2019届中考数学专题复习二次函数_二次函数解决实际问题专题训练(含答案)
中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
2019中考数学专题复习《二次函数与线段最值问题》含解析

2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
2019年中考数学二次函数综合压轴题及答案

2019年中考数学二次函数综合压轴题及答案二次函数是中考数学的必考点,每年的中考数学试题中,二次函数都占了不少的比例,考题或以综合题的形式出现,或以选择题的形式出现,或以填空题的形式出现,不论以哪种形式出现,都旨在考查学生对二次函数的理解,以及应用二次函数解决实际问题的能力,下面我们一起来看中考网为大家带来的"2019年中考数学二次函数综合压轴题及答案",希望通过本题的练习,能加强考生对二次函数性质的理解。
2019年中考数学二次函数综合压轴题及答案:如图,在Rt△ABC中,∠C=90°,AC=3,AB=5。
点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动。
伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E。
点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止。
设点P、Q运动的时间是t秒(t>0)。
(1)当t=2时,AP=________,点Q到AC的距离是________(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值。
分析:(1)先求PC,再求AP,然后求AQ,再由三角形相似求Q到AC的距离;(2)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;(3)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t;(4)①第一种情况点P由C向A运动,DE经过点C、连接QC,作QG⊥BC于点G,由PC2=QC2解得t;②第二种情况,点P由A向C运动,DE经过点C,由图列出相互关系,求解t. 解答:二次函数的性质是考生必须掌握的考点,在中学数学学习中占有重要的地位,本文为考生提供的2019年中考数学二次函数综合压轴题及答案除了考查学生利用二次函数的相关知识处,同时还考查了学生对相似三角形的判定定理、线段比的知识,做题时考生要注意巧妙利用辅助线的帮助解答,难度较大。
2019年浙江省中考数学分类汇编专题:二次函数(含答案解析)

2019年浙江省中考数学分类汇编专题:二次函数一、单选题1.二次函数y=(x-1)2+3图象的顶点坐标是()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)【答案】A【考点】二次函数y=a(x-h)^2+k的性质【解析】【解答】解:∵y=(x-1)2+3,∴二次函数图像顶点坐标为:(1,3).故答案为:A.【分析】根据二次函数顶点式即可得出顶点坐标.2.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【答案】D【考点】二次函数的最值【解析】【解答】∵由知当x=2,最小值为-2,又∵x=-1与x=3关于x=2对称故最大值为,故答案为:D。
【分析】先配方,∵对称轴x=2,在给定定义域范围内,故最小值可求。
图像张口向上,故离图像最远的点为最大值。
3.小飞研究二次函数(为常数)性质时如下结论:①这个函数图象的顶点始终在直线上;②存在一个的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点与点在函数图象上,若,,则;④当时,随的增大而增大,则的取值范围为其中错误结论的序号是()A.①B.②C.③D.④【答案】C【考点】二次函数与一次函数的综合应用,二次函数y=a(x-h)^2+k的性质,二次函数的实际应用-几何问题【解析】【解答】解:∵抛物线y=-(x-m)2-m+1∴顶点坐标为:(m,-m+1)∵y=-x+1当x=m时,y=-m+1∴抛物线的顶点坐标始终在直线y=-x+1上,故①正确;设抛物线的顶点坐标C(m,-m+1),与x轴的两交点坐标为B、A过点C作CD⊥x轴,当△ACB是等腰直角三角形时,则AD=DB=CD=-m+1,OD=m∴点B的横坐标为:m+(-m+1)=1∴点B(1,0)∴-(1-m)2-m+1=0解之:m1=1(舍去),m2=0当m=0时,抛物线的顶点与x轴的两交点构成等腰直角三角形,故②正确;∵A(x1,y1),B(x2,y2),x1+x2>2m∴∵a=-1,对称轴为直线x=m∴当x>m时,y随x的增大而减小,∴时,,故③错误;∵当-1<x<2时,y随x的增大而增大,对称轴为直线x=m∴m≥2,故④正确;故答案为:C【分析】利用抛物线的解析式,可得到顶点坐标,再将顶点坐标代入y=-x+1进行验证,就可对①作出判断;过点C作CD⊥x轴,利用等腰直角三角形的性质,可知AD=DB=CD=-m+1,OD=m,从而求出点B的坐标,再将点B的坐标代入抛物线的解析式,就可求出符合题意的m的值,可对②作出判断;利用二次函数的性质,可对③④作出判断;综上所述,可得出说法错误的结论。
完整版)初三数学二次函数专题训练(含标准答案)-

完整版)初三数学二次函数专题训练(含标准答案)-二次函数专题训练(含答案)一、填空题1.把抛物线y=-1/2x向左平移2个单位得抛物线,接着再向下平移3个单位,得抛物线.2.函数y=-2x+x^2图象的对称轴是x=1,最大值是1.3.正方形边长为3,如果边长增加x面积就增加y=x^2+6x+9.4.二次函数y=-2x+8x-6,通过配方化为y=a(x-2)^2-2的形为.5.二次函数y=ax+c(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则x1与x2的关系是x1+x2=-2a/c.6.抛物线y=ax^2+bx+c当b=0时,对称轴是x=0,当a,b同号时,对称轴在y轴侧,当a,b异号时,对称轴在x=-b/2a 处.7.抛物线y=-2(x+1)^2-3开口向下,对称轴是x=-1,顶点坐标是(-1,-3).如果y随x的增大而减小,那么x的取值范围是x<-1.8.若a5/2a时,函数值随x的增大而减小.9.二次函数y=ax^2+bx+c(a≠0)当a>0时,图象的开口向上;当a<0时,图象的开口向下,顶点坐标是(-b/2a,c-b^2/4a).10.抛物线y=-2(x-2)^2+2,开口向下,顶点坐标是(2,2),对称轴是x=2.11.二次函数y=-3(x-1)^2+2的图象的顶点坐标是(1,2).12.已知y=(x+1)^2-2,当x≥1时,函数值随x的增大而减小.13.已知直线y=2x-1与抛物线y=5x+k交点的横坐标为2,则k=9,交点坐标为(2,13).14.用配方法将二次函数y=x^2+x-2化成y=a(x-(-1/2))^2-9/4的形式是y=(x+1/2)^2-9/4.15.如果二次函数y=x^2-6x+m的最小值是1,那么m的值是10.二、选择题:16.在抛物线y=2x^2-3x+1上的点是(D)(3,4)17.直线y=5x/2-2与抛物线y=x^2-x的交点个数是(C)2个18.关于抛物线y=ax^2+bx+c(a≠0),下面几点结论中,正确的有(A、B、C)①当a>0时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大,当a<0时,情况相反。
2019-2020届初三 中考复习 实际问题与二次函数【基础】专项练习(含答案解析)

实际问题与二次函数【基础】专项练习一、简答题1、某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?2、小明跳起投篮,球出手时离地面m,球出手后在空中沿抛物线路径运动,并在距出手点水平距离4m处达到最高4m.已知篮筐中心距地面3m,与球出手时的水平距离为8m,建立如图所示的平面直角坐标系.(1)求此抛物线对应的函数关系式;(2)此次投篮,球能否直接命中篮筐中心?若能,请说明理由;若不能,在出手的角度和力度都不变的情况下,球出手时距离地面多少米可使球直接命中篮筐中心?3、如图所示,某小区计划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条宽均为x m的通路,使其中两条与AB垂直,另一条与AB平行,剩余部分种草,设剩余部分的面积为y m2,求y关于x的函数表达式,并写出自变量的取值范围.4、.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半月内获得最大的利润?5、某水果店出售某种水果,已知该水果的进价为6元/千克,若以9元/千克的价格销售,则每天可售出200千克;若以11元/千克的价格销售,则每天可售出120千克.通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该水果店销售这种水果每天获取的利润达到280元?(利润=销售量×(销售单价﹣进价))(3)该水果店在进货成本不超过720元时,销售单价定为多少元可获得最大利润?最大利润是多少?6、如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计)。
中考数学复习专题训练 二次函数的综合应用(含解析)

中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。
2019年中考二次函数专题复习(附答案)

2019中考二次函数专题复习复习说明:二次函数在中考试卷中属于难点知识,试题中占分比例为15分左右,选择题第10题占3分,解答题第24题占10分,在压轴题第25题中偶尔也会有所涉及。
学生在复习中掌握的程度不同,属于拉分的一部分知识。
由于这部分内容繁多,各类习题庞杂,在复习时应系统复习二次函数的概念性质,在习题的选择上尽量整合,做到一题多变,培养学生解决问题的能力。
下面是2015年全国各省市二次函数试题,录入的试题是与我们陕西省中考试题在题型、难度、考点上都很接近的试题,可供大家参考。
二次函数专题复习一.选择题1、(2015年深圳第8题3分)二次函数)0(2a c bx axy 的图像如下图所示,下列说法正确的个数是()○10a ;○20b ;○30c ;○4042ac b。
A 、B 、2C 、3D 、4考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断.解答:解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.2.(2015?山东莱芜,第9题3分)二次函数的图象如图所示,则一次函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】试题分析:先根据二次函数的图象与系数的关系,又开口方向得a>0,由对称轴x=<0可得b>0,所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选D考点:二次函数的图象与系数的关系,一次函数的性质3.(2015·湖南益阳第8题5分)若抛物线y=(x ﹣m )2+(m+1)的顶点在第一象限,则m的取值范围为()A .m >1B .m >0C .m >﹣1D .﹣1<m <0考点:二次函数的性质.分析:利用y=ax 2+bx+c 的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答:解:由y=(x ﹣m )2+(m+1)=x 2﹣2mx+(m 2+m+1),根据题意,,解不等式(1),得m >0,解不等式(2),得m >﹣1;所以不等式组的解集为m >0.故选B .点评:本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大4、(2015年浙江舟山3分)如图,抛物线221y xxm 交x 轴于点A (a ,0)和B (b ,0),交y 轴于点C ,抛物线的顶点为 D.下列四个命题:①当>0x 时,>0y ;②若1a,则4b;③抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x ,则12>y y ;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m时,四边形EDFG 周长的最小值为62. 其中真命题的序号是【】A. ①B. ②C. ③D. ④【答案】C.【考点】真假命题的判断;二次函数的图象和性质;曲线上点的坐标与方程的关系;轴对称的应用(最短线路问题);勾股定理.【分析】根据二次函数的图象和性质对各结论进行分析作出判断:①从图象可知当>>0x b 时,<0y ,故命题“当>0x 时,>0y ”不是真命题;②∵抛物线221y xxm 的对称轴为212x,点A 和B 关于轴对称,∴若1a,则3b,故命题“若1a ,则4b”不是真命题;③∵故抛物线上两点P (1x ,1y )和Q (2x ,2y )有12<1<x x ,且12>2x x ,∴211>1x x ,又∵抛物线221y xx m 的对称轴为1x,∴12>y y ,故命题“抛物线上有两点P (1x ,1y )和Q (2x ,2y ),若12<1<x x ,且12>2x x ,则12>y y ”是真命题;④如答图,作点E 关于x 轴的对称点M ,作点D 关于y 轴的对称点N ,连接MN ,ME 和ND 的延长线交于点P ,则MN 与x 轴和y 轴的交点G ,F 即为使四边形EDFG 周长最小的点.∵2m ,∴223yxx 的顶点D 的坐标为(1,4),点C 的坐标为(0,3).∵点C 关于抛物线对称轴的对称点为E ,∴点E 的坐标为(2,3).∴点M 的坐标为2,3,点N 的坐标为1,4,点P 的坐标为(2,4). ∴2222112,3758DE MN.∴当2m时,四边形EDFG 周长的最小值为258DEMN.故命题“点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当2m时,四边形EDFG 周长的最小值为62”不是真命题.综上所述,真命题的序号是③.故选C.5.(2015?江苏苏州,第8题3分)若二次函数y=x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x2+bx=5的解为A .120,4x x B .121,5x x C .121,5x x D .121,5x x 【难度】★★【考点分析】二次函数与一元二次方程综合,考察二次函数的图像性质及解一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数--二次函数解决实际问题
1. 如图,用长8m 的铝合金条制成矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )
A.
6425m2 B.43m2 C.8
3
m2 D.4m2 2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
A.4米
B.3米
C.2米
D.1米
3. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m ,如图所示,则防护栏不锈钢支柱的总长度至少为( )
A.50m
B.100m
C.160m
D.200m
4. 河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y =-
1
25
x2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( )
A.-20m
B.10m
C.20m
D.-10m
5. 某幢建筑物,从10米高的窗口A 用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图),如果抛物线的最高点M 离墙1米,离地面40
3
米,则水流下落点B 离墙距离OB 是( )
A.2米
B.3米
C.4米
D.5米
6. 如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )
A.3cm2
B.323cm2
C.923cm2
D.27
2
3cm2
7. 若某商品的利润y(元)与售价x(元)之间的函数关系式是y =-x2+8x +9,且售价x 的范围是1≤x≤3,则最大利润是( )
A.16元
B.21元
C.24元
D.25元
8. 一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( ) A.5元 B.10元 C.0元 D.3600元
9. 如图,隧道的截面是抛物线,可以用y =-1
16x2+4表示,该隧道内设双行道,限高为3m ,那么每条行道
宽是( )
A.不大于4m
B.恰好4m
C.不小于4m
D.大于4m ,小于8m
10. 如图所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆的养鸡场,设它的长为xm ,要使鸡场的面积最大,鸡场的长为 m.
11. 比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系式y =-29x2+89x +10
9
,则羽毛球飞出的水平距离为 米.
12. 如图,有一抛物线形的立交拱桥,这个拱桥的最大高度为16m ,跨度为40m ,现把它的图形放在坐标系中.若在离跨度中心M 点5m 处垂直竖立一根铁柱支撑拱顶,这根铁柱应取 m.
13. 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y(单位:米2),当x = 米时菜园的面积最大.
14. 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形面积之和的最小值是__________cm2.
15. 已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式:y =-x2+1200x -357600,则卖出盒饭数量为________盒时,获得最大利润为________元.
16. 某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天销售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为____________元时,该服装店平均每天的销售利润最大
17. 杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y =-3
5
x2+3x +1的一部分,如图所示.
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.
18. 一种进价为每件40元的T 恤,若销售单价为60元,则每周可卖出300件,可提高利润,欲对该T 恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T 恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价为多少元时,每周的销售利润最大?
19. 如图,某足球运动员站在点O 练习射门,将足球从离地面0.5m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y =at2+5t +c ,已知足球飞行0.8s 时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x =10t ,已知球门的高度为2.44m ,如果该运动员正对球门射门时,离球门的水平距离为28m ,他能否将球直接射入球门?
20. 如图,隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m.按照图中所示的直角坐标系,抛物线可以用y =-16x2+bx +c 表示,且抛物线时的点C 到墙面OB 的水平距离为3m ,到地面OA 的距离为17
2
m.
(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?
参考答案:
1—9 CACCB CCAA 10. 25 11. 5 12. 15 13. 15 14. 252
15. 600 2400 16. 22
17. 解:(1)y =-35x2+3x +1=-35(x -52)2+194,∵-35<0,∴函数的最大值是19
4.答:演员弹跳的最大高
度是19
4
米;
(2)当x =4时,y =-3
5
×42+3×4+1=3.4=BC ,所以这次表演成功.
18. 解:由题意,得y =(x -40)[300-10(x -60)],即y =-10x2+1300x -36000(60≤x≤90).配方,得y =-10(x -65)2+6250.∵-10<0,∴当x =65时,y 有最大值6250,因此,当该T 恤销售单价为65元时,每周的销售利润最大.
19. 解:(1)由题意得:函数y =at2+5t +c 的图象经过(0,0.5)(0.8,3.5),∴⎩⎪⎨
⎪
⎧
0.5=c 3.5=0.82a -5×0.8+c
,
解得:⎩⎪⎨⎪⎧
a =-25
16
c =1
2
,∴抛物线的解析式为:y =-2516t2+5t +12,∴当t =8
5
时,y 最大=4.5;
(2)把x =28代入x =10t 得t =2.8,∴当t =2.8时,y =-2516×2.82+5×2.8+1
2=2.25<2.44,∴他能将
球直接射入球门.
20. 解:(1)根据题意得B(0,4),C(3,
172),把B(0,4),C(3,172)代入y =-1
6
x2+bx +c 得
⎩⎪⎨⎪⎧
c =4-16
×32+3b +c =172,解得⎩
⎪⎨
⎪⎧
b =2
c =4,所以抛物线解析式为y =-16x2+2x +4,则y =-1
6
(x -6)2+10,
所以D(6,10),所以拱顶D 到地面OA 的距离为10m ;
(2)由题意得货运汽车最外侧于地面OA 的交点为(2,0)或(10,0),当x =2或x =10时,y =22
3>6,所以这辆
货车能安全通过;
(3)令y =0,则-1
6(x -6)2+10=8,解得x1=6+23,x2=6-23,则x1-x2=43,所以两排灯的水平
距离最小是43m.。