菱形的性质与判定名师教案
菱形的性质和判定教案

菱形的性质和判定教案一、教学目标:1. 知识与技能:(1)能说出菱形的定义及性质;(2)学会菱形的判定方法;(3)能运用菱形的性质和判定解决实际问题。
2. 过程与方法:(1)通过观察、操作、推理等过程,发现菱形的性质;(2)运用菱形的判定方法,解决相关问题。
3. 情感态度与价值观:培养学生对几何图形的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)菱形的性质;(2)菱形的判定方法。
2. 教学难点:(1)菱形性质的证明;(2)菱形判定方法的运用。
三、教学准备:1. 教师准备:(1)多媒体课件;(2)几何模型;(3)练习题。
2. 学生准备:(1)预习菱形的定义及性质;(2)了解判定方法的基本概念。
四、教学过程:1. 导入新课:(1)复习矩形、正方形的性质;(2)提问:矩形、正方形有什么特殊的几何性质?(3)引导学生思考:是否存在一种四边形,它的对角线互相垂直且平分对方?2. 探究菱形的性质:(1)分发几何模型,让学生实际操作;(2)引导学生观察、发现菱形的性质;(3)师生共同总结菱形的性质。
3. 证明菱形性质:(1)引导学生运用已知性质证明菱形性质;(2)分组讨论,分享证明方法;(3)教师点评,完善证明过程。
4. 学习菱形的判定方法:(1)介绍菱形判定方法;(2)让学生举例说明判定方法的应用;(3)师生共同总结判定方法。
5. 练习与拓展:(1)分发练习题,让学生独立完成;(2)讲解练习题,巩固所学知识;(3)拓展思考:菱形在实际生活中有哪些应用?五、课后作业:1. 复习本节课所学内容,总结菱形的性质和判定方法;2. 完成课后练习题;3. 探索菱形在实际生活中的应用。
六、教学评价:1. 知识与技能:(1)学生能准确地描述菱形的性质;(2)学生能运用菱形的判定方法解决问题。
2. 过程与方法:(1)学生能通过观察、操作、推理等过程,发现菱形的性质;(2)学生能运用菱形的判定方法,解决相关问题。
小学数学公开课名师教案课件

小学数学公开课名师教案课件教案是老师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、(教学(方法))等进行的具体设计和安排的一种实用性教学文书。
下面给大家带来小学数学公开课名师教案课件,希望大家喜欢!小学数学公开课名师教案课件篇1一、教学目的:1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培育学生的观察能力、动手能力及(逻辑思维)能力.二、重点、难点1.教学重点:菱形的两个判定方法.2.教学难点:判定方法的证明方法及运用.三、例题的意图分析本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.四、课堂引入1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.问题要判定一个四边形是菱形,除根据定义判定外,还有(其它)的判定方法吗?3.探究(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、例习题分析例1 (教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵ 四边形ABCD是平行四边形,∵ AE∵FC.∵ ∵1=∵2.又∵AOE=∵COF,AO=CO,∵ ∵AOE∵∵COF.∵ EO=FO.∵ 四边形AFCE是平行四边形.又EF∵AC,∵ AFCE是菱形(对角线互相垂直的平行四边形是菱形).∵例3(选讲) 已知:如图,∵ABC中,∵ACB=90°,BE平分∵ABC,CD∵AB与D,EH∵AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∵EH,CE=EH,在Rt∵BCE中,∵CBE+∵CEB=90°,在Rt∵BDF中,∵DBF+∵DFB=90°,因为∵CBE=∵DBF,∵CFE=∵DFB,所以∵CEB=∵CFE,所以CE=CF.所以,CF=CE=EH,CF∵EH,所以四边形CEHF为菱形.六、随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∵AC,CE∵BD,DE 和CE相交于E,求证:四边形OCED是菱形。
菱形的性质与判定 第1课时 (教案)

北师大版九年级上第一章《特殊平行四边形》《菱形的性质与判定》(第1课时)教案【教学目标】1.知识与技能(1).理解菱形的概念,了解它与平行四边形之间的关系.(2).经历菱形概念的抽象过程,以及它的性质的探索、猜测与证明的过程,丰富数学活动经验,进一步发展合情推理能力和演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。
3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形的性质定理的证明【教学难点】菱形的性质定理的证明【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、导入新课导语:面几幅图片中都含有一些平行四边形。
观察这些平行四边形,你能发现它们有什么样的共同特征?与下图相比较,这些平行四边形特殊在哪里?这些平行四边形的邻边相等,像这样的平行四边形叫菱形。
二、探究新知1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。
菱形在生活中随处可见,你能举出一些生活中菱形的例子吗?与同伴交流。
(1)菱形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?(菱形的对边平行且相等,对角相等,对角线互相平分。
中心对称图形)(2)你认为菱形还具有哪些特殊的性质?与同伴交流。
2.活动内容1:请同学们用你手中的菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?菱形是轴对称图形,有两条对称轴,分别是两条对角线所在的直线,两条对称轴互相垂直。
(2)结合手中的折纸得到的菱形ABCD,找出图中相等的角和线段。
由折纸过程和对称轴的性质可得相等的角有:∠1=∠2;∠3=∠4;∠5=∠6;∠7=∠8;相等的线段有:AB=BC=CD=DA.处理方式:让学生利用课前准备的菱形纸片进行折叠,折叠的过程中,让学生回顾轴对称图形的意义及轴对称图形的性质,从而发现菱形的“特殊”性质,感受折纸过程对性质的初步验证.设计意图:通过折纸这一过程,引导学生发现菱形的对称性,即菱形不只是中心对称图形,还是轴对称图形,在操作过程中验证菱形的特殊性质,鼓励学生通过多种方法验证发现的结论.活动内容2:菱形性质定理的证明如何推理证明“菱形的四条边相等,对角线互相垂直”这两个性质呢? 已知:如图,在菱形ABCD 中, AB =AD ,对角线AC 与BD 相交于点O .求证:(1)AB =BC =CD =AD ;(2)AC ⊥BD .处理方式:让学生从平行四边形的性质出发,独立思考、分析证明思路.第(2)题多数学生可能会应用全等三角形的性质,想不到利用“等腰三角形的三线合一”性质,教师引导学生互相交流、确定证明思路,最后找一名学生板书证明过程,教师规范解题过程的书写.证明:(1)∵ 四边形ABCD 是菱形, ∴AB=CD ,AD=BC (菱形的对边相等). 又∵AB=AD , ∴ AB=BC=CD=AD . (2)∵AB=AD , ∴△ABD 是等腰三角形. 又∵ 四边形ABCD 是菱形,∴OB=OD (菱形的对角线互相平分). 在等腰三角形ABD 中, ∵OB=OD , ∴ AO ⊥BD . 即 AC ⊥BD .设计意图:通过对性质的分析与证明,一方面让学生养成独立思考问题的习惯,对于不能独立解决的问题,引导学生发挥小组合作的作用,提高学生的交流能力;另一方面通过解题过程的板书提高学生的书写能力,养成规范书写的习惯.教师强调:菱形的性质定理1、对角线互相垂直且平分,并且每条对角线平分一组对角;2、四条边都相等,对边平行且相等;3、对角相等,邻角互补;ACDBO4、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形,5、菱形是特殊的平行四边形,它具备平行四边形的一切性质. 三、例题讲解例1.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误的是( B ) A .AB//DC B .AC =BD C .AC ⊥BD D .OA =OC解析:根据菱形的性质:对角线互相垂直且平分得到C ,D 是正确的,再根据菱形的对边平行得到A 是正确的,故选B 。
(名师整理)最新北师大版数学九年级上册第1章第1节《菱形的性质与判定》精品教案

§1.1《菱形的性质与判定》教案第一课时一、教学内容分析:教材分析:《菱形的性质与判定》是北师版九年级数学上册第一章第一节的内容,《菱形的性质与判定》共2 个课时,本节课学习的是第一课时的内容——菱形的概念及菱形的性质。
学生分析:“菱形的性质与判定”是继学习了平行四边形以后,在此基础上进行研究的第一种特殊的平行四边形。
它既是对平行四边形认识的延续和深入,同时也为后面学习矩形和正方形奠定了基础,提供了有效的探索方法。
起到承上启下的作用。
二、教学目标分析:知识与能力目标:1、掌握菱形的的定义,理解菱形与平行四边形的“特殊与一般”的关系。
2、理解并掌握菱形的性质定理; 在证明性质和运用性质解决问题的过程中过程与方法目标:1、通过菱形的轴对称性发现菱形的特殊性质;2、通过灵活运用菱形的性质解决有关问题,掌握几何的思维方法。
情感态度价值观目标:在猜想与证明菱形性质的过程中,感受证明的必要性,培养严谨的推理能力。
三、教学重点难点分析:教学重点:了解并掌握菱形的概念及其性质定理。
教学难点:菱形性质定理的应用。
四、教学准备:预备知识:平行四边形的性质;轴对称图形;等腰三角形性质;等边三角形性质及判定。
教学方法:启发式。
五、教学过程: 预计时间 教学内容 教师活动 学生活动 教学评价 5 分一、引入问题:1.复习回顾:什么样的四边形叫平行四边形?它有哪些性质?1、请从对称性, 边,角,对角线的角度回答问题。
2、板书课题。
菱形是特殊的平行1、平行四边形是中心对称图形;两组对边平行且相等; 对角相等;对通过情景引 入,让学生体会到“一般”与“特殊”的关证明方法可证),所以,菱形的面积=三角形ABO 面积的4倍。
1注意:4×=1×2OB×2OA 2=1BD •AC2预计时间教学内容教师活动学生活动教学评价3分钟四、学以致用,随堂练习。
2.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O. 已知AB=5cm,AO=4cm,求BD 的长. 独立完成,算出结果:BD=6cm检测教学效果,查看学生当堂掌握情况。
菱形的性质和判定教案

菱形的性质和判定教案第一章:菱形的定义和性质1.1 菱形的定义引导学生回顾四边形的定义,引入菱形的概念。
通过图形展示,让学生理解菱形是由四条边相等的四边形。
1.2 菱形的性质介绍菱形的四条边相等的性质。
引导学生观察菱形的对角线性质,得出对角线互相垂直且平分的性质。
引导学生探索菱形的对角线与边的夹角,得出均为直角的性质。
第二章:菱形的判定2.1 判定一个四边形为菱形的条件引导学生运用菱形的性质,判断一个四边形是否为菱形。
强调四条边相等是判定的关键条件。
2.2 对角线互相垂直且平分的四边形为菱形通过图形展示,让学生理解对角线互相垂直且平分的四边形必定是菱形。
引导学生运用这个判定条件,解决相关问题。
第三章:菱形的面积3.1 菱形的面积计算公式引导学生回顾三角形和矩形的面积计算公式。
引入菱形的面积计算公式,即对角线乘积的一半。
3.2 应用菱形的面积公式解决问题通过例题,让学生运用菱形的面积公式解决问题。
引导学生注意对角线长度和角度的关系,以便准确计算面积。
第四章:菱形的对角线4.1 菱形的对角线长度引导学生观察菱形的对角线长度,得出对角线长度相等的性质。
通过几何证明,引导学生理解对角线长度相等的证明方法。
4.2 菱形的对角线与边的夹角引导学生观察菱形的对角线与边的夹角,得出均为直角的性质。
通过几何证明,引导学生理解对角线与边的夹角为直角的证明方法。
第五章:菱形的对称性5.1 菱形的轴对称性引导学生观察菱形的对称性,得出菱形具有轴对称性的性质。
通过图形展示,让学生理解菱形有两组对称轴。
5.2 菱形的中心对称性引导学生观察菱形的对称性,得出菱形具有中心对称性的性质。
通过图形展示,让学生理解菱形的中心对称性。
第六章:菱形的画法6.1 菱形的画法步骤介绍菱形的画法步骤,包括确定边长、画对角线、分割四边形等。
通过示例,引导学生逐步完成菱形的绘制。
6.2 应用菱形的画法解决问题通过例题,让学生运用菱形的画法解决问题,如绘制特定的菱形图案。
1.1菱形的的性质与判定(教案)北师大版九年级数学上册

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与菱形相关的实际问题,如如何计算菱形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器绘制一个菱形,并测量其对角线。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“菱形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-将理论知识应用于解决实际问题时,如何建立数学模型,提取关键信息。
举例解释:
-在证明菱形对角线互相垂直平分的性质时,需要引导学生通过画图和推理来理解,可以使用动态软件辅助教学,让学生直观感受。
-在讲解判定方法时,通过对比不同四边形的例子,让学生区分哪些条件适用于菱形,哪些不适用,从而加深理解。
-在解决实际问题时,教师应指导学生如何从问题中抽象出数学模型,例如,在艺术设计中的菱形布局问题,如何运用菱形的性质来求解。
五、教学反思
今天在讲解菱形的性质与判定这一章节时,我尝试了多种教学方法,让学生从不同角度理解和掌握这一几何概念。在课堂上,我注意到以下几点:
1.学生对菱形的基本概念掌握得比较扎实,能够迅速理解四边相等这一特点。但在对角线垂直平分的性质理解上,部分学生还存在困难。这让我意识到,在讲解难点时,需要更加细致地进行引导和解释。
四、教学流程
(一)导入新课(用时5分钟)
菱形的性质和判定教案

菱形的性质和判定教案一、教学目标:知识与技能:1. 理解菱形的定义及其性质;2. 学会菱形的判定方法;3. 能够运用菱形的性质和判定方法解决实际问题。
过程与方法:1. 通过观察、操作、探究等活动,培养学生的观察能力和动手能力;2. 利用菱形的性质和判定方法,培养学生的逻辑思维能力和解决问题的能力。
情感态度价值观:1. 激发学生对几何图形的兴趣,培养学生的审美观念;2. 培养学生的团队合作意识和勇于探究的精神。
二、教学重点与难点:重点:1. 菱形的性质;2. 菱形的判定方法。
难点:1. 菱形性质的证明;2. 菱形判定方法的灵活运用。
三、教学准备:教师准备:1. 菱形的图片和实例;2. 菱形性质和判定方法的讲解资料;3. 练习题和答案。
学生准备:1. 笔记本;2. 尺子、圆规、剪刀等作图工具。
四、教学过程:环节一:导入1. 引导学生观察一些生活中的菱形实例,如蜂巢、骰子等,引发学生对菱形的兴趣;2. 提问:你们对这些菱形有什么发现和疑问?环节二:探究菱形的性质1. 学生分组讨论,观察菱形的特征,发现菱形的性质;2. 教师引导学生总结菱形的性质,并给出证明;3. 学生通过实际操作,验证菱形的性质。
环节三:学习菱形的判定方法1. 教师介绍菱形的判定方法,引导学生理解判定方法的意义;2. 学生通过练习题,巩固菱形的判定方法;3. 教师讲解判定方法的灵活运用。
环节四:应用与拓展1. 学生分组讨论,运用菱形的性质和判定方法解决实际问题;2. 教师选取一些学生的解题方法进行点评和讲解。
环节五:小结与作业1. 教师引导学生总结本节课的主要内容和收获;2. 布置作业,让学生巩固菱形的性质和判定方法。
五、教学反思:本节课通过观察生活中的菱形实例,引导学生发现菱形的性质,学习菱形的判定方法,并运用所学知识解决实际问题。
在教学过程中,注意调动学生的积极性,让学生充分参与课堂讨论,培养学生的观察能力、动手能力和解决问题的能力。
北师大版数学九年级上册1.1菱形的性质与判定(第一课时)教学设计

-鼓励学生自主设计一道与菱形相关的几何题目,并给出解答,激发学生的创新意识和探究精神。
-完成一道拓展题,涉及菱形在实际生活中的应用,如建筑、艺术等领域,让学生体会数学与生活的紧密联系。
4.小组合作任务:
-分组讨论课本习题1.1节中的第6题,要求各小组共同完成解题过程,并在下节课上进行汇报。
1.基础练习:设计一些简单题目,让学生运用菱形的性质和判定方法进行解答,巩固基础知识。
2.提高练习:设置一些综合性和拓展性的题目,培养学生分析问题和解决问题的能力。
3.个别辅导:针对学生在练习中遇到的问题,给予个别辅导,帮助他们克服困难,提高学习效果。
(五)总结归纳
在这一环节中,我将引导学生对所学知识进行总结归纳,帮助他们建立知识体系,提高认知水平。
-学生在实际应用中,体会到数学知识在解决实际问题中的重要性。
3.引导学生树立正确的价值观,认识到数学知识在实际生活中的广泛应用。
-学生通过学习菱形,认识到数学知识在建筑、设计等领域的应用。
-学生在学习过程中,树立正确的价值观,明确学习数学的意义和价值。
二、学情分析
九年级学生在经过前两年的数学学习后,已具备了一定的几何图形认识和逻辑推理能力。在此基础上,他们对菱形的性质与判定的学习具备以下特点:
3.引入新课:在学生观察和思考的基础上,引入菱形的概念,指出菱形是一种特殊的平行四边形,它具有独特的性质和应用。
(二)讲授新知
在这一环节中,我将系统地讲解菱形的性质和判定方法,让学生掌握基础知识,为后续的学习奠定基础。
1.性质讲解:
-通过动态演示和实际操作,让学生理解菱形的定义:四条边相等的平行四边形。
四、教学内容与过程
(一)导入新课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章特殊平行四边形1.菱形的性质与判定(1)一、学情与教材分析1.学情分析“菱形的性质与判定”是继八年级下册“第三章图形的平移与旋转”和“第六章平行四边形”之后的一个学习内容.学生在学习菱形之前,已经掌握了简单图形的平移旋转及平行四边形的性质和判定,学生完全能够借助图形的旋转平移和轴对称直观的理解菱形的定义和性质.其次,经历了七年级下册“相交线与平行线”、“三角形”和八年级下册“平行四边形”的学习和推理训练,学生们已经具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础.再次,本章第4节将学习“正方形的性质与判定”,正方形是菱形的特殊情形,本节课学习将为正方形性质与判定的学习打下良好的基础.2.教材分析教科书在学生学习了“平行四边形”的基础上,提出了本课的学习任务:①掌握菱形的定义;②探索并掌握菱形是轴对称图形;③探索并证明菱形“四条边相等”、“对角线互相垂直”等性质,并能应用这些性质计算线段的长度,会求菱形的周长和面积.本节课通过观察、分析、类比、动手操作,推论论证等活动过程探究菱形的定义和性质,进一步提高了学生的观察分析能力和类比探究能力.二、教学目标:1.经历从现实生活中抽象出图形的过程,理解菱形的概念及其与平行四边形的关系;2. 经历利用折纸等活动探索菱形的轴对称性和菱形的其他性质,发展合情推理能力;3.在证明性质和运用性质解决问题的过程中探究菱形的周长公式和面积公式,进一步发展学生的逻辑推理能力.三、教学重难点:重点:菱形的性质难点:菱形性质的综合运用四、教法建议(探究法)教师可采用“探索——发现——猜想——论证”的教学方法,引导学习探索菱形的定义和性质.五、教学设计(一)课前设计1、预习任务任务1:我们已经学习了平行四边形这个特殊的四边形了,小红想,如果平行四边形再特殊一些,如果一个平行四边形邻边相等,那么这个四边形是什么样子呢?请按照小红的要求,画出一个邻边相等的平行四边形,并观察生活,举出生活中类似的图形的例子?任务2:学习课本第2页想一想上面内容,初步了解菱形的定义.任务3:既然菱形是特殊的平行四边形,那么它肯定具有平行四边形的所有性质了,你能就你目前的认识,写出菱形的性质么?任务4:既然菱形是特殊的平行四边形,那么,菱形肯定还有它特殊的性质,请用菱形纸片探究猜测以下问题:(1)菱形的对称性;(2)菱形的边之间的关系;(3)菱形的对角线的关系;(4)菱形的周长与面积的求法.2、预习自测一、填空题1、如图,四边形ABCD的对角线互相平分,要使它变成菱形,需要添加条件为_____________.AB答案:AB=BC或BC=CD或CD=DA或AB=AD.解析:∵四边形ABCD 的对角线互相平分,∴四边形为平行四边形.∴当AB=BC 时,四边形ABCD 是菱形.点拨:根据定义“一组邻边相等的平行四边形是菱形”即可得到答案.2、如图,菱形ABCD 中,已知∠ABD=20°,则∠C 的度数为__________.答案:140°.解析:∵菱形是轴对称图形,对角线所在直线是对称轴,∴对角线平分对角,∴∠ABC=2∠ABD=40°.又因为菱形邻角互补,可得∠C=180° - ∠ABC=140°.点拨:根据菱形的轴对称性得到菱形对角线平分对角,从而得出∠ABC 的度数,进而得到相邻的角的度数.二、解答题3、如图,在菱形ABCD 中,对角线AC 与BD 相交于点O.已知AB=5cm ,AO=4cm ,求BD 的长和菱形的面积.BAO答案:6cm ,24cm 2.解析:∵菱形对角线互相垂直,所以∠AOB=90°,∴在Rt △AOB 中,2222543OB AB OA cm =-=-=,∴BD=2OB=6cm.∵菱形是轴对称图形,BD 所在直线是一条对称轴,∴△ABD ≌△CBD ,∴S 菱形ABCD =2S △ABD =1264242⨯⋅⋅=⨯=BD OA cm 2.点拨:根据菱形对角线互相垂直和勾股定理,可求得OB 的长,从而得BD 的长;根据菱形的轴对称性将菱形分成两个全等三角形,利用三角形面积公式可求菱形得面积.(或点击“课前预习-名师预习”,选择“《菱形的性质与判定(1)》预习自测”)(二)课堂设计1、情境引入内容:在日常生活中,常看到各种各样的几何图形和由它们组成的精美图案,请同学们观察下面的几幅图片,看一看图案是有哪些基本图形组成的?学生:观察衣服、衣帽架和窗户等实物图片.教师:同学们,在观察图片后,你能从中发现你熟悉的图形吗?你认为它们有什么样的共同特征呢?学生1:图片中有八年级学过的平行四边形.教师:请同学们观察,彩图中的平行四边形与ABCD 相比较,有什么不同点吗?教师:这种图形就叫做菱形.设计意图:通过这个环节,培养了学生的观察和对比分析能力.上课时让学生观察图形,从直观上初步感受菱形的形状和性质,同时,要让学生体会到数学来源于生活,数学就在我们身边,并不是高不可攀的道理.注意事项及效果:学生在通过观察对比体会菱形的形状和性质的过程中,会给出一些与定义无关的结论,教师需要对正确的结论加以肯定,并从菱形的定义方面加以引导.2、探究发现探究1:菱形的概念师:上面几幅图片的基本图形都是平行四边形吗?这些基本图形还有什么共同特征?(一眼可以看出来的)生:它们都是平行四边形,而且四条边都相等.师:上面说过这类图形叫做菱形,那同学们能类比平行四边形的概念给出菱形的定义吗?师生总结:有一组邻边相等的平行四边形叫做菱形.让学生再举一些生活中常见的菱形的例子.(登录优教同步学习网,搜索“动画演示:菱形及其性质”,看菱形的概念及实例部分)设计意图:通过这个环节,培养了学生的总结概括能力.学生通过对菱形定义的概括,不但掌握了菱形的特征,也为下一步学习菱形的性质打下良好的基础.注意事项与效果:学生在通过总结概括得到菱形定义的过程中,会有一些不同的想法,如四条边都相等的四边形叫做菱形、四条边都相等的平行四边形叫做菱形等等,教师要对学生的答案进行积极有效的评价分析,激发学生的学习积极性,同时又要从类比学习的角度给出菱形的定义,强调菱形不仅是平行四边形,而且有其自身特点“一组邻边相等”,这样强化了菱形的定义和与平行四边形的关系,又为下面的教学内容做好了铺垫.探究2:菱形的性质想一想:(1)教师:菱形是特殊的平行四边形,它具有一般平行四边形的所有性质.你能列举一些这样的性质吗?学生:菱形的对边平行且相等,对角相等,对角线互相平分.(2)教师:同学们,你认为菱形还具有哪些特殊的性质?请你与同伴交流.学生活动:分小组讨论菱形的性质,组长组织组员讨论,让尽可能多的组员发言,并汇总结果.教师活动:教师巡视,并参与到学生的讨论中,启发同学们类比平行四边形,从图形的边、角和对角线三个方面探讨菱形的性质.对学生的结论,教师要及时评价,积极引导,激励学生.(3)师生总结:①与平行四边形相同的性质:对边平行且相等,对角相等,对角线互相平分.②与平行四边形不同的性质:一组邻边相等(或四条边都相等).做一做:教师:请同学们用菱形纸片折一折,回答下列问题:(1)菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?(2)菱形中有哪些相等的线段?(3)菱形的对角线有什么关系?学生活动:分小组折纸探索,并讨论、交流,组长组织汇总结果.教师活动:教师巡视并参与学生活动,引导学生分析怎样折纸才能得到正确的结论.学生研讨完毕,教师要展示汇总学生的折纸方法以及相应的结论,以便于后面的教学.师生总结:①菱形是轴对称图形,有两条对称轴,是菱形对角线所在的直线,两条对角线互相垂直.②菱形的四条边相等.③菱形的对角线互相垂直.注:学生还可能会发现下面一些性质,应鼓励学生多说.菱形的对角线平分一组对角;菱形的对角线互相垂直并平分;(登录优教同步学习网,搜索“动画演示:菱形及其性质”,看菱形的性质部分)证一证:教师:通过折纸活动,同学们已经对菱形的性质有了初步的了解,那么上面得到的结论正确吗?你能证明这些结论吗?教师活动:展示题目对角线AC 与BD 相交于点O.求证:(1)AB=BC=CD=AD ;(2)AC ⊥BD.师生共析:①菱形不仅对边相等,而且邻边相等,这样就可以证明菱形的四条边都相等了.②因为菱形是平行四边形,所以点O 是对角线AC 与BD 的中点;又因为在菱形中可以得到等腰三角形,这样就可以利用“三线合一”来证明结论了.学生活动:独立写出证明过程,进行组内交流对比,优化证明方法,掌握相关定理.证明:(1)∵四边形ABCD 是菱形,∴AB = CD , AD= BC (菱形的对边相等).又∵AB=AD ,∴AB=BC=CD=AD.(2)∵AB=AD ,∴△ABD 是等腰三角形.又∵四边形ABCD 是菱形∴OB=OD (菱形的对角线互相平分)在等腰三角形ABD 中,∵OB=OD∴AO ⊥BD ,即AC ⊥BD.教师活动:展示学生的证明过程,进行恰当的点评和鼓励,优化学生的证明O D AC 图1-1方法,提高学生的逻辑证明能力,最后强调“菱形的四条边都相等”“菱形的对角线互相垂直”,让学生形成牢固记忆,留下深刻印象.设计意图:学生通过折纸可以猜想到菱形的相关性质,教师在参与学生的活动过程中,应该关注学生的口述论证过程,并根据学生的认知水平加以引导,尽量减少学生推理论证过程中的困难.学生经过了折纸这一操作活动后,再经过逻辑证明,把操作层面的感知上升到了理性认识,充分理解了菱形的本质特征.本环节让学生进行猜想探究和证明,符合学生的认知规律.同时,操作活动得到的结论与逻辑推理相结合,是对数学知识进行探索活动的自然延续,实现了从感性认识到理性认识的升华.注意事项与效果:在折纸过程中,教师要与学生探讨折纸的方法,明确折叠过程中的对应点及相应的对称轴,对称轴是菱形对角线所在的直线,而不是菱形的对角线,以便于学生正确迅速找出菱形中的对称关系.掌握数学知识,离不开“实践→认识→再实践→认识”这个重要的数学学习过程,通过说理论证可以使学生充分理解菱形的本质并掌握,在这个过程中,教师要充分关注学生使用几何语言的规范性,进一步规范学生的证明步骤的规范性和严谨性.3、知识运用师:通过刚才的严格论证,我们已经认识了菱形的特殊性质,下面我们利用这些性质来解决一些问题.教师活动:展示题目(1)例题 如图1-2,在菱形ABCD 中,对角线AC 与BD 相交于点O, ∠BAD=60°,BD=6,求菱形的边长AB 和对角线AC 的长.师生共析:①因为菱形的邻边相等,一个内角是60°,这样就可以得到等边△ABD ,BD=6,菱形的边长也是6.②菱形的对角线互相垂直,可以得到直角△AOB ;菱形的对角线互相平分,可以得到OB=3,根据勾股定理就可以求出OA 的长度;再一次根据菱形的对角线O A 图1-2互相平分,即AC=2OA,求出AC.解:∵ 四边形ABCD 是菱形∴AB=AD(菱形的四条边都相等)AC ⊥BD (菱形的对角线互相垂直) OB=OD= BD = ×6 =3(菱形的对角线互相平分) 在等腰三角形ABD 中,∵∠BAD=60°∴△ABD 是等边三角形∴AB=BD=6在Rt △AOB 中,由勾股定理,得OA 2+OB 2=AB .22226333OA AB OB ∴=-=-==2=63AC OA ∴(2)练习 如图1-3,在菱形ABCD 中,∠BAD=120°,已知△ABC 的周长是15,则菱形ABCD 的周长是( )答案:B解析:∵四边形ABCD 是菱形,∴AB=BC=CD=DA.又∵AC 是对角线,∠BAD=120°,∴∠BAC=∠D AC=60°. ∴A B=BC=CA=5.∴菱形的周长是5×4=20.故选B.思路点拨:由菱形对角线平分对角和菱形一组邻边相等,得等边三角形,进一步得边长,从而得菱形周长.设计意图:通过例题的讲解和练习题的巩固,让学生灵活运用菱形的性质求解,达到学以致用的目标,同时进一步规范解题步骤,注意事项与效果:在此活动中,教师应重点关注以下方面:(1)学生能否提出不同的解题方法,这种方法的优点和缺点分别是什么;(2)学生的几何语言是否准确、规范、严谨;(3)给学生充分的独立思考时间和交流时间,2121D C B 图1-3让学生在合作交流的过程中完成题目,理解所学的知识.4、随堂检测一、选择题1、菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等答案:C解析:∵菱形具有的性质:对角相等,四条边都相等,对角线相互垂直且平分;一般平行四边形的性质:对角相等,对边相等,对角线互相平分.∴对角线相互垂直是一般平行四边形不具有的,故选C点拨:菱形具有一般平行四边形的所有性质外,还有自己的特殊性质:四条边都相等,对角线互相垂直.据此即可得出答案二、填空题2、描述有一角度数为60°的菱形特殊性_____________答案:较短的对角线长与菱形的边长相等解析:如图,有AB=BC,∵∠ABC=60°,则△ABC为等边三角形∴AC=AB.点拨:根据菱形和等边三角形的性质可解答该题.3、一般的菱形共有________条对称轴.答案:2解析:菱形是轴对称图形,它的对称轴是对角线所在直线,菱形有两条对角线,故有两条对称轴,点拨:根据菱形的轴对称性和对称轴的概念、性质解题。