第二节力矩与力偶
合集下载
力系的简化和平衡-2.2力矩和力偶

定理叙述:平面汇交力系的合力对平面内任一点的矩等
于各分力对同一点力矩的代数和
n
M o FR
M o Fi
i 1
定理证明:
FR
F1
r
A
O
Fn
F2 Fi
若 n 个力汇交于A点,则其合力为:
n
FR F1 F2 Fn Fi
i 1
r 用 同时矢积上式两端
r FR
r F1
zFx
xFz
j
xFy yFx k
由此可得:
M x
F
yFz zFy
M y
F
zFx xFz
M z F xFy yFx
Fz Fx Fy
18
力矩的单位: N m 或 kN m
B
Mo(F)
r
O
h
F
A
③力对点之矩矢的性质: a) 当力沿其作用线移动时,
M O F 保持不变。
12
①力对点之矩矢的概念 力对刚体产生的绕点转动效应取决于三要素: a.强度:力与力偶臂乘积 b.方位:转动轴的方位 c.方向:转动方向
13
力矩矢量的方向
MO
r
F
按右手定则
MO r F
14
②力对点之矩矢的矢量积和解析表达式
B
Mo(F)
r
O
h
F
A
力矢: F Fx , Fy , Fz
求: 光滑螺柱AB所受水平力。
解:由力偶只能由力偶平衡的 性质,其受力图为:
M 0
FAl M1 M 2 M 3 0
解得
FA
FB
M1
M2 l
M3
200N
人教版高中物理选修(2-2)《力矩和力偶》ppt课件1

看图 §2-2
力矩、力偶
§2-2 力矩、力偶
第二节 念、力偶矩计算公式
(力 §2-21、力对点之矩 力矩、力偶
扳手拧螺母,使得扳手与螺母绕定点O转动,称为
矩)
力F对O点之矩,简称力矩。
矩心 :O
力臂:d
2、力矩计算公式(重点)
§2-2 力矩、力偶
O
§2-2 力矩、力偶
3、力矩的性质 (1)当力的大小等于零或力的作用线通过矩心时,力 矩为零 (2)当力沿其作用线移动时,力矩不变。 (3)力矩的大小不仅与力的大小有关,同时与矩心的 位置有关。
§2-2 力矩、力偶
4、讨论:如图所示,怎样利用力矩的原理来 提高转动效应?
1、增加力的大小
O
2、增加力臂的长度
M。(F)=±Fd
M。(F)—力矩,力F对点0之矩。
符号:“+ ”—— 使物体逆时针转动时为正; “-” —— 使物体顺时针转动时为负。
F—力
d—力臂,力F作用线与矩心的垂直距离。
单位:N.m(牛顿.米)
§2-2 力矩、力偶
例:如图,已知F=100N,d=10cm,求力F对O 点之矩。
M O ( F ) Fd 100 0.1 10 N .m
§2-2 力矩、力偶
第二节 力矩、力偶
力矩概念、计算公式、性质 力偶概念、力偶矩计算公式
§2-2 力矩、力偶
二、力偶
力偶实例
§2-2 力矩、力偶
1、力偶
力偶作用面——力偶所在平面。
A
F
d
B
F
力偶——两个大小相等、方 向相反、作用线平行的一对 平行力。(Fˊ、F) 力偶臂——力偶中两力作用线 之间的垂直距离。(d)
力矩、力偶
§2-2 力矩、力偶
第二节 念、力偶矩计算公式
(力 §2-21、力对点之矩 力矩、力偶
扳手拧螺母,使得扳手与螺母绕定点O转动,称为
矩)
力F对O点之矩,简称力矩。
矩心 :O
力臂:d
2、力矩计算公式(重点)
§2-2 力矩、力偶
O
§2-2 力矩、力偶
3、力矩的性质 (1)当力的大小等于零或力的作用线通过矩心时,力 矩为零 (2)当力沿其作用线移动时,力矩不变。 (3)力矩的大小不仅与力的大小有关,同时与矩心的 位置有关。
§2-2 力矩、力偶
4、讨论:如图所示,怎样利用力矩的原理来 提高转动效应?
1、增加力的大小
O
2、增加力臂的长度
M。(F)=±Fd
M。(F)—力矩,力F对点0之矩。
符号:“+ ”—— 使物体逆时针转动时为正; “-” —— 使物体顺时针转动时为负。
F—力
d—力臂,力F作用线与矩心的垂直距离。
单位:N.m(牛顿.米)
§2-2 力矩、力偶
例:如图,已知F=100N,d=10cm,求力F对O 点之矩。
M O ( F ) Fd 100 0.1 10 N .m
§2-2 力矩、力偶
第二节 力矩、力偶
力矩概念、计算公式、性质 力偶概念、力偶矩计算公式
§2-2 力矩、力偶
二、力偶
力偶实例
§2-2 力矩、力偶
1、力偶
力偶作用面——力偶所在平面。
A
F
d
B
F
力偶——两个大小相等、方 向相反、作用线平行的一对 平行力。(Fˊ、F) 力偶臂——力偶中两力作用线 之间的垂直距离。(d)
2力、力矩、力偶-2

力臂
顺时针转向为负。
矩心 h
力矩的单位 N.m, kN.m
O
F
注意:同一个力对不同点之矩是不同的, 计算力矩时一定要指明矩心。
力F 对A点之矩 ,为 力F 对B点之矩 ,为 力F 对C点之矩 ,为
MA(F )=FhA MB(F )= –FhB MC(F )=0
A hA C
F
hB B
力的作用线通过 矩心时,力对该点 之矩等于零。
W3 2gV3 19009.8 (240103 3 4) 53625 N
例2-7 带雨篷的门顶过梁长4m,横向尺寸如图。试验算 雨篷会不会绕A点倾覆
3000 350
ρ1=2600kg/m3
W3
F=1kN
W2
70
A
W1
ρ2=1900kg/m3
240 1000
计算倾覆力矩
W3
2.力矩的矢量表示 用右手螺旋法则将力矩表示为矢量 拇指表示力矩矢量的方向
MO (F)
n MO(F )
O
平面内,力对O点之矩实际上是力使物体绕着 过O点垂直于该平面的轴转动的物理量。
力对轴的矩
n F
Oh
n MO(F )
O
O
F
例2-7 带雨篷的门顶过梁长4m,横向尺寸如图。试验算 雨篷会不会绕A点倾覆
平衡?分别是多少?
1.1m
M A(W1) W1 1.1 82.5kN.m M A(W2) W2 2 240kN.m M A(F) F 1.6 144kN.m
F
W1
W2
1.6m
A
1m
3m
作业
P.27: 2-9
= –4 kN.m
项目二 平面力系 任务二 力矩与力偶

• 设在一物体的同一平面内有两个力偶,(Fl, F'1)和(F2,F'2),力偶臂分别为d1和d2,力偶 矩分别为M1和M2,如图2-15a所示。于是有
• M1=F1d1,M2=F2 d2
• 现求其合成结果。在力偶作用面内任取一线段AB=d, 根据力偶的等效性推论,在不改变力偶矩M1和M2的条 件下,将它们的力偶臂都改为d,于是得到与原力偶等 效的两个力偶。(Fpl,F'p1)和(Fp2,F'p2),FP1和 FP2的大小可由下列等式算出:
• 所以 F= M/2AC= 2.5/0.3kN= 8.33kN
§2–6 力偶及其性质
一、 力偶和力偶矩
1、力偶——大小相等的二反向平行力。
d
⑴、作用效果:引起物体的转动。 F2
F1
⑵、力和力偶是静力学的二基本要素
力。偶特性一:
力偶中的二个力,既不平衡,也不可能合成为 一个力。 力偶特性二:
力偶只能用力偶来代替(即只能和另一力偶 等效),因而也只能与力偶平衡。
图2-15
• 通常把O点称为矩心,把h称为力臂,把力的大小与 力臂的乘积称为力对矩心的矩,简称力矩,用它来衡 量力F使物体绕矩心转动的效应。力矩用符号mO(F)表 示。
• 人为约定:使物体产生逆时针转动(或转动趋势)的力 矩为正(图2-17(a));使物体产生顺时针转动(或转动趋 势)的力矩为负(图2-17(b))。在平面问题中力对点的 矩可表示为
量纲:力×长度,牛顿•米(N•m).
§2–6 力偶及其性质
二、力偶的等效条件 1. 同一平面上力偶的等效条件
作用在刚体内同一平面上的两个力偶相互等 效的充要条件是二者的力偶矩代数值相等。
因此,以后可用力偶的转向箭头来代替力偶。
• M1=F1d1,M2=F2 d2
• 现求其合成结果。在力偶作用面内任取一线段AB=d, 根据力偶的等效性推论,在不改变力偶矩M1和M2的条 件下,将它们的力偶臂都改为d,于是得到与原力偶等 效的两个力偶。(Fpl,F'p1)和(Fp2,F'p2),FP1和 FP2的大小可由下列等式算出:
• 所以 F= M/2AC= 2.5/0.3kN= 8.33kN
§2–6 力偶及其性质
一、 力偶和力偶矩
1、力偶——大小相等的二反向平行力。
d
⑴、作用效果:引起物体的转动。 F2
F1
⑵、力和力偶是静力学的二基本要素
力。偶特性一:
力偶中的二个力,既不平衡,也不可能合成为 一个力。 力偶特性二:
力偶只能用力偶来代替(即只能和另一力偶 等效),因而也只能与力偶平衡。
图2-15
• 通常把O点称为矩心,把h称为力臂,把力的大小与 力臂的乘积称为力对矩心的矩,简称力矩,用它来衡 量力F使物体绕矩心转动的效应。力矩用符号mO(F)表 示。
• 人为约定:使物体产生逆时针转动(或转动趋势)的力 矩为正(图2-17(a));使物体产生顺时针转动(或转动趋 势)的力矩为负(图2-17(b))。在平面问题中力对点的 矩可表示为
量纲:力×长度,牛顿•米(N•m).
§2–6 力偶及其性质
二、力偶的等效条件 1. 同一平面上力偶的等效条件
作用在刚体内同一平面上的两个力偶相互等 效的充要条件是二者的力偶矩代数值相等。
因此,以后可用力偶的转向箭头来代替力偶。
任务2力矩与力偶的分析

任务2 力矩与力偶的分析
二、力偶
讨论
3、驾驶员双手施加的力增大1倍,双手之间的距离减少 一半,方向盘的转动如何变化? (力偶矩大小相同没变,如果转向相同,那么状态不变) 4、驾驶员为什么不单手操作?
任务2 力矩与力偶的分析
二、力偶
讨论
4、驾驶员为什么不单手操作? (根据力的平移定理相当于一个力和一个力偶同时作用, 力偶使方向盘转动,而力作用在方向盘下的转向轴上, 相当于一个附加载荷,容易使转向轴折断)。
任务2 力矩与力偶的分析
二、判断题 ( )1.力和力偶都能使物体转动,所以力偶可以 用力来平衡。 ( )2.力偶矩的大小和方向与所取矩心位置无关, 力偶对作用平面内任意一点的矩,恒等于力偶矩。 ( )3.力偶对物体的转动效果与力矩对物体的转 动效果相同。
任务2 力矩与力偶的分析
三、选择题 ( )1.平面中,力矩为零的条件是________。 A. 作用力和力臂二者之一为零 B. 作用力与力臂不为零 C. 作用力与力臂的乘积不为零 D. 与力矩方向有关 ( )2.下列属于力矩作用的是_________。 A. 用丝锥攻螺纹 B. 双手握方向盘 C. 用螺丝刀扭螺钉 D. 用扳手拧螺母 ( )3.已知某平面任意力系与某平面力偶系等效,则此平面任意力系向平 面内任一点简化后是_______。 A. 一个力 B. 一个力偶 C. 一个力与一个力偶 D. 以上均不对 ( )4.力偶等效只要满足_______。 A. 力偶矩大小相等 B. 力偶矩转向相同 C. 力偶作用面相同 D. 力偶矩大小、转向二、力偶
1、定义
等值、反向 不共线
平行力
任务2 力矩与力偶的分析
二、力偶
生活中有没有这样的受力情况,一对大小相 等、方向相反而作用线相互平行的作用?
力矩和力偶

公法线
G
A FN
公切线
节圆
20 FN
FN 20 压力角
车轮与钢轨
光滑点接触:
B
FNB
凸轮与顶杆
A
FNA FNA A
两轮齿啮合
O
G
B FNB
C FNC
FR
滑槽与销钉
滑道、导轨:约束力垂直于滑道、导轨,指向待定。
A O
B
FNB
3. 光滑铰链约束
(1) 光滑圆柱铰链 (中间铰链)约束
两个或两个以上物体上做出相同直径的孔并用一 个圆柱形销钉连接起来,即构成圆柱铰链(又称为中 间铰链)。
向,则投影为正
试分别求出图中各力在X轴和Y轴上投影。
已知 F1 100N F2 150N F3 F4 200N ,各力方向如图所示。
【解】可得出各力在x,y轴上的投影为
,
F1x F1 cos 45 100N 0.707 = 70.7N
,
F1y F1 sin 45 100N0.707 = 70.7N
R
F2
F1 a b cx 合力的投影
y
Rx
Ry R
x
试分别求出图中各力的合力在x轴和y轴上投影。
已知 F1 20N F2 40N F3 50N ,各力方向如图所示。
【解】 可得出各力的合力在x、y轴上的投影为
FRx
Fx F1 cos 90 F2 cos 0 F3
3 32 42
,
直于销钉轴线的平面内,通过铰链的中心,
方向未知,常用过铰链中心的两个正交分力
表示 。
A
FAx
FAy A
FAx
FAy
A
B
B
G
A FN
公切线
节圆
20 FN
FN 20 压力角
车轮与钢轨
光滑点接触:
B
FNB
凸轮与顶杆
A
FNA FNA A
两轮齿啮合
O
G
B FNB
C FNC
FR
滑槽与销钉
滑道、导轨:约束力垂直于滑道、导轨,指向待定。
A O
B
FNB
3. 光滑铰链约束
(1) 光滑圆柱铰链 (中间铰链)约束
两个或两个以上物体上做出相同直径的孔并用一 个圆柱形销钉连接起来,即构成圆柱铰链(又称为中 间铰链)。
向,则投影为正
试分别求出图中各力在X轴和Y轴上投影。
已知 F1 100N F2 150N F3 F4 200N ,各力方向如图所示。
【解】可得出各力在x,y轴上的投影为
,
F1x F1 cos 45 100N 0.707 = 70.7N
,
F1y F1 sin 45 100N0.707 = 70.7N
R
F2
F1 a b cx 合力的投影
y
Rx
Ry R
x
试分别求出图中各力的合力在x轴和y轴上投影。
已知 F1 20N F2 40N F3 50N ,各力方向如图所示。
【解】 可得出各力的合力在x、y轴上的投影为
FRx
Fx F1 cos 90 F2 cos 0 F3
3 32 42
,
直于销钉轴线的平面内,通过铰链的中心,
方向未知,常用过铰链中心的两个正交分力
表示 。
A
FAx
FAy A
FAx
FAy
A
B
B
机械基础第二章力矩和力偶教案02

课堂教学实施方案点作逆时针方向转动. 应该注意,力臂是OD,注意:负号必须标注,正号可标也可不标。
一般不标注。
平面汇交力系的合力对其平面内任一点的矩等于所有各分力对本题有两种解法。
按力矩的定义计算由图中几何关系有:=(AB-DB)sinα=(AB- BCctgα)sinαα)sinα-bcosα在日常生活和工程实际中经常见到物体受动两个大小相等、方向相反,但不在同一直线上的两个平行力作用的情况。
(图a)司机转动驾驶汽车时两手作用在方向盘上的力;(图b)工人用丝锥攻螺纹时两手加在扳手上的力;(图c)以及用两个手指拧动水龙头所加的力等等。
▪力偶:在力学中把这样一对等值、反向而不共线的平行力称为力偶。
▪用符号( F ,F′) 表示。
▪两个力作用线之间的垂直距离称为力偶臂。
▪两个力作用线所决定的平面称为力偶的作用面。
偶使物体逆时针方向转动时,力偶矩为正,反之为负。
在国际单位制中,力矩的单位是牛顿•米(N•m)或千牛顿•米力和力偶是静力学中两个基本要素。
力偶与力具有不同的性质:)力偶不能简化为一个力,即力偶不能用一个力等效替代。
因此力偶不能与一个力平衡,力偶只能与力偶平衡。
)无合力,故不能与一个力等效;结论:只要保持力偶矩不变,力偶可在作用面内任意移动或转动,其对刚体的作用效果四力的平移定理力的平移定理:作用于刚体上的力可以平行移动到刚体上的任意一指定点,但必须同时在该力与指定点所决定的平面内附加一力偶,其力偶矩等于原力对指定点之矩。
力的平移定理只适用于刚体力的平移定理表明,可以将一个力分解为一个力和一个力偶;反过来,也可以将同一平面内的一个力和一个力偶合成为一个力。
工程力学(人民交通出版社)第3章 第2节力偶系

Fy
F
C
B D
b
Fx x
a
MA( F ) MA( Fx ) MA( Fy ) Fx b Fy a F cos b F sin a Fa sin Fb cos
F Fx Fy
Fx F cos Fy F sin
Mo (F , F ' ) Mo (F ) Mo (F ' ) F (d x ) F ' x F d
⑦正负规定:逆时针为正 ⑧单位量纲:N m 或 kN m
二、力偶与力偶矩
2、力偶的特点 ⑨力偶的三要素: 力偶矩的大小、力偶的转向、力偶的作用面 ⑩力偶矩矢 用一个矢量表达三要素:力偶矩矢。
§3-2
力矩与力偶理论
一、力对点之矩 二、力偶与力偶矩 三、力偶系的合成与平衡
一、力对点之矩
1、平面中力矩的概念
力对物体可产生运动效应,在一般情况下,既可能产生移动(平动)效应, 也可能产生转动效应,或者同时产生这两种运动效应。力的移动效应取决于 力的大小和方向,而力使物体绕某点的转动效应,则用力对该点的矩来度量, 简称力矩。
2)合力矩定理 将力Fn分解为切由合力矩定理得:
M o (Fn ) M o (Ft ) M o (Fr ) Fn r cos 0 Fn r cos
小结力偶和力偶矩
1. 力矩是力学中的一个基本概念。度量力对物体的转动 效应:
即有: Mx mx My my Mz mz 同理: M Mx 2 My 2 Mz 2
( Mx ) ( My ) ( Mz )
2 2 2
z
MZ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 力偶及其基本性质
1 力偶和力偶矩
力偶:由两个大小相等、方向相反的平行 力组成的力系,称为力偶。 F
F′
力偶和力偶矩
力偶矩:力偶的两力之间的垂直距离d称为力偶
臂。以力与力偶臂的乘积作为度量力偶在其作 用面内对物体转动效应的物理量,称为力偶矩。
M(F,F′)= ± F d
一般规定:逆时针转向力偶为正,顺时针转向力 偶为负。力偶矩的单位为N·m。
气缸盖
解题思路:
取气缸盖为研究对象,作用于其上各力偶矩 大 小相等、转向相同,且在同一平面内。 此合力偶矩为
MR=Ml+M2+M3+M4=-15×4N·m=-60N·m
• 小结
力对点之矩与和力矩定理 力对点之矩 合力矩定理
力偶及其性质
力偶和力偶矩 力偶的性质
平面力偶系的合成与平衡条件 力Fra bibliotek系的合成 力偶系的平衡
精品课件!
精品课件!
扳手的力矩
例9-1:如图所示圆柱直齿轮,分度圆半径 r=80mm,Fn=1000N,a=20°,试计算力对轴心 0的力矩。
解: (1)按力对点之矩的定义
Mo(Fn)=Fncos20° =1000×cos20°×0.08=-75.2N·m (2)按合力矩定理得
Mo(Fn)=Mo(Ft)+Mo(Fr) =Fncosa+Fnsina × 0 =1000N·m×cos20°r+0N·m=-75.2N·m
内容
力对点之矩与和力矩定理 力对点之矩 合力矩定理
力偶及其性质
力偶和力偶矩 力偶的性质
平面力偶系的合成与平衡条件 力偶系的合成 力偶系的平衡
一 力对点之矩和合定理
力矩:将力(F)使物体绕点(D)转动效
应的物理量称为力F对D点之矩,简
称力矩。并用MO(F)表示,即
MO(F)=±Fd
(N mm)
O点称为力矩中心,简称矩心;D点到F作
用线的垂直距离d称为力臂。
式中正负号表明对点之矩是一个代数量,
其正负规定为:力使物体绕矩心作逆时针方
向转动时,力矩为正,反之为负。
2 合力矩定理
若力系有合力,则合力对某点之矩等于各个 分力对同一点之矩代数和。即 MO(FR)=Mo(F1)+Mo(F2)+…+Mo(Fn)=∑Mo(F) 其中FR是F1、F2、…、Fn的合力。
力偶的三要素:力偶的大小 转向 作用面
2 力偶的性质
力偶对其作用面内任意点的力矩值恒等于此力 偶的力偶矩,而和力偶与矩心间的相对位置无 关。
力偶无合力,在任何坐标轴的投影和恒为零。 力偶不能与一个力等效,也不能用一个力来平 衡,力偶只能用力偶平衡。
力偶的等效性,在同一平面内的两个力偶, 如果它们的力偶矩大小相等,转向相同,则两 力偶等效,且可以相互代换。此即为力偶的等 效性。
三 平面力偶系的合成与平衡条件
1 力偶系的合成: 设在刚体基本平面上有力偶M1、M2、…Mn 的作用,现求其合成结果。根据力偶的性质, 力偶对刚体只产生转动效应,其合力偶矩等于 各分力偶矩的代数和。即:
M=M1+M2+…+Mn =∑M
2 力偶系的平衡
力偶系的平衡的必要与充分条件是:力偶 系中各分力偶矩的代数和等于零。即 ∑M=0 例9.2如图所示,多孔钻床在气缸盖上钻四个 直径相同的圆孔,且每个钻头作用于工件的切 削力偶矩为M1=M2=M3=M4=1.5N·m。转向如图。 求钻床作用于气缸盖上的合力偶矩MR。