第二章光腔与高斯光束
§2.7+高斯光束及其传输规律

第二章 开放式光腔与高斯光束/§2.7 高斯光束及其传输规律
r2 r2 −1 z −ik z+ −tan − 2 2R( z) f w ( z)
c 自由空间的基 Ψ x, y, z) = e 模 高 斯 光 束 00 ( w( z)
• 情况1:已知w0, w'0, 确定透镜焦距(F)及透镜的距离 l, l'
( l − F ) F2 l′ = F + 2 l − F) + f 2 (
′ w =
2 0
w0 l −F =± F2 − f02 ′ w0 ′ w0 l′ − F = ± F2 − f02 ′ w0
( F −l )
w2 F2 0
1 1 λ = −i 2 定义q 参数 q z R z 高斯光束的复曲率半径) ( ) ( ) πw ( z) (高斯光束的复曲率半径
若已知高斯光束在某一位置的q参数 若已知高斯光束在某一位置的 参数 → w(z), R(z), θ
1 1 = Re , R( z ) q ( z )
3. 光学系统(元件)
r2 A B r 1 球面波 = θ2 C Dθ1
r2 = Ar + Bθ1 1
r2 ≈ R2θ2
r ≈ Rθ1 1 1
θ2 = Cr + D 1 θ 1
R2 =
θ2
r2
=
AR + B 1 CR + D 1
参数通过光学系统的变换与球面波R的变换相同 高斯光束 q参数通过光学系统的变换与球面波 的变换相同 参数通过光学系统的变换与球面波
两式相减
第二章开放式光腔与高斯光束

1 L
T1 T3 0 1
R1
①
② R2
1 0
T2
2 R2
1
1 0
T4
1、往返一周
T
2 L
2g2 1 (g1 g2 2g1g2 )
2Lg2
4g1
g
2
2
g
2
1
R1、R2:两反射镜面曲率半径 L:谐振腔长度
证
①
②
R1
R2
④
③
L
r22 T1r11 r33 T2 r22 T2T1r11 r44 T3r33 T3T2T1r11 r55 T4 r44 T4T3T2T1r11
2、实例
(1)单程传播L距离
证
1 r1
2 r2
L
r2=r1+L1 2= 1
T
1 0
L 1
T
1 0
L 1
(2)球面反射镜
1 0
T
2 R
1
R:球面镜曲率半径(凹为+,凸为-)
证
=i+2 2-=-1
2
ii
2o 1
全反射镜
部分反射镜
光学谐振腔的发展与分类
最早提出的是平行平面腔 随后广泛采用了共轴球面腔
理论上分析这类腔的时候, 认为其侧面对光无约束,因 此也称为开放式光学谐振腔, 简称开腔。
开腔——侧面对光没有约束
稳定腔 非稳定腔 临界腔
激光原理第二章答案解析

第二章 开放式光腔与高斯光束1. 证明如图2.1所示傍轴光线进入平面介质界面的光线变换矩阵为121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 证明光线通过图2.2所示厚度为d 的平行平面介质的光线变换矩阵为1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
激光原理教案第二章

激光原理与技术
1,2两种损耗常称为选择损耗,不同模式的 几何损耗与衍射损耗各不相同。3,4两种称为 非选择损耗,通常情况下它们对各个模式大体 一样。
平均单程损耗因子:如果初始光强为 I0 ,在 无源腔内往返一次后,光强衰减为 I1 ,则
I1 I0e2
1 ln I1 ,
2 I0
为腔中各损耗因子的和
1.22
2a
W1 W1 W0
S1 S1 S0
a L 2 a2 a L 2
激光原理与技术
2L
a
2L
0.61
a2
1.22 a2
1 a2
1 N
L L
D
D
'
1 N
N:菲涅耳数,N愈大,损耗愈小。
激光原理与技术
§2.2共轴球面腔的稳定性条件 一、腔内光线往返传播的矩阵表示
激光原理与技术
0q 称为腔的谐振波长
q
q
c 2L,
q称为腔的谐振频率
当光腔内充满折射率为 的均匀物质时
L, L
q
q
c
2 L,
L q q
2
式中 q 为物质中的谐振波长
本征模式在腔的横截面
内场分布是均匀的,而 沿腔的轴线方向(纵向)形 成驻波,驻波的波节数 由q决定,q单值地决定 模的谐振频率。
激光原理与技术
激光原理与技术
腔与模的关系: 腔内电磁场的本征态应由麦 克斯韦方程组及腔的边界条件决定。不同类型 和结构的谐振腔的模式各不相同。
对闭腔,一般可以通过直接求解微分形式的 麦克斯韦方程组来决定其模式
寻求开腔模式的问题通常归结为求解一定类 型的积分方程。
模的基本特征:模在腔的横截面内的场分 布,模的谐振频率,模在腔内往返的相对功率 损耗;模的光束发散角。
激光原理周炳坤-第2章习题答案

第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
第二章 开放式光腔和高斯光束

r: 光线离轴线的距离; ζ :光线与轴线的夹角,规定
光线出射方向, 在腔轴线的上 方时,θ为正,反之θ为负。
傍轴光线、 自由空间的光线矩阵 2.2 共 轴 球 面 腔 的 稳 定 性 条 件 光线传输路径:
M 1 r1 ,1 M 2 r2 , 2
由几何关系: r2 r1 L sin 1 r1 L1 2 1
1 1 t dN t N0 0 N0
N0 t e R
t
R
dt R
这就证明了腔内光子的平均寿命为τR,腔的损耗 愈小,τR就愈大,腔内光子的平均寿命就愈长。
2.无源谐振腔的Q值
谐振腔Q值的普遍定义为:
δ ——储存在腔内的总能量;P——单位时间内损耗的能量, v—— 腔内电感场的振荡频率;W=2л v——场的角频率。
E0 ET
E3
E1=E0e-j
当||1的情况下(往返 传播次数无限多),当 = q2时,ET幅度可 以达到
E4 E3=E2e-j
E2=E1e-j
——腔内纵模需要满足的谐振条件
相长干涉条件:腔中某一点出发的波,经往返一 周回到原来位置时,应与初始出发的波同相位。
开放式光腔
稳定腔——共焦腔模式理论
(损耗小,模体积小)
非稳腔(高损,大功率激光器)
方形镜共焦腔 圆形镜共焦腔 一般稳定球面腔 与共焦腔的等价性 产生激光光束的传输问题 ——高斯光束
2.1光腔理论的一般问题
ቤተ መጻሕፍቲ ባይዱ一.光学谐振腔的构成和分类
平行平面腔:最早的光腔法布里-珀罗干涉仪,F-P腔。
共轴球面腔:两块具有公共轴线球面镜构成的谐振腔。
周版激光原理课件第二章

数为:
P
nVd
8 2
c3
Vd
由此关系知,只能压缩V,但是不现实。从而提出开式腔
(无侧壁的封闭腔)。从发散角来看,封闭时为2 ,而
开式时为
a
2
L
压缩倍数为
2
/
a L
2
• 但是,我们知道开式腔是无侧壁的封闭 腔,那么内部会不会有稳定的电磁波存 在?如何求出该电磁波?
§ 2.1光腔理论的一般问题
(t
z
)
A2
A0
cos 2
(t
z
)
总波为二者叠加:
A
A1
A2
2 A0
cos
2
z
cost
稳定波存在必须满足驻波条件:
一维: L q
2
与谐振条件等价
从波动理论知:驻波是稳定存在的波。满足驻波条件的 那些光波称之为光腔的纵模,q为波节数,一般很大。一般 把由整数q所表征的腔内的纵向场分布称为腔的纵模。其特 点是:在腔的横截面内场分布是均匀的,而沿腔的轴线方向 形成驻波,驻波的波节数由q来决定。
共轴
球面 R1
共轴 R2
2. 开放式: 除二镜外其余部分开放 共轴: 二镜共轴 球面腔: 二镜都是球面反射镜(球面镜)
三.光腔按几何损耗(几何反射逸出)的分类:
稳定腔 (光腔中存在着伴轴模,它可在腔内多次传播而不逸出腔外) 光腔 临界腔 (几何光学损耗介乎上二者之间)
非稳腔 (伴轴模在腔内经有限数往返必定由侧面逸出腔外,有很高的
a
在这种条件下,可认为均匀平面波是F-P谐振腔内的最低损 耗模,从而为F-P谐振腔的模式提供一种粗略的,也是有用 的形象。
所以考虑均匀平面波在F-P谐振腔内沿轴线方向往返传播的 情形
第二章开放式光腔与高斯光束1

腔的菲涅耳数为 N a L
2
所以:
1 1 d 2 a N L
' d
几何光学分析方法和衍射理论分析方法
几何光学分析方法:
用矩阵方法处理光腔中光线的传播、腔的 稳定性 、谐振腔的分类等。
衍射理论分析方法: 在菲涅耳--基尔霍夫衍射积分以及模式 重现概念的基础上,讨论谐振腔模式的形式、 解的存在、模式花样、衍射损耗等。
共焦谐振腔示意图
长半径球面腔
长半径球面谐振腔的性能介于共焦腔与球面腔之间,它的特点 如下: 1) 中等的衍射损耗;2)较易安装调整; 3)模体积很大; 4)腔内没有很高的光辐射聚焦现象;
长半径球面谐振腔适于连续工作的激光器
长半径球面腔示意图
半球型谐振腔 半球型谐振腔的特点: 易于安装调整、衍射损耗低、成本低 半球型谐振腔主要应用于低功率氦氖激光器
(3)腔镜不完全反射引起的损耗 包括反射镜的吸收、散射以及镜的透射损耗。 镜的透射损耗与输出镜的透射率T有关。 (4)材料中非激活吸收、散射,腔内插入物引起的损耗。 激光通过腔内光学元件和反射镜发生非激活吸收、散 射引起的损耗 平均单程损耗因子
I I 0e
2
1 I0 ln 2 I
I1 I 0 r1r2 I 0e 2 r 1 r ln(r1r2 ) 2 r1 1, r2 1 时有
当
1 r [(1 r1 ) (1 r2 )] 2 (2)腔镜倾斜时的几何损耗
设倾角为 ,往返m次后才逸出腔 外,D为腔的横向尺寸。
L 2 L 6 L(2m 1)2 D
§2.1 光腔理论的一般问题
一、光学谐振腔的构成、分类和作用 光学谐振腔的构成 最简单的光学谐振腔是在激活介质两端恰当地 放置两个镀有高反射率的反射镜构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1 光腔理论的一般问题
二 F-P腔TEMmnq模之纵模
驻波条件: 波从某一点出发,经腔内往返一周再 回到原来位置时,应与初始出发波同相
2
2 L ' q 2 L ' ni Li L ' q 2 q
c c q q 1 q 2nL 2 L'
§2.2 共轴球面腔的稳定性条件
变换矩阵 的特点 ①往返矩阵与初始坐标无关,可用来描述任意 傍轴光线在腔中的传播行为。 ②往返矩阵中的各个元素的具体值与初始出发 位置、光线往返顺序有关。 ③ 1 A D 对于一定结构的球面腔而言是一确定量, 2 而与光线的初始坐标、出发位置和往返 次序无关! 更进一步,对于共轴球 面腔,下式永远成立:
I1 I 0r1r2 I 0e
2 r
1 1 r ln( r1r2 ) (ln r1 ln r2 ) 2 2
1 r [(1 r1 ) (1 r2 )] 2
当r1≈1,r2≈1时,
§2.1 光腔理论的一般问题
损耗举例2:(腔镜倾斜时的几何损耗)
m
D 2 L
2 DL c
L c
L
2D
6
以D=1cm,L=1m计算,如果要求损耗低于0.01
2 10 rad 0.4
§2.1 光腔理论的一般问题
损耗举例3:(衍射损耗)
1.22
D
忽略第一暗 环以外的光
假设爱里斑 内光强均匀
W1 S1 (a L )2 a 2 2 L 1.22 L 1 2 2 2 W1 W0 S1 S0 (a L ) a a a L
1 2L 2L 2 L2 A D 1 2 R1 R2 R1R2
Tn
§2.2 共轴球面腔的稳定性条件
7 光学谐振腔的稳定性条件
rn Anr1 Bn1 的rn和θn取值大小,反映的是光线偏离 n Cnr1 Dn1 光轴能力的程度 当其为有限值,即小于
0
r2 r1
TR
10 1 1 f
§2.2 共轴球面腔的稳定性条件
5、共轴球面腔的往返矩阵 T 一次往返 两次自 由空间 和两次 球面镜 反射
L
ห้องสมุดไป่ตู้
r5 r1 r1 T T T T T R 1 L R 2 L θ θ θ 5 1 1
1 2
I0 I1
I 0 I1 ' 2I 0
说明:当损耗较小时,两种定义一致。
§2.1 光腔理论的一般问题
3 光子在腔内的平均寿命 (又叫腔的时间常数)
L' R c
I m I 0 (e
2 m
) I 0e
2 m
t m 2 L / c
t时刻的光强为
I (t ) I 0e
选 择 损 耗
非 选 择 损 耗
§2.1 光腔理论的一般问题
2 平均单程损耗因子 定义一:若初始光强为 返一次后,光强衰减为
I0
,在腔中往 I 1 ,则有:
i
I1 I 0 exp(2 )
ln
对于多种损耗,则: i 定义二:单程渡越时光 I 0 I1 2 ' 强的平均衰减百分数 I0
§2.2 共轴球面腔的稳定性条件
A B 其中: T C D
2L A 1 R2
L B 2 L 1 R 2
2 2 2 L C 1 R1 R1 R2
2L 2 L 2 L D 1 1 R R R 1 2 1
r
>0 <0 <0
两种描述是统一的!
§2.2 共轴球面腔的稳定性条件
说明:光传输中,r ,θ可能发生变化,而变化后 的r 、θ可用一个ABCD传输矩阵与初始光线的矩 阵相乘得到。 B r , 0 0 2、自由空间的平移矩阵 r, A A处:r0,0 L B处:r’,’
1 1 2 d a N L
a2 N L
菲涅耳数
§2.1 光腔理论的一般问题
例CO2 激光器的腔长L=100cm,反射镜直径D=1.5cm, 两镜的光强反射系数分别为r1=0.985,r2=0.8。求由 衍射损耗及输出损耗分别引起的δ、 c、Q、 ( 设n=1) c
10.6 10 1 0.188 解: 衍射损耗: 2 2 2 a (0.75 10 ) L 1 8 c 1.75 10 s 8 c 0.188 3 10 3 108 8 6 Q 2 c 2 3.14 1.75 10 3.11 10 10.6 106
3 108 8 Q 2 c 2 3.14 2.78 10 4.96 MHz 6 10.6 10
1 c 5.7 MHz 8 2 c 2 3.14 2.78 10
1
§2.2 共轴球面腔的稳定性条件
一、傍轴光线往返传输的矩阵(ABCD矩阵)描述 1、傍轴光线的坐标描述和矩阵描述 (1) 坐标描述 r :光线离光轴的距离 r : 光线与光轴的夹角 傍轴光线:tg sin 正,负号规定: (2)矩阵描述
r r0 Lθ 0 θ θ 0
则自由空间的平移矩阵为:
r0 r A B r0 1 L θ TL θ TL θ C D 0 0 1 0
§2.2 共轴球面腔的稳定性条件
Finesse
gm
1 gm
1 P cav Pmax 1 (2F )2 sin 2 ( )
§2.1 光腔理论的一般问题
三 光腔的损耗 1 分类
光学开腔的损耗包括: • 几何偏折损耗 • 衍射损耗 • 腔镜反射不完全所引起的损耗 • 材料中的非激活吸收、散射、腔内插入 的光学元件或其它物体所引起的损耗
t c L
I 0e
t
R
I0 e
L R c
物理意义: 当 可见, 越大, R 越短,腔内光子数衰减越快!
R 也可看成腔内光子的平均寿命。
t R
时, I m
§2.1 光腔理论的一般问题
I ( t ) I 0e
设t时刻光子数密度为N
t
R
N ( t ) N 0e
镜面的横向尺寸时,光不逸出,即为稳定。 我们讨论φ的取值情况: 1)φ为实数
a. Tn为有限值的条件为Sinφ不为0
φ不等于Kπ
即
1 =arc cos (A+D) K 2 1 1 < (A+D)< 1 稳定条件 2
§2.2 共轴球面腔的稳定性条件
1 2L 2L 2L2 A D 1 2 R1 R2 R1R2
(3)共心腔
满足条件 R1十R2=L的谐振腔称为共心腔, 面的曲率中心互相重合。
第二章 开放式光腔与高斯光束
1 利用ABCD矩阵分析光腔稳定性 2 腔与模的关系分析 3 高斯光束的基本性质 4 q参数应用
§2.1 光腔理论的一般问题
一 光腔的构成和分类
1、开腔: 稳定腔、非稳腔、临界 F-P腔:最早提出来的平行平面光腔 共轴球面腔(b) 2、闭腔:介质腔(a) 3、气体波导激光谐振腔 4、光腔的其它分类
4 无源腔的Q值 定义一 :
E Q P
腔内储存的总能量
单位时间内损耗的能量
定义二 :
Q R
L' 2 c
激光的单模线宽
定义三 :
Q c
小结:损耗越大, Q值越小。
§2.1 光腔理论的一般问题 损耗举例1:(由镜反射不完全引起的损耗) 初始强度为I0的光,在腔内经两个镜面反 射往返一周后,其强度应为
§2.2 共轴球面腔的稳定性条件
(2)平行平面腔 此时有R1=R2=∝,
g1=g2=1
g1g2=1
1.腔中沿轴线方向行进的光线能往返无限多次而不 致逸出腔外,且一次往返即实现简并(形成闭合光 路 ). 2.沿非轴向行进的光线在经有限次往返后,必然从 侧面逸出腔外,这又与非稳腔相像。
§2.2 共轴球面腔的稳定性条件
0 < (1
L L 2(1 )(1 ) 1 R1 R2
L L )(1 ) < 1 R1 R2
L g1=1 R 1 定义谐振腔的g参数 g =1 L 2 R2
> 0 < g1g2 < 1
稳定条件
b.Sinφ=0, Tn为极大值 即 1 (A+D)= 1 2
3、界面的折射矩阵 入射 r0 , 0 出射 r,
r r0
n1 θ θ0 n2
n1
n2
n10 n2
0 1 TS 0 n1 n2
4、球面镜的反射矩阵Tr
1 0 对于薄透镜有 Tr 2 1 类似的关系 R
1 =acr cos (A+D)=K 2
g1g2= 1或者g1g2=0
临界腔
§2.2 共轴球面腔的稳定性条件 常见的几种临界腔 (1) 对称共焦腔 满足条件Rl=R2= Lg 的谐振腔称为对称共焦腔, g1= =0 g1g2=0 2 这时腔的中心即为两个镜面的公共焦点。对称 共焦腔满足
任意徬轴光线均可在腔内往返无限多次而不致 横向逸出,而且经两次往返即自行闭合。共焦 腔应属于稳定腔。
折叠腔、环形腔 复合腔-腔内加入其它光学元件,如透镜,F-P标准具等
腔
§2.1 光腔理论的一般问题