欧姆定律焦耳定律和电阻定律
第7章第1节(课时1)电阻定律 欧姆定律 焦耳定律及电功率:电阻定律、欧姆定律的理解与应用课件(鲁教版)

①I=U/R是欧姆定律的数学表达式,表示通过导体的电流I与电
压U成正比,与电阻R成反比. ②公式R=U/I是电阻的定义式,它表明了一种测量电阻的方法, 不能错误地认为“电阻跟电压成正比,跟电流成反比”.
5.电阻的决定式和定义式的区别 公式 R=ρl/S R=U/I
电阻的决定式
电阻的定义式 提供了一种测定电 阻的方法,并不说 明电阻与U和I有关
解析
大圆管内径大一倍,即横截面ห้องสมุดไป่ตู้为原来的 4 倍,由于水银体积不
1 1 变,故水银柱长度变为原来的 ,则电阻变为原来的 ,因所加电压不 4 16 变,由欧姆定律知电流变为原来的 16 倍。C 正确。 答案 C
解析显隐
【跟踪训练】 甲、乙两根保险丝均为同种材料制成,直径分别 是d1=0.5 mm和d2=1 mm,熔断电流分别为2.0 A和6.0 A,把以 上两根保险丝各取等长一段并联后再接入电路中,允许通过的 最大电流是( ) A. 6.0 A B. 7.5 A C. 10.0 A D. 8.0 A
注意电流的微观 表达式的运用.
本题详细解析见教辅!
【备选】 两根完全相同的金属裸导线,如果把其中的一根均 匀拉长到原来的2倍,把另一根对折后绞合起来,然后给它们 分别加上相同电压后,则在相同时间内通过它们的电荷量之 比为( ). A.1∶4 B.1∶8 C.1∶16 D.16∶1
R
R
4R
R/4
审题 析疑 2.确定通过导线截面的电量,可综合运用欧姆定律及电流 定义式,推导其有关物理量. U q Ut 由欧姆定律 I= 和电流定义式 I= 得:q= R t R 转 解析
4.跟踪训练
【跟踪训练】一个内电阻可以忽略的电源,给装满绝缘圆管的 水银供电,通过水银的电流为0.1 A。若把全部水银倒在一个内
基础课21 电阻定律 欧姆定律 焦耳定律

考点一
考点二
考点三
-12-
部分电路欧姆定律及伏安特性曲线(师生共研) 1.欧姆定律的理解 (1)同体性:指I、U、R三个物理量必须对应同一段电路或同一段 导体。 (2)同时性:指U和I必须是导体上同一时刻的电压和电流。
-13-
考点一
考点二
考点三
2.对伏安特性曲线的理解 (1)图甲中,图线a、b表示线性元件;图乙中,图线c、d表示非线性 元件。
知识点一
知识点二
知识点三
考点三
-3-
2.欧姆定律
(1)内容:导体中的电流I跟导体两端的电压U成 正比 ,跟导体
的电阻R成 反比 。
������
(2)公式:I= ������ 。 (3)适用条件:适用于 金属 和电解液导电,适用于纯电阻电路。
知识点一
知识点二
知识点三
考点三
-4-
电阻定律
1.电阻
������
考点一
考点二
考点三
-15-
规律方法运用伏安特性曲线求电阻应注意的问题 如图所示,非线性元件的I-U图线是曲线,导体电阻 Rn=UInn,即电阻 要用图线上点(Un,In)的坐标来计算,而不能用该点的切线斜率来计 算。
-16-
考点一
考点二
考点三
思维训练
(2018·天津南开区模拟)(多选)在如图甲所示的电路中,L1、L2、 L3为三个相同规格的小灯泡,这种小灯泡的伏安特性曲线如图乙所 示。当开关S闭合后,电路中的总电流为0.25 A,则此时( )
适用于任何纯电阻
考点一
考点二
考点三
-10-
思维训练
1.一根长为l、横截面积为S的金属棒,其材料的电阻率为ρ,棒内
关于电的公式

关于电的公式
与电相关的公式有很多,以下是一些常见的公式:
欧姆定律:I=U/R,其中I是电流,U是电压,R是电阻。
电阻的计算:R=ρL/S,其中ρ是电阻率,L是导体的长度,S是导体横截面积。
焦耳定律:Q=I²Rt,其中Q是热量,I是电流,R是电阻,t是时间。
电功的计算:W=UIt=Pt=U²t/R=I²Rt,其中W是电功,U是电压,P 是功率,t是时间。
电功率的计算:P=UI=U²/R=I²R,其中P是电功率,U是电压,I是电流,R是电阻。
串联电路:I=I1=I2=…=In(电流处处相等),U=U1+U2+…+Un(总电压等于各部分电路两端电压之和),R=R1+R2+…+Rn(总电阻等于各分电阻之和)。
并联电路:I=I1+I2+…+In(干路上的电流等于各支路电流之和),U1=U2=…=Un(各支路两端电压相等)。
高二-焦耳定律电阻定律

教师辅导教案学员编号: 年 级:高二 课 时 数:3 学员姓名: 辅导科目:物理 学科教师: 课题 焦耳定律 电阻定律教学目标 1、焦耳定律 2、电功和电热 3、电阻定律授课日期教学内容Ⅰ.知识梳理一、焦耳定律、电功和电热电功就是电场力做的功,因此是W=UIt ;由焦耳定律,电热Q=I 2Rt 。
其微观解释是:电流通过金属导体时,自由电子在加速运动过程中频繁与正离子相碰,使离子的热运动加剧,而电子速率减小,可以认为自由电子只以某一速率定向移动,电能没有转化为电子的动能,只转化为内能。
(1)对纯电阻而言,电功等于电热:W=Q=UIt =I 2R t =t RU2 (2)对非纯电阻电路(如电动机和电解槽),由于电能除了转化为电热以外还同时转化为机械能或化学能等其它能,所以电功必然大于电热:W >Q ,这时电功只能用W=UIt 计算,电热只能用Q=I 2Rt 计算,两式不能通用。
1.纯电阻电路和非纯电阻电路的区别纯电阻电路 非纯电阻电路元件特点电路中只有电阻元件除电阻外还包括能把电能转化为其他形式能的用电器欧姆定律遵从欧姆定律I =UR不遵从欧姆定律:U >IR 或I <UR能量转化电流做功全部转化为内能电流做功除转化为内能外还要转化为其他形式的能元件举例电阻、电炉丝等 电动机、电解槽等2.电功和电热间的关系注意:1、电功和电热的区别:(1)纯电阻用电器:电流通过用电器以发热为目的,例如电炉、电熨斗、电饭锅、电烙铁、 白炽灯泡等。
(2)非纯电阻用电器:电流通过用电器是以转化为热能以外的形式的能为目的,发热不是目的,而是不可避免的热能损失,例如电动机、电解槽、给蓄电池充电、日光灯等。
在纯电阻电路中,电能全部转化为热能,电功等于电热,即W=UIt=I 2Rt =RU 2t 是通用的,没有区别,同理P=UI=I 2R =RU 2也无区别,在非纯电阻电路中,电路消耗的电能,即W=UIt 分为两部分,一大部分转化为其它形式的能;另一小部分不可避免地转化为电热Q=I 2Rt ,这里W=UIt 不再等于Q=I 2Rt ,应该是W=E 其它+Q ,电功就只能用W=UIt 计算,电热就只能用Q=I 2Rt 计算。
物理(新课标)高考总复习第一轮复习课件:第八章第一节欧姆定律、电阻定律、电功率及焦耳定律

第八章 恒定电流
要求 Ⅱ Ⅰ Ⅰ Ⅱ Ⅱ Ⅰ
真题统计
2016·卷甲·T17 2016·卷甲·T23 2016·卷乙·T23 2015·卷Ⅰ·T23 2015·卷Ⅱ·T23 2014·卷Ⅰ·T23 2014·卷Ⅱ·T22
解析:A 点电阻 RA=1.0×310-1 Ω=30 Ω,B 点电阻 RB=
6 1.5×10-1
Ω=40
Ω,故 A 错误、B 正确.ΔR=RB-RA=
10 Ω,故 C、D 错误.
考向 3 伏安特性曲线在电路中的实际应用 3.(多选)(2017·宿州高三质检)额定电压均为 220 V 的白炽灯 L1 和 L2 的 U-I 特性曲线如图甲所示,现将和 L2 完全相同 的 L3 与 L1 和 L2 一起按如图乙所示电路接入 220 V 电路中, 则下列说法正确的是(ABD)
=4I1=4 A.
三、电功、电功率、焦耳定律 1.电功 (1)实质:电流做功的实质是__电__场__力____对电荷做正功,电势 能转化为其他形式的能的过程. (2)公式:W=qU=____U_I_t____,这是计算电功普遍适用的公 式.
2.电功率 (1)定义:单位时间内电流做的功叫电功率. (2)公式:P=Wt =___U__I_____,这是计算电功率普遍适用的 公式. 3.焦耳定律:电流通过电阻时产生的热量 Q=_____I_2R__t __, 这是计算电热普遍适用的公式. 4.热功率 (1)定义:单位时间内的发热量. (2)表达式:P=Qt =____I2_R_____.
A.随着所加电压的增大,小灯泡的电阻增大 B.对应 P 点,小灯泡的电阻为 R=UI21 C.对应 P 点,小灯泡的电阻为 R=I2U-1I1 D.对应 P 点,小灯泡的功率为图中矩形 PQOM 所围面积大 小
知识讲解 电功和电热、焦耳定律、电阻定律

电功和电热、焦耳定律、电阻定律【学习目标】1.理解电功、电功率以及焦耳热的计算公式,能够熟练地运用其进行计算;明确不同的电路中能的转化情况,能够区分电功和焦耳热的不同、电功率和热功率的不同。
2.在非纯电阻电路中能的转化,电功和电热的区别以及一些功率的意义(如电源的总功率,发热功率,额定功率,实际功率等)。
3.明确导体电阻的决定因素,能够从实验和理论的两个方面理解电阻定律,能够熟练地运用电阻定律进行计算。
【要点梳理】要点一、电功1.电功的计算及单位(1)定义:电流在一段电路中所做的功等于这段电路两端的电压U 、电路中的电流I 、通电时间t 三者的乘积。
(2)公式:W qU UIt ==.(3)单位:在国际单位制中功的单位是焦耳,符号为J ,常用的单位还有:千瓦时(kW h ⋅),也称“度”,61kW h 3.610J ⋅=⨯.2.电功计算公式所适用的电路(1)电功W UIt =适用于任何电路。
(2)在纯电阻电路中,由于U I R=,所以22U W UIt I Rt t R ===.3.电功实质及意义如图一段电路两端的电压为U ,通过的电流为I ,在时间t 内通过这段电路任一横截面的电荷量q It =,则电场力做功W qU =即:W UIt =.(1)实质:电流通过一段电路所做的功,实质是电场力在这段电路中所做的功。
(2)意义:电流做功的过程是电能转化为其它形式的能的过程,电流做了多少功,表明就有多少电能转化为其它形式的能,即电功是电能转化为其它形式的能的量度。
要点二、电功率1.电功率定义、公式及单位(1)定义:单位时间内电流所做的功,等于这段电路两端的电压U 与通过这段导体的电流I 的乘积。
(2)公式:W P UI t==.(3)单位是瓦特,符号为W (国际单位制),常用的还有千瓦(kW ),1kW=1000W .2.电功率计算公式所适用的电路(1)电功率P UI =适用于任何电路。
(2)在纯电阻电路中,22U P I R R ==.3.电功率的意义(1)意义:电功率表示电流做功的快慢。
专题49 电流的计算、电阻定律、欧姆定律与伏安特性曲线、电功与焦耳定律(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题49 电流的计算、电阻定律、欧姆定律与伏安特性曲线、电功与焦耳定律导练目标导练内容目标1 电流的计算 目标2 电阻定律目标3 欧姆定律与伏安特性曲线目标4电功与焦耳定律【知识导学与典例导练】一、电流的计算 公式 公式含义定义式 I =q t q t 反映了I 的大小,但不能说I ∝q ,I ∝1t 微观式 I =nqSv 从微观上看n 、q 、S 、v 决定了I 的大小决定式I =U RI 由U 、R 决定,I ∝U I ∝1R注意:电解液导电异种电荷反向通过某截面,q =|q 1|+|q 2|电子绕核旋转等效电流TeI =,T 为周期,r T m r kQq 2224 =【例1】现有一根横截面积为S 的金属导线,通过的电流为I ,设每个金属原子可贡献一个Fv自由电子.已知该金属的密度为ρ,摩尔质量为M ,电子的电荷量绝对值为e ,阿伏加德罗常数为A N ,下列说法正确的是( )A .单位体积的导电的电子数为AN MρB .单位质量的导电的电子数为AN MC .该导线中自由电子定向移动的平均速率为I Se ρ D .该导线中自由电子定向移动的平均速率为A IMSN eρE .该导线中自由电子热运动的平均速率约为真空中光速大小 【答案】ABD【详解】A.金属的摩尔体积:0MV ρ=单位体积的物质的量:01n V =每个金属原子可贡献一个自由电子,自由电子为:AA N N nN Mρ==,A 正确.B.单位质量的物质的量:1n M=每个金属原子可贡献一个自由电子,自由电子为:AA N N nN M==,B 正确. CDE.设自由电子定向移动的速率为v ,根据电流:I =NeSv 得:Iv NeS =又:A A N N nN Mρ==则有:A IMv SN eρ=CE 错误,D 正确. E. 由上式可得A IMv SN eρ=,小于真空中光速大小,E 错误. 二、电阻定律 公式决定式定义式R =ρl SR =U I区别指明了电阻的决定因素提供了一种测定电阻的方法,电阻与U 和I 无关适用于粗细均匀的金属导体和分布均匀的导电介质适用于任何纯电阻导体相同点都不能反映电阻的实质(要用微观理论解释)16cm 测得电阻为R ,若溶液的电阻随长度、横截面积的变化规律与金属导体相同.现将管中盐水柱均匀拉长至20cm (盐水体积不变,仍充满橡胶管).则盐水柱电阻为( )A .45R B .54RC .1625R D .2516R 【答案】D【详解】由于总体积不变,设16cm 长时的横截面积为S .所以长度变为20cm 后,横截面积4'5s s =,根据电阻定律L R S ρ=可知:16R s ρ=⋅,54'45LR S ρ=,联立两式得25'16R R =. A.45R 与计算结果25'16R R =不相符,故A 错误; B.54R 与计算结果25'16R R =不相符,故B 错误; C.1625R 与计算结果25'16R R =不相符,故C 错误; D.2516R 与计算结果25'16R R =相符,故D 正确; 三、欧姆定律与伏安特性曲线 1.欧姆定律的“二同”(1)同体性:指I 、U 、R 三个物理量必须对应同一段电路或同一段导体。
九年级物理电学公式归纳

这篇九年级物理电学公式归纳的⽂章,是特地为⼤家整理的,希望对⼤家有所帮助!⼀、欧姆定律部分1. I=U/R(欧姆定律:导体中的电流跟导体两端电压成正⽐,跟导体的电阻成反⽐)2. I=I1=I2=…=In (串联电路中电流的特点:电流处处相等)3. U=U1+U2+…+Un (串联电路中电压的特点:串联电路中,总电压等于各部分电路两端电压之和)4. I=I1+I2+…+In (并联电路中电流的特点:⼲路上的电流等于各⽀路电流之和)5. U=U1=U2=…=Un (并联电路中电压的特点:各⽀路两端电压相等。
都等于电源电压)6. R=R1+R2+…+Rn (串联电路中电阻的特点:总电阻等于各部分电路电阻之和)7. 1/R=1/R1+1/R2+…+1/Rn (并联电路中电阻的特点:总电阻的倒数等于各并联电阻的倒数之和)8. R并= R/n(n个相同电阻并联时求总电阻的公式)9. R串=nR (n个相同电阻串联时求总电阻的公式)10. U1:U2=R1:R2 (串联电路中电压与电阻的关系:电压之⽐等于它们所对应的电阻之⽐)11. I1:I2=R2:R1 (并联电路中电流与电阻的关系:电流之⽐等于它们所对应的电阻的反⽐)⼆、电功电功率部分12.P=UI (经验式,适合于任何电路)13.P=W/t (定义式,适合于任何电路)14.Q=I2Rt (焦⽿定律,适合于任何电路)15.P=P1+P2+…+Pn (适合于任何电路)16.W=UIt (经验式,适合于任何电路)17. P=I2R (复合公式,只适合于纯电阻电路)18. P=U2/R (复合公式,只适合于纯电阻电路)19. W=Q (经验式,只适合于纯电阻电路。
其中W是电流流过导体所做的功,Q是电流流过导体产⽣的热)20. W=I2Rt (复合公式,只适合于纯电阻电路)21. W=U2t/R (复合公式,只适合于纯电阻电路)22.P1:P2=U1:U2=R1:R2 (串联电路中电功率与电压、电阻的关系:串联电路中,电功率之⽐等于它们所对应的电压、电阻之⽐)23.P1:P2=I1:I2=R2:R1 (并联电路中电功率与电流、电阻的关系:并联电路中,电功率之⽐等于它们所对应的电流之⽐、等于它们所对应电阻的反⽐)物理量(单位)公式备注公式的变形速度V(m/S) v= S:路程/t:时间重⼒G (N) G=mg m:质量g:9.8N/kg或者10N/kg密度ρ(kg/m3)ρ= m/vm:质量V:体积合⼒F合(N)⽅向相同:F合=F1+F2⽅向相反:F合=F1-F2 ⽅向相反时,F1>F2浮⼒F浮 (N) F浮=G物-G视 G视:物体在液体的重⼒浮⼒F浮 (N) F浮=G物此公式只适⽤物体漂浮或悬浮浮⼒F浮 (N) F浮=G排=m排g=ρ液gV排G排:排开液体的重⼒m排:排开液体的质量ρ液:液体的密度V排:排开液体的体积 (即浸⼊液体中的体积)杠杆的平衡条件 F1L1= F2L2 F1:动⼒ L1:动⼒臂F2:阻⼒ L2:阻⼒臂定滑轮 F=G物S=h F:绳⼦⾃由端受到的拉⼒G物:物体的重⼒S:绳⼦⾃由端移动的距离h:物体升⾼的距离动滑轮 F= (G物+G轮)/2S=2 h G物:物体的重⼒G轮:动滑轮的重⼒滑轮组 F= (G物+G轮)S=n h n:通过动滑轮绳⼦的段数机械功W (J) W=FsF:⼒s:在⼒的⽅向上移动的距离有⽤功W有 =G物h总功W总 W总=Fs 适⽤滑轮组竖直放置时机械效率η=W有/W总 ×100%功率P (w) P= w/tW:功t:时间压强p (Pa) P= F/sF:压⼒S:受⼒⾯积液体压强p (Pa) P=ρghρ:液体的密度h:深度(从液⾯到所求点的竖直距离)热量Q (J) Q=cm△tc:物质的⽐热容m:质量△t:温度的变化值燃料燃烧放出的热量Q(J) Q=mq m:质量q:热值电磁波波速与波长、频率的关系 C=λν C:波速(电磁波的波速是不变的,等于3×108m/s)λ:波长ν:频率54 1满意答案吴鸿毅 6级 2009-01-02知识点归纳如下:⼀条主线,⼆个规律,三串公式…,⼀条主线概括为“3721”,具体数字表⽰如下:“3”指3个基本电学实验仪器电流表(安培表)、电压表(伏特表)、滑动变阻器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要
说明
求 欧姆定律 Ⅱ 关于实验“练 习使 电阻定律 Ⅰ 用多用电表”, 电阻的串联、并联 Ⅰ 只 电源的电动势和内阻 Ⅱ 要求会使用多 用 闭合电路的欧姆定律 Ⅱ 电表正确进行 电
内容 电功率、焦耳定律 实验:测定金属的电阻率(同 时练习使用螺旋测微器) 实验:描绘小电珠的伏安特性 曲线 实验:测定电源的电动势和内 阻 实验:练习使用多用电表
复习时要强化对电路结构的认识和分析,电路 故障分析;多进行一题多解和一题多变等习题 的训练,形成知识网络;注意从题给的物理现 象、物理模型、临界状态、附图、推演运算和 物理与生活常识中挖掘隐含条件,加强审题能 力的培养. 2.毫无疑问,实验复习是本章复习的主旋律, 所以一定要特别重视实验的复习.
实验复习包括基本仪器和仪表的使用与读数;基本 物理量的测量;基本的实验原理和基本实验方法; 实验器材的选择和使用;使用方案的确定;实验步 骤和实验操作的考查;实验数据的处理,包括实验 误差的产生及减小误差的方法.特别要加强电路设计 及实物连接图的复习训练.
1.按照考纲的要求,本章内容可以分成三部分,即: 基本概念和定律;串并联电路、电表的改装;闭合 电路欧姆定律.其中重点是对基本概念和定律的理解、 熟练运用欧姆定律和其他知识分析解决电路问题.难 点是电路的分析和计算.
电路部分的复习,其一是以部分电路欧姆定律为 中心,包括七个基本物理量(电动势、电压、电 流、电阻、电功、电功率、电热),三条定律 (部分电路欧姆定律、电阻定律和焦耳定律), 以及串、并联电路的特点等概念、规律的理解、
其三,对高中物理所涉及的三种不同类别的电路 进行比较,即恒定电流电路、变压器及远距离输 电电路和感应电路,比较这些电路哪些是基本不 变量,哪些是变化量,变化的量是如何受到不变 量的制约的,其能量是如何变化的.在恒定电流 电路中,通常是电源的电动势和内电阻是基本不 变量,在外电阻改变时其他量的变化受到基本不 变量的制约.
电 路 特 点
U1 U 2 Un I=I1=I2=…=In I (分压原理) R1 R2 Rn 串 U=U1+U2+…+Un P P2 Pn 1 联 R=R1+R2+…+Rn I 2 (功率分配) R1 R2 Rn
P=P1+P2+…+Pn
并 1 1 1 1 联来自A. I leS
I C. eS
m 2eU
m 2eU
B. I l
R R1 R2
I=I1+I2+…+In U=U1=U2=…=Un
Rn
P=P1+P2+…Pn
I1R1=I2R2=…=InRn=U(分 流原理) P1R1=P2R2=…=PnRn=U2( 功率分配)
测绘小灯泡的伏安特性曲线 探究导体电阻与其影响因素 基本实验 的定量关系 测定电池的电动势和内阻 多用电表 电路
要 说明 求 Ⅰ
高考对本章的考查主要是以选择题和设计性实验 题为主. 选择题主要考查基本概念(电动势、电流、电压、 电阻与功率)和各种电路的欧姆定律以及电路的 串并联关系.如电阻的计算,电功与电热、电功率 与热功率的计算,电路的动态变化,故障分析, 电流表、电压表、多用电表的使用,与电场综合 的含电容电路的分析和计算,与电磁感应综合的 电路中能量转化问题等.
简单的逻辑电路:“与”门、“或”门、“非”门
第七章
恒定电流
1 欧姆定律、焦耳定律和电阻定律
1.电流的形成及计算 在显像管的电子枪中,从炽热的金属丝不断放 出的电子进入电压为U的加速电场,设其初速度 为零,经加速后形成横截面积为S、电流为I的 电子束.已知电子的电荷量为e,质量为m,则在 刚射出加速电场时,一小段长为Δl的电子束内 的电子个数是( )
物理实验是高考物理的必考题,也是考生失分 较多的题型,分值占17~19分,在整个主观题 中约占25%左右.一般围绕力学和电学两部分命 题,特别是电学实验题更是高考命题的重头戏, 而且电学实验题一般是比较难、分值高的.高考 对物理实验的考查形式有选择、填空、简答、 连线作图、器材选择、方案设计等.其中设计性 实验一般分值高、难度大,出现的可能性大, 在高考备考中应予以高度重视.
W q
U=IR 电压 计算式 U=E-Ir U=P/I 电路 测量:电压表 E=U+U′=I(R+r) 基本规律 安阻法 电动势 测量法 伏阻法 电路特点 伏安法 基本概念
电阻
定义式:R=U/I L 决定式: R 伏安法 测量 欧姆表
S
决定式:W=qU=UIt2 U (在纯 2 计算式: W I Rt t 电功 R 电阻电路中) 基本概念 测量:电度表 定义式:P=W/t 电功率 计算式:P=UI P电=EI 电热与电热功率:Q=I2Rt P热=I2R;纯 电阻电路,电热功率与电功率相等
掌握和计算.其中要着重理解电动势,知道它是 描述电源做功能力的物理量,是电源中的非静 电力将一库仑正电荷从电源的负极推至正极所 做的功;正确理解两个欧姆定律的内容和适用 条件,运用两个定律处理简单的混联电路的方 法,能用这两个欧姆定律进行电路分析. 其二是以闭合电路欧姆定律为中心讨论电动势 概念、闭合电路中的电流、路端电压以及闭合 电路中能量的转化.
其实本章所有实验均可归结为电阻的测量,而电阻 的测量又基本归结为伏安法,其测量的基本原理就 是欧姆定律.所以掌握伏安法和欧姆定律是复习中的 重中之重,对它的复习能起到提纲挈领的作用,真 正能做到以不变应万变.
Q 定义式:I 决定式: t E 电流 I=U/R I Rr
测量:电流表
定义式: U
欧姆定律——部分电路: I=U/R;闭合电路: I=E/(R+r)(U端=E-Ir)
L 电阻定律—— R S ;ρ是
基本规律
电阻率,由材料性质决定,与 温度有关 焦耳定律——Q=I2Rt,用电器的 热功率P热=I2r 电源的总功率——P=IE 电源的内耗功率——P内=I2r 闭合电路 电源的输出功率——P出=IU(纯 电阻电路:P出=P热;非纯电阻 电路:P出>P热)