液压驱动机械臂的轨迹规划
机械臂的轨迹规划

机械臂运动的轨迹规划摘要空间机械臂是一个机、电、热、控一体化的高集成的空间机械系统。
随着科技的发展,特别是航空飞机、机器人等的诞生得到了广泛的应用,空间机械臂作为在轨迹的支持、服务等以备受人们的关注。
本文将以空间机械臂为研究对象,针对空间机械臂的直线运动、关节的规划、空间直线以及弧线的轨迹规划几个方面进行研究,对机械臂运动和工作空间进行了分析,同时对机械臂的轨迹规划进行了验证,利用MATLAB软件对机械臂的轨迹进行仿真,验证算法的正确性和可行性,同时此路径规划方法可以提高机械臂的作业效率,为机械臂操作提高理论指导,为机器人更复杂的运动仿真与路径规划打下基础。
本文一共分为四章:第一章,首先总结了机械臂运动控制与轨迹规划问题的研究现状及研究方法,归纳了各种轨迹规划的算法及其优化方法,阐述了机械臂的研究背景和主要内容。
第二章,对机械臂的空间运动进行分析研究,采用抽样求解数值法—蒙特卡洛方法,进行机械臂工作空间求解,同时在MATLAB中进行仿真,直观展示机械臂工作范围,为下一章的轨迹规划提供理论基础;同时通过D-H参数法对机械臂的正、逆运动分析求解,分析两者的区别和联系。
第三章,主要针对轨迹规划的一般性问题进行分析,利用笛卡尔空间的轨迹规划方法对机械臂进行轨迹规划,同时利用MATLAB对空间直线和空间圆弧进行轨迹规划,通过仿真验证算法的正确性和可行性。
第四章,总结全文,分析本文应用到机械臂中的控制算法,通过MATLAB 结果可以得出本文所建立的算法正确性,能够对机械臂运动提供有效的路径,而且改进了其他应用于空间机械臂的路径规划问题。
【关键词】运动分析工作空间算法研究轨迹规划ABSTRACTSpace manipulator is a machine, electricity, heat, charged with high integration of space mechanical system integration. With the development of science and technology, especially the birth of aviation aircraft, a robot has been widely used, the trajectory of space manipulator as the support and services to people's attention. This article will space manipulator as the research object, according to the linear motion of the space manipulator, joint planning, space of the straight line and curve, the trajectory planning of several aspects of mechanical arm movement and working space are analyzed, and the trajectory planning of manipulator is verified, the trajectory of manipulator is to make use of MATLAB software simulation, verify the correctness and feasibility of the algorithm, at the same time this path planning method can improve the efficiency of mechanical arm, improve the theoretical guidance for mechanical arm operation, simulation and path planning for robot more complicated movement.This article is divided into four chapters altogether:The first chapter, first summarizes the mechanical arm motion control and path planning problem research status and research methods, summarizes the variety of trajectory planning algorithm and the method of optimization, and expounds the research background and main content of mechanical arm.The second chapter, the paper studied the space motion of mechanical arm, the numerical method, monte carlo method are deduced with the method of sampling, the workspace for mechanical arm is, at the same time the simulation in MATLAB, intuitive display mechanical arm work scope, providing theoretical basis for the next chapter of trajectory planning. At the same time through d-h method of positive and inverse kinematic analysis of the mechanical arm, analyze the difference and contact.The third chapter, mainly aims at the general problem of trajectory planning is analyzed, using cartesian space trajectory planning method for trajectory planning, mechanical arm at the same time, MATLAB is used to analyse the spatial straight line and arc trajectory planning, through the simulation verify the correctness and feasibility of the algorithm.The fourth chapter, summarizes the full text, analysis of the control algorithm is applied to the mechanical arm in this paper, through the MATLAB results can be concluded that the correctness of algorithm, can provide effective path of mechanical arm movement, and improved the other used in space manipulator path planning problem.[key words] motion analysis,work space,trajectory planning,algorithm research目录摘要......................................................................................................................... - 1 - ABSTRACT .............................................................................................................. - 2 - 第一章绪论............................................................................................................. - 5 - 第一节研究背景及意义.................................................................................. - 5 - 第二节国内外发展现状.................................................................................. - 6 -一、国内现状............................................................................................. - 6 -二、国外现状............................................................................................. - 6 - 第二章机械臂的运动分析..................................................................................... - 8 - 第一节机械臂的正运动学分析...................................................................... - 8 - 第二节机械臂的逆运动学求解.................................................................... - 10 - 第三章五轴机械臂轨迹规划与仿真................................................................... - 11 - 第一节轨迹规划一般问题............................................................................ - 11 - 第二节关节空间的轨迹规划........................................................................ - 12 -一、三次多项式插值法........................................................................... - 12 -二、五次多项式插值............................................................................... - 15 -第三节笛卡尔空间的轨迹规划.................................................................... - 17 -一、空间直线轨迹规划........................................................................... - 18 -二、空间圆弧的轨迹规划....................................................................... - 21 -三、一般空间轨迹规划........................................................................... - 25 - 第四章总结与展望............................................................................................... - 30 - 参考文献................................................................................................................. - 31 -第一章绪论第一节研究背景及意义随着宇宙空间的开发,70 年代美国提出了在宇宙空间利用机器人系统的概念,并且在航天飞机上实施。
机械手臂轨迹规划算法及应用研究

机械手臂轨迹规划算法及应用研究近年来,随着工业自动化的不断发展,机械手臂在工业领域中的应用越来越广泛。
而机械手臂的运动规划是其在工作中的关键环节。
本文将对机械手臂轨迹规划算法及其应用进行研究。
一、机械手臂轨迹规划简介机械手臂的轨迹规划是指确定机械手臂的运动轨迹,使其在特定的环境下完成预定的任务。
轨迹规划算法主要包括路径规划和速度规划两个方面。
路径规划是指确定机械手臂运动的路径,而速度规划是指确定机械手臂在规定路径上的运动速度。
合理的机械手臂轨迹规划算法可以使机械手臂高效完成工作任务,提高工作效率。
二、机械手臂轨迹规划算法1. 插值算法插值算法是机械手臂轨迹规划中常用的一种方法。
它通过将轨迹划分为一系列离散点,然后根据这些离散点之间的关系来确定机械手臂的轨迹。
常见的插值算法包括线性插值、二次插值和样条插值等。
这些算法可以根据机械手臂的运动特点和任务要求选择合适的插值方法。
2. 规划算法规划算法是指根据机械手臂的初始状态和目标状态,通过一系列计算和优化方法,确定机械手臂的最佳轨迹。
常见的规划算法包括遗传算法、模拟退火算法和遗传规划算法等。
这些算法可以通过对机械手臂的动力学模型和问题约束条件的考虑,得出最优的轨迹规划结果。
三、机械手臂轨迹规划的应用研究1. 工业领域机械手臂在工业领域中的应用非常广泛。
它可以在生产线上完成各种复杂的组装、搬运和焊接等工作任务。
机械手臂轨迹规划算法的应用可以帮助机械手臂准确、高效地完成各种任务,提高生产效率。
2. 医疗领域机械手臂在医疗领域中也有很大的应用潜力。
例如,机械手臂可以协助医生进行手术操作,减少手术风险,提高手术精准度。
机械手臂轨迹规划算法的应用可以使机械手臂在手术过程中实现精确的运动轨迹,确保手术的安全和成功。
3. 服务领域机械手臂还可以在服务领域中发挥重要作用。
例如,机械手臂可以在酒店或餐厅中完成餐盘的搬运和清洁等任务。
机械手臂轨迹规划算法的应用可以使机械手臂在狭小的空间内灵活地运动,完成各种服务任务,提供更好的服务体验。
机械手臂的路径规划与控制

机械手臂的路径规划与控制机械手臂是一种可编程、多关节的机械设备,能够在三维空间中进行精确运动和操作。
它广泛应用于工业生产线、医疗手术、物流仓储等领域。
而机械手臂的路径规划与控制是保证其高效运作的关键技术之一。
一、机械手臂的路径规划路径规划是指在给定的环境中,通过算法确定机械手臂的运动路径和关节角度,以实现所需的目标位置或动作。
在进行路径规划时,需要考虑到机械手臂的结构、工作空间限制、物体的位置和形状等多个因素。
1.几何路径规划几何路径规划是一种基于几何学的方法,通过计算机算法确定机械手臂的最优路径。
其中,最常用的算法包括线性插补、圆弧插补和样条插补等。
线性插补适用于直线运动,圆弧插补适用于弧线轨迹,而样条插补则可以实现更加灵活的曲线运动。
2.动力学路径规划与几何路径规划不同,动力学路径规划考虑了机械手臂的质量、惯性和运动约束,更加接近于实际应用情况。
常用的动力学路径规划算法包括逆运动学、优化算法和遗传算法等。
逆运动学方法通过已知目标位置,反推出机械手臂的关节角度,而优化算法和遗传算法则通过迭代寻找最优解。
二、机械手臂的控制机械手臂的控制是指通过控制器对机械手臂的电机、驱动器、传感器进行控制,实现路径规划和动作执行。
机械手臂的控制系统通常包括五个主要部分:传感器系统、执行器系统、控制算法、控制器和用户界面。
1.传感器系统传感器系统用于对机械手臂周围环境进行感知,从而获取物体位置、形态和力量等信息。
常见的传感器包括摄像头、激光测距仪、力传感器等。
传感器所获取的数据可以用于路径规划、动作控制和碰撞检测等。
2.执行器系统执行器系统包括电机、传动装置和关节,用于实现机械手臂的运动。
电机通过驱动器接受控制信号,驱动关节实现机械手臂的位移或转动。
在选择执行器系统时,需要考虑负载能力、精度和效率等因素。
3.控制算法控制算法是机械手臂控制系统的核心部分,根据传感器数据和用户指令,计算出适合的控制信号。
常见的控制算法包括PID控制、模糊控制和神经网络控制等。
机械手臂的运动控制与路径规划

机械手臂的运动控制与路径规划机器人技术的飞速发展对于现代生产和制造业来说,已经成为了不可或缺的一部分。
而机械手臂则是机器人中最常见的一种类型,其在工业、医疗、军事等领域中都有着广泛的应用。
而机械手臂的精度和运动控制则是决定其实际应用效果的关键因素。
机械手臂的结构和工作模式机械手臂通常由多个关节、执行器、传感器、控制器等组成。
其基本结构与人的手臂区别不大,也是由众多连杆通过铰链连接,在关节处附有电机或气缸作为驱动。
它可以通过控制执行器驱动众多连杆同时运动,从而实现机械臂末端的精确定位和运动。
机械手臂的工作模式也通常可以分为在线控制和离线控制两种方式。
在线控制通常会配备视觉传感器和力传感器,主要用于对于工作环境中的变化进行实时跟踪和调整,保障机械手臂的精度和安全性。
而离线控制则是指通过预先设定的工艺信息和路径规划,使机械手臂自动完成特定任务。
机械手臂的运动控制技术机械手臂的运动控制技术涵盖了闭环控制和开环控制两种方式。
在机械手臂的动力学模型建立完成之后,可以根据给定的输入量和输出量,通过控制器计算出逆运动学解和关节角,从而实现机械手臂的合适运动。
闭环控制则是以传感器获得的数据为反馈,控制器根据反馈信息实时调节执行器的输出量,从而实现机械手臂的精确定位和运动。
控制器的设计通常需要考虑控制算法、反馈传感器、执行器以及通信协议等方面。
其中,控制算法通常可以根据具体应用情况选择PID控制器、模糊控制器、神经网络等。
反馈传感器通常包括编码器、力传感器、视觉传感器等,可以对机械手臂状态进行实时反馈。
而执行器则包括液压、气动等多种类型,可以根据具体需要进行选择。
机械手臂的路径规划技术机械手臂的运动控制不仅需要实现精确定位,还需要在碰撞检测、轨迹平滑等方面进行优化。
而路径规划技术则是实现这些目标的关键。
路径规划是指根据机械手臂的动力学模型和环境信息,通过计算得到机械手臂的最优路径,从而实现机械手臂的快速、平稳、安全的运动。
机械臂的运动轨迹规划与优化研究

机械臂的运动轨迹规划与优化研究引言:机械臂作为一种重要的工业机器人,广泛应用于制造业、医疗、农业等领域。
机械臂的运动轨迹规划与优化是提高机械臂运动精度和效率的关键问题,也是当前研究的热点之一。
一、机械臂的运动轨迹规划方法1.1 轨迹生成方法机械臂的运动轨迹规划包括离线轨迹规划和在线轨迹规划。
离线轨迹规划在机械臂开始运动前生成一条完整轨迹,其中常用的方法有路径规划、插值法和优化方法等。
在线轨迹规划则是在机械臂运动过程中不断生成新的轨迹点,以应对实时性要求。
1.2 轨迹优化方法为了提高机械臂的运动效率和精度,轨迹优化是必不可少的一步。
常见的轨迹优化方法有速度规划、加速度规划和力矩规划等。
通过对运动过程中的速度、加速度和力矩等参数进行优化,可以使机械臂的运动更加平滑和高效。
二、机械臂运动轨迹规划与优化的挑战和难点2.1 多目标优化机械臂运动轨迹规划与优化往往涉及到多个目标,如运动时间最短、能耗最低、碰撞避免等。
这些目标之间往往存在着冲突和矛盾,如速度与力矩之间的平衡。
因此,如何有效地进行多目标优化是一个挑战。
2.2 动态环境下的规划在实际应用中,机械臂通常需要在动态环境中进行运动。
此时,不仅需要考虑各个关节的运动规划,还需要考虑与环境的交互和碰撞避免。
如何在动态环境中高效地生成运动轨迹是一个难点。
三、机械臂运动轨迹规划与优化的研究进展3.1 具体问题具体分析目前,机械臂运动轨迹规划与优化研究已经涉及到不同的应用领域。
例如,针对医疗领域中手术机器人的运动规划问题,研究人员提出了针对手术刀具的运动规划方法,以实现更高精度的手术指导。
3.2 智能算法的应用随着人工智能技术的不断发展,智能算法在机械臂运动轨迹规划与优化中得到了广泛的应用。
遗传算法、模拟退火算法和粒子群算法等智能算法可以有效解决多目标优化问题,提高机械臂的运动效率。
四、机械臂运动轨迹规划与优化的发展前景4.1 自适应机械臂研究人员正在探索机械臂运动轨迹规划与优化的自适应方法,使机械臂能够根据不同任务和环境自动调整运动轨迹,提高适应性。
机械臂轨迹规划与控制研究

机械臂轨迹规划与控制研究机械臂是一种具有多自由度、可控制灵活的机械系统,广泛应用于工业生产中的装配、焊接、搬运等任务。
机械臂的轨迹规划与控制是保证机械臂能够完成预定任务的关键技术。
一、机械臂轨迹规划机械臂轨迹规划是指确定机械臂运动轨迹的过程,目的是使机械臂能够按照预定的路径实现精确的运动。
在机械臂轨迹规划中,需要考虑以下几个方面的内容。
1. 运动约束:机械臂在运动过程中需要满足一定的约束条件,如关节角度限制、末端执行器位置限制等。
因此,轨迹规划需要考虑这些约束条件,确保机械臂在运动过程中不会发生碰撞或超过运动范围。
2. 轨迹优化:轨迹规划不仅需要满足基本的运动要求,还需要使机械臂的运动更加优化。
例如,考虑到机械臂的运动平滑性可以减少机械臂的振动和冲击,提高工作效率和准确性。
3. 避障规划:工业生产中,机械臂往往需要在复杂环境中操作,因此需要考虑避免障碍物的规划。
避障规划可以通过传感器获取障碍物的位置信息,然后在规划路径时避开这些障碍物,确保机械臂的安全和稳定。
二、机械臂控制机械臂控制是指通过对机械臂系统进行控制,使其按照预定的轨迹进行运动。
机械臂控制通常涉及以下几个方面的内容。
1. 运动控制:机械臂的运动控制主要包括速度控制和位置控制。
速度控制是指控制机械臂的运动速度,使其按照规划好的速度进行运动。
位置控制是指控制机械臂的位置,使其能够精确地到达目标位置。
2. 关节控制:机械臂通常由多个关节组成,因此需要对每个关节进行控制。
关节控制可以通过PID控制器等算法实现,使每个关节能够按照设定的角度进行运动,从而实现整体的轨迹规划。
3. 力控制:机械臂通常需要与外部环境进行交互,例如在装配过程中需要施加一定的力量。
因此,机械臂控制还需要考虑力控制。
力控制可以通过力传感器等设备实现,使机械臂能够准确地施加力量。
三、轨迹规划与控制算法对于机械臂轨迹规划与控制的研究,有许多不同的算法可以应用。
以下是其中一些常用的算法。
机械手臂运动学分析及运动轨迹规划

机械手臂运动学分析及运动轨迹规划机械手臂是一种能够模仿人手臂运动的工业机器人,正因为它的出现,可以将传统的人工操作转变为高效自动化生产,大大提高了生产效率和质量。
而机械手臂的运动学分析和运动轨迹规划则是实现机械手臂完美运动的关键。
一、机械手臂运动学分析机械手臂的运动学分析需要从几何学和向量代数角度出发,推导出机械手臂的位姿、速度和加速度等运动参数。
其中,机械臂的位姿参数包括位置和姿态,位置参数表示机械臂末端在空间中的坐标,姿态表示机械臂在空间中的方向。
对于机械臂的位姿参数,一般采用欧拉角、四元数或旋转矩阵的形式描述。
其中,欧拉角是一种常用的描述方法,它将机械臂的姿态分解为绕三个坐标轴的旋转角度。
然而,欧拉角的局限性在于其存在万向锁问题和奇异性等问题,因此在实际应用中,四元数和旋转矩阵往往更为常用。
对于机械臂的运动速度和加速度,可以通过运动学方程求出。
运动学方程描述了机械臂末端的速度和加速度与机械臂各关节角度和速度之间的关系,一般采用梯度方程或逆动力学方程求解。
二、机械手臂运动轨迹规划机械手臂的运动轨迹规划是指通过预设规划点确定机械臂的运动轨迹,以实现机械臂的自动化运动。
运动轨迹的规划需要结合机械臂的运动学特性和运动控制策略,选择合适的路径规划算法和控制策略。
在机械臂运动轨迹规划中,最重要的是选择合适的路径规划算法。
常见的路径规划算法有直线插补、圆弧插补、样条插值等。
其中,直线插补最简单、最直接,但是在复杂曲线的拟合上存在一定的不足。
圆弧插补适用于弧形、曲线路径的规划,加工精度高,但需要计算机械臂末端的方向变化,计算复杂。
样条插值虽能够精确拟合曲线轨迹,但计算速度较慢,适用于对路径要求较高的任务。
除了选择合适的路径规划算法,机械臂运动轨迹规划中还需要采用合适的控制策略。
常用的控制策略包括开环控制和闭环控制。
开环控制适用于简单的单点运动,对于复杂的轨迹运动不太适用;而闭环控制可以根据机械臂末端位置的反馈信息及时调整控制器输出,适用于复杂轨迹运动。
机械臂运动轨迹规划算法研究

机械臂运动轨迹规划算法研究1. 引言机械臂是一种常见的工业自动化设备,具有灵活性和精准性等优点,在许多领域中得到广泛应用。
机械臂的运动轨迹规划是指在给定的起点和终点位置之间,寻找一条合适的轨迹路径,以确保机械臂的运动效果最佳。
为了实现高效的机械臂运动轨迹规划,研究者们提出了多种算法和方法。
2. 基本原理机械臂运动轨迹规划的基本原理是通过构建数学模型,解决机械臂路径规划问题。
其中,常见的数学模型包括几何模型、运动学模型和动力学模型。
几何模型用于描述机械臂的结构和各个关节的位置关系,运动学模型用于描述机械臂末端执行器的位置和姿态,动力学模型用于描述机械臂的运动学和动力学性能。
3. 基础算法3.1 直线插补算法直线插补算法是机械臂运动轨迹规划中的一种基础算法,适用于直线运动的路径规划。
该算法通过在起点和终点之间构建一条直线路径,以实现机械臂的直线运动。
它简单易懂,计算速度快,但对于复杂的路径规划问题效果不佳。
3.2 贝塞尔曲线插值算法贝塞尔曲线插值算法是机械臂运动轨迹规划中的一种常用算法,适用于曲线运动的路径规划。
该算法通过通过控制点以及权重系数来构造一条光滑的曲线路径,以实现机械臂的曲线运动。
它具有良好的曲线拟合性能,能够满足复杂路径的规划需求。
4. 改进算法4.1 遗传算法遗传算法是一种模拟生物进化过程的优化算法,近年来在机械臂运动轨迹规划中得到广泛应用。
该算法通过定义适应度函数,使用基因编码和演化操作,优化机械臂的路径规划问题。
遗传算法具有较强的全局搜索能力和自适应性,能够找到较优的解决方案。
4.2 神经网络算法神经网络算法是一种模仿人脑神经元网络结构和工作原理的算法,用于模式识别和函数逼近等领域。
近年来,研究者们将神经网络算法应用于机械臂运动轨迹规划中。
通过训练神经网络模型,可以实现机械臂路径规划的自动学习和优化,提高规划效果和运动精度。
5. 应用案例机械臂运动轨迹规划算法在工业自动化领域中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
YANG Zheng1, SHANG Jian-zhong1, WANG B iao2, TANG L i1, L IANG K e-shan1, GOU M ing-kang2
( 1. Co llege o fM echatron ics Eng inee ring and A utom ation N ational U niversity of D efense T echno logy, Changsha 410073, China; 2. T he F irst Eng ineers Sc ientific R esearch lnstitute o f the G enera lA rm am ents D epartm ent, W ux,i 214035, Ch ina) Ab stract: A m e thod fo r tra jectory p lann ing o f hydrau lic-drive m an ipu lator is put fo rw ard. V ia co llision- free m otion
2. 总装工程兵科研一所, 无锡 214035)
摘 要: 提出了一种基于液压驱动的机械臂轨迹规划方法。在对 n自由度机械臂进行基于 C 空间的 无碰
撞轨迹规划后, 根据液压驱动机械臂的特 性, 并在对机械 臂运用 ADM S进行运 动求逆 的基础上, 采 用抛物 线过
渡线性插值算法对液压缸进行了运动优化, 得到了 基于无碰撞的优化轨迹。仿真及实装试验结果表 明, 所 规划
K ey words: hydrau lic-drive; m anipu lato r; collision- free; tra jectory p lann ing
机械臂是具有传动执行 装置的 机械, 它由手 臂、关节和 末端执行装置构成, 组合为一个互相连结 和互相依 赖的运动 机构 [ 1] 。工程中采用液 压驱 动的机 械臂, 如 挖掘机 械, 往往 由于作业内容的不确定性, 大多采用人工 操纵机械 臂的方法 进行作业。但是对 于作业 内容 确定且 有一 定装 配精度 要求 的机械臂, 如定点吊 运机 械, 如 果采 用人 工操 纵, 不但 耗费 人力物力和时间, 而且往往达不 到要求, 甚至 还可能 出现安 全问题, 因此, 当前 迫切需 要一 种能够 满足 要求 的实用 的机 械臂轨迹规划方法, 便于自动控制, 降低成本, 保障安全。
的运动轨迹符合各项性能指标, 同时械臂; 无碰撞; 轨迹规划
中图分类号: TH 137. 51; TH 213. 1; TP241. 3
文 献标识码: A
Study on T rajectory P lann ing for H ydraulic- Drive M anipulator
第 25卷第 2期 2009年 4月
机械设计与研究 M achine D esign and R esearch
V o.l 25 N o. 2 A pr. , 2009
文章编号: 1006-2343( 2009) 02-047-05
液压驱动机械臂的轨迹规划
杨 政 1, 尚建忠1, 王 彪2, 唐 力 1, 梁科山 1, 苟明康 2 ( 1. 国防科技大学 机电工程与自动化学院, 长沙 410073, E-m ai:l yangzheng@ nud.t edu. cn;
目前, 在机器人 (包 括机械 手 /臂 ) 轨迹 规划 方面已 有了 较多的研究, 如计算、推导方法 方面, 郭宗和 [2] 等对 一种并联 机构动平台的运动轨迹规划 进行了 推导, 提出 了 3- R PC 并 联机构的运动学反解计算公式 ; 郭柏林 [3] 等对一种 新型机械 手进行了仿真, 得到了该机 械手的一 些动态 参数; K o ivo[ 4] 等 利用 N ew ton-Euler方程描 述了 挖 掘机 构的 运动 关系 并 建立 了较完整的系统 动力 学方程。 还有一 部分 则着 重介绍 了轨 迹规划的算法, 如 杜亮 [ 5] 等 出了一 种工 业机 器人 连续 轨迹 位置规划算法: 王随 平 [ 6]、Sanc ibrian[7] 等 提出了 改进的 蚁群 优化算法, 等等。但是, 大 多数 都是针 对电 机驱动 的轻 型机
planning o f the m anipulator based on C-Space, and acco rd ing to the cha racte ristic o f hydrau lic m an ipu lator, som e key po ints used for the mo tion optim ization o f hydraulic cy linder are ob tained, based on the so lutions com puted by ADAM S / v iew for inverse kinema tics o f the m an ipulator, the op tim ization tra jec to ry is ach ieved after the m otion optim ization o f hydraulic cy linder v ia the algor ithm o f pa rabo lic interpo lation. F ina lly, the resu lts of the simu lation and the test ind ica ted that the property of the mo tion tra jec to ry m eets all o f the targets and the va lidity o f the m ethod is ver ified.
收稿日期: 2008 - 12- 02