中线表示法:根据具体情况使用以下任意一种方式表示: 人BC 的中线:人BC 中BC 边上的中线:(3) 三角线的高的表不法J如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是A8C 的高:② AM 是A8C 中BC 边上的高:③ -◎ 如果AM 是 ABC 中BC 边上高,那么AM fiC,垂足是E; ⑤如果AM 是 人BC 中BC 边上的高,那么 &M8=人MU90 .5. 在画三角形的三条角平分线,三条中线,三条高时应注意:(1) 如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2) 如图4.三角形的三条中线交点一点,交点都在三角形内部.如图567,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部, 钝角三角形的三条高的交点在三角形的外部•直角三角形的三条高的交点在直角三角如图1, ①Af 是③如果处是赵的中纯那么严 AD C CB图156•三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)用成三角形的条件是任意两边之和大于第三边.7.三角形的角与角之间的关系: (:L)三角形三个内角的和等于180 ;(2) 三角形的一个外角等于和它不相邻的两个内角的和: (3) 三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余.三角形的内角和;4^理宦理:三角形的内角和等于180。

中考三角形知识点总结

中考三角形知识点总结

中考三角形知识点总结一、三角形的概念与分类。

1. 概念。

- 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三个顶点、三条边和三个内角。

2. 分类。

- 按角分类。

- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形。

直角三角形可以用“Rt△”表示,直角所对的边称为斜边,其余两条边称为直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类。

- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形,它的三个角都相等,且每个角都是60°。

二、三角形的性质。

1. 三角形内角和定理。

- 三角形的内角和为180°。

- 直角三角形的两个锐角互余。

2. 三角形的外角性质。

- 三角形的一个外角等于与它不相邻的两个内角的和。

- 三角形的一个外角大于任何一个与它不相邻的内角。

3. 三角形的三边关系。

- 三角形任意两边之和大于第三边。

- 三角形任意两边之差小于第三边。

4. 等腰三角形的性质。

- 等腰三角形的两腰相等。

- 等腰三角形的两底角相等(简称为“等边对等角”)。

- 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称为“三线合一”)。

5. 等边三角形的性质。

- 等边三角形的三条边相等。

- 等边三角形的三个角都相等,并且每个角都是60°。

三、三角形中的重要线段。

1. 中线。

- 连接三角形一个顶点和它对边中点的线段叫做三角形的中线。

- 三角形的三条中线相交于一点,这点叫做三角形的重心。

重心到顶点的距离是它到对边中点距离的2倍。

2. 角平分线。

- 三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

- 三角形的三条角平分线相交于一点,这点到三角形三边的距离相等。

什么是三角形知识点总结

什么是三角形知识点总结

什么是三角形知识点总结一、三角形的形状与性质1. 三角形的定义三角形是一个由三条边和三个角组成的多边形。

每个角的度数都是180度。

根据边的长度、角的大小和形状,三角形可以分为不同的种类。

2. 三角形的性质(1)三角形的内角和等于180度。

(2)三角形的外角和等于360度。

(3)三角形的两边之和大于第三边。

(4)三角形的两角之和大于第三角。

(5)三角形的任意一边都小于其余两边之和。

二、三角形的分类1. 根据边的长度(1)等边三角形:三条边的长度相等。

(2)等腰三角形:两条边的长度相等。

(3)普通三角形:三条边的长度各不相同。

2. 根据角的大小(1)锐角三角形:三个角都小于90度。

(2)直角三角形:一个角为90度,另外两个角之和为90度。

(3)钝角三角形:至少有一个角大于90度。

3. 根据边和角的关系(1)等腰锐角三角形:两个角相等且都小于90度。

(2)等腰直角三角形:一边为90度,另外两边相等。

(3)等腰钝角三角形:两个角相等且至少有一个角大于90度。

三、三角形的周长和面积计算公式1. 周长的计算三角形的周长为三条边的和,即P=a+b+c。

2. 面积的计算(1)正弦定理:S=1/2*a*b*sinC。

(2)余弦定理:S=1/2*a*b*cosC。

(3)海伦公式:S=√p*(p-a)*(p-b)*(p-c),其中p为半周长。

四、三角形的重心、外心、内心和垂心1. 重心三角形内的一点,使其到三个顶点的距离的平方和最小,这个点叫做三角形的重心。

重心离三个顶点的距离成比例为1:1:1。

2. 外心三角形外接圆的圆心叫做外心。

外心是垂直于三角形的三条边的交点。

3. 内心三角形内切圆的圆心叫做内心。

内心到三角形三条边的距离相等。

4. 垂心三角形三条高的交点叫做垂心。

垂心到三条边的距离的积最小。

五、三角形的基本定理和应用1. 勾股定理勾股定理是三角形中的一条重要定理,它描述了直角三角形中三条边的关系。

勾股定理的表达式为a²+b²=c²。

关于三角形的知识点总结

关于三角形的知识点总结

关于三角形的知识点总结一、三角形的定义三角形是由不在同一直线上的三条线段首尾顺次相接所组成的封闭图形。

二、三角形的分类1、按角分类11 锐角三角形:三个角都小于 90 度的三角形。

12 直角三角形:有一个角等于 90 度的三角形。

13 钝角三角形:有一个角大于 90 度小于 180 度的三角形。

2、按边分类21 不等边三角形:三条边都不相等的三角形。

22 等腰三角形:有两条边相等的三角形。

221 等边三角形:三条边都相等的三角形,也称为正三角形。

三、三角形的性质1、三角形内角和为 180 度。

2、三角形的任意两边之和大于第三边,任意两边之差小于第三边。

四、三角形的高、中线和角平分线1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

2、三角形的中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。

3、三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

五、三角形的全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定方法31 “边边边”(SSS):三边对应相等的两个三角形全等。

32 “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

33 “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

34 “角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

35 “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

六、三角形的相似1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

2、相似三角形的性质21 相似三角形的对应角相等,对应边成比例。

22 相似三角形的对应高的比,对应中线的比与对应角平分线的比都等于相似比。

23 相似三角形周长的比等于相似比。

完整版)三角形知识点总结

完整版)三角形知识点总结

完整版)三角形知识点总结三角形知识点总结三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形,有三条边,三个内角和三个顶点。

组成三角形的线段称为三角形的边,相邻两边所组成的角称为三角形的内角,相邻两边的公共端点是三角形的顶点。

三角形用符号表示为△ABC,其中三个顶点用大写字母A、B、C表示,XXX可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。

需要注意的是,三条线段要不在同一直线上,且首尾顺次相接。

单独的△没有意义。

根据边和角的不同,三角形可以分为等腰三角形、等边三角形和不等边三角形,以及锐角三角形、直角三角形和钝角三角形。

三角形的主要线段包括中线、角平分线、高和中垂线。

三角形的中线是连结一个顶点和它对边中点的线段,三角形的三条中线全在三角形的内部且交于三角形内部一点(重心),中线把三角形分成两个面积相等的三角形。

角平分线是一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段,三角形的角平分线全在三角形的内部且交于三角形内部一点(内心),角平分线上的点到角的两边距离相等。

三角形的高是从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角顶点上。

三角形的三条高所在直线交于一点(垂心)。

三角形的中垂线是过三角形一条边中点所做的垂直于该条边的线段,三角形的三条中垂线交于一点(外心)。

总之,三角形的基础知识包括定义、表示和分类,而主要线段包括中线、角平分线、高和中垂线。

理解和掌握这些知识点对于学好三角形及其相关知识非常重要。

的概念和性质定义:三条边都相等的三角形叫做等边三角形。

性质:等边三角形的三个内角均为60度,也是等腰三角形。

5、三角形的不等式定理三角形的任意两边之和大于第三边,任意两边之差小于第三边。

注意:这个定理是判断一个三角形是否存在的基本条件,也是判断三条线段能否组成三角形的依据。

中考数学三角形知识点总结归纳

中考数学三角形知识点总结归纳

中考数学三角形知识点总结归纳提高学习效率并非一朝一夕之事,需要长期的探索和积累,前人的经验是可以借鉴的,但必须充分结合自己的特点。

下面是小编为大家整理的关于中考数学三角形知识点总结,希望对您有所帮助!初中数学三角形知识点总结一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形知识点复习归纳总结
1.三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.
三角形有三条边,三个内角,三个顶点•组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为AABC,三角形ABC的边AB可用边AB所对的角C的小写字母C表示,AC 可用b表示,BC可用3表示.
注意:(1)三条线段要不在同一直线上,IL首尾顺次相接;
(2)三角形是一个封闭的图形:
(3)∆ABC是三角形ABC的符号标记,单独的△没有意义.
2.三角形的分类:
(1)按边分类:
(2)按角分类:
才底边和腰不相等的等腰三角形
等腰三角形

三角形. 等边三角形
I不等边三角形
三角形
直角三象形
I锐角三角形斜三角形I
I钝角三角形
3.三角形的主要线段的定义:
(1)三角形的中线
表示法:是Z∖ABC的BC上的中线.
三角形中,连结一个顶点和它对边中点的线段・
=DC=iBC.
2
注意:①三角形的中线是线段:
②三角形三条中线全在三角形的内部:
③三角形三条中线交于三角形内部一点;
④中线把三角形分成两个面积相等的三角形.
(2)三角形的角平分线A
三角形一个内角的半分线与它的对边相交,这个角顶点与交点之间的线段∕x0 表示法:是
AABC的ZBAC的平分线. Z≤_ 、
B D C
2.Z1=Z2= - ZBAC.
2
注意:①三角形的角平分线是线段:
②三角形三条角半分线全在三角形的内部:
③三角形三条角平分线交于三角形内部一点;
④用量角器画三角形的角平分线.
(3)三角形的高 A
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线∕z∖段. /
\
B D
C 表示法:是A ABC的BC上的高线.
丄BC于D.
3.ZADB=ZADC=90° .
D C
注意:①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外:
③三角形三条高所在直线交于一点.
4・三角形的主耍线段的表示法:
三角形的角平分线的表示法:
如图1,根据具体情况使用以下任意一种方式表示:
①AD是?ABC的角平分线;
②AD半分?BAC,交BC Γ D;
③如果〃是?遊的角平分线,那么?册?勿弓 B
图1
(2)三角形的中线表示法:
如图1,根据具体情况使用以下任意一种方式表示:
①血是?遊的中线:
②是?遊中必边上的中线;
③如果处是?磁的中线,猥么BE=EgBC.
(3)三角线的高的表示法:
如图2,根据具体情况,使用以下任意一种方式表示:
①JJf是?磁的高;
②&丫是?磁中虑边上的高:
③如果&W是?磁中应'边上高,那么&“宓,垂足是£:
④如果凡W是?遊中虑边上的高,那么?&炉?&Q90?・
5・在画三角形的三条角平分线,三条中线,三条高时应注意:
(1)如图3,三角形三条角平分线交丁•一点,交点都在三角形内部・
图3
(2)如图4,三角形的三条中线交点一点,交点都在三角形内部.
如图5, 6,7,三角形的三条高交丁•一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条髙的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.
A
6 •三角形的三边关系
三角形的任意两边之和大于第三边;任意两边之差小于第三边.
注意:(1)三边关系的依据是:两点之间线段是短;
(2)圉成三角形的条件是任意两边之和大于第三边.
7・三角形的角与角之间的关系:
(1)三角形三个内角的和等于180?;
(2)三角形的一个外角等丁•和它不相邻的两个内角的和:
(3)三角形的一个外角大于任何一个和它不相邻的内角.
(4)直角三角形的两个锐角互余・
三角形的内角和定理定理:三角形的内角和等T 180°・
推论:直角三角形的两个锐角互余。

推理过程:
一.作CM√AB,则Z4=Zb 而Z2+Z3+Z4=18O o,
即ZA+ZB+ZACB=180o・
二.作MN〃BC,则Z2=ZB, Z3=ZC,
而Zl+Z2+Z3=180∖即ZBAC+ZB^ZC=180o・
注意:(1)证明的思路很多,基本思想是组成平角.
(2)应用内角和定理可解决已知二个角求第三个角或已知三角关系求三个角.
三角形的外角的定义
三角形一边与另一边的延长线组成的角,叫做三角形的外角•
注意:每个顶点处都有两个外角,但这两个外角是对顶角.
如:ZACD. ZBCE 都是ZiABC 的外角,JlZACD= ZBCE.
所以说一个三角形有六个外角,但我们每个一个顶点处
只选一个外角,这样三角形的外角就只有三个了.
三角形外角的性质
(1)三角形的一个外角等丁•它不相邻的两个内角之和

B C D
注意:(I)它不相邻的内角不容忽视:
(2)作CM 〃AB 由于B 、C 、D 共线 ΛZA=Zb ZB=Z2.
即 ZACD=Zl+Z2=ZA+ZB. 那么 ZACD>ZA. ZACD>ZB.
8.三角形的稳定性:
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性. 注意:(1)三角形具有稳定性;
(2)四边形没有稳定性.
适当添加辅助线,寻找基本图形
(1)基本图形一,如图8,在?磁中,AB=AC. B f A f D 成一条直线,贝∣J?加C2?企2?C
(2)基本图形二,如图9,如果CQ 是?力防的角平分线,DE
〃OB 交OA, OC Y D. E 、那么?处是等腰三角形,Dg 处当儿何问题的条件和结论中,或
在推理过程中出现有角平分线,平行线,等腰三角形三个条件中的 两个时,就应找出这个基本图形,并立即推证出第三个作为结论•即: 角平分线+平行线f 等腰三角形.
基本图形三,如图10,如果助是?磁的角平分线,"是M 上一点, MN?BD. LL 与朋 处相交J ∙ P 9 A :那么囲仁必;即?戲V 是等腰三角形,IL MP=NP.即:角
平分线+垂线一等腰三角形.
当儿何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰 三角形不完整就应将基本图形补完整,如图11,图12.
国I 心
A
助2 图11。

相关文档
最新文档