08组合变形习题
组合变形(例题)

A
P 450
A
0.12
103
6.37MPa
T Wn
16700.1030
35
.7MPa
3
24 2
故,安全。
6.372435.72
71.7MPa
p.8
例题
习题6.
例题
图示皮带轮传动轴传递功率N=7kW,转速n=200r/min。皮带轮重量Q=1.8kN。左端齿轮
上的啮合力Pn与齿轮节圆切线的夹角(压力角)为20o。轴的材料为45钢, [] =80MPa。
例题
b
P
25 e
a
P
5
解:(1)将外力向轴线简化,如图所示;
b
其中:M=Pe,这属于拉弯组合变形;
P
a
P
(2)求出a、b点的应力;
a
P A
Pe W
,
b
P A
Pe W
(3)二点均属单向应力状态,求出二点的轴向应变;
a
a E
P 1 e EA W
b
b E
P E
1 A
e W
(4)解方程组得 P EAa b 18.4kN
力是水平方向,B轮上胶带的张力是垂直方向,大小如图示;圆轴的许用应力[σ]=80MPa;试按
第三强度理论求轴所需的直径。
5kN
(3)求可能危险截面C和B上的合成弯矩:
AC
B
D
2kN
MC
M
2 yC
M zC 2
1.52 2.12 2.58kNm
2kN
5kN
300
500
500
MB
M
2 yB
M zB2
xz平面的弯矩图为 代入第三强度理论的强度条件得
材料力学组合变形习题

材料力学组合变形习题L1AL101ADB (3)偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案:(A ) e=d; (B ) e>d;(C ) e越小,d越大; (D ) e越大,d越小。
正确答案是______。
答案(C )1BL102ADB (3)三种受压杆件如图。
设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案:(A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ;(C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。
正确答案是______。
答案(C )1BL103ADD (1)在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案:(A )A点; (B )B点; (C )C点; (D )D点。
正确答案是______。
答案(C )1AL104ADC (2)一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。
当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案:(A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合;(C )斜弯曲; (D )平面弯曲。
正确答案是______。
答案(B )1BL105ADC (2)铸铁构件受力如图所示,其危险点的位置有四种答案:(A )①点; (B )②点; (C )③点; (D )④点。
正确答案是______。
答案(D )1BL106ADC (2)图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处的最大应力的增大倍数有四种答案:(A )2倍; (B )4倍; (C )8倍; (D )16倍。
正确答案是______。
答案(C )1BL107ADB (3)三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:(A )max1σ<max 2σ<max3σ; (B )max1σ<max 2σ=max3σ;(C )max1σ<max3σ<max 2σ; (D )max1σ=max3σ<max 2σ。
工程力学习题集(二)

组合变形思考题1.何谓组合变形?如何计算组合变形杆件横截面上任一点的应力?2.何谓平面弯曲?何谓斜弯曲?二者有何区别?3.何谓单向偏心拉伸(压缩)?何谓双向偏心拉伸(压缩)?4.将斜弯曲、拉(压)弯组合及偏心拉伸(压缩)分解为基本变形时,如何确定各基本变形下正应力的正负?5.对斜弯曲和拉(压)弯组合变形杆进行强度计算时,为何只考虑正应力而不考虑剪应力?6.什么叫截面核心?为什么工程中将偏心压力控制在受压杆件的截面核心范围内?习题1.如图所示木制悬臂梁在水平对称平面内受力F1=1.6kN,竖直对称平面内受力F2=0.8KN的作用,梁的矩形截面尺寸为9×18,,试求梁的最大拉压应力数值及其位置。
题1图2.矩形截面悬臂梁受力如图所示,F通过截面形心且与y轴成角,已知F =1.2kN,l=2m,,材料的容许正应力[σ]=10MPa,试确定b和h的尺寸。
题2图3.承受均布荷载作用的矩形截面简支梁如图所示,q与y轴成角且通过形心,已知l=4m,b=10cm,h=15cm,材料的容许应力[σ]=10MPa,试求梁能承受的最大分布荷载。
题3图4.如图所示斜梁横截面为正方形,a=10cm,F=3kN作用在梁纵向对称平面内且为铅垂方向,试求斜梁最大拉压应力大小及其位置。
题4图5.柱截面为正方形,边长为a,顶端受轴向压力F作用,在右侧中部挖一个槽(如图),槽深。
求开槽前后柱内的最大压应力值。
题5图6.砖墙及其基础截面如图,设在1m长的墙上有偏心力F=40kN的作用,试求截面1-1和2-2上的应力分布图。
题6图7.矩形截面偏心受拉木杆,偏心力F=160kN,e=5cm,[σ]=10MPa,矩形截面宽度b=16cm,试确定木杆的截面高度h。
题7图8.一混凝土重力坝,坝高H=30m,底宽B=19m,受水压力和自重作用。
已知坝前水深H=30m,坝体材料容重,许用应力[]=10MPa,坝体底面不允许出现拉应力,试校核该截面正应力强度。
材料力学习题组合变形#(精选.)

组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。
A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。
A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。
A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。
A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。
则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。
A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。
A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。
A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。
A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。
工程力学之组 合 变 形

工程力学第10章组合变形学习目标(1)了解组合变形的概念及其强度问题的分析方法;(2)掌握斜弯曲、拉伸(压缩)与弯曲和偏心压缩的应力及强度计算。
10.1 组合变形的概念例如,烟囱的变形,除自重W引起的轴向压缩外,还有水平风力引起的弯曲变形,同时产生两种基本变形,如图10-1(a)所示。
又如图10-1(b)所示,设有吊车的厂房柱子,作用在柱子牛腿上的荷载F,它们合力的作用线偏离柱子轴线,平移到轴线后同时附加力偶。
此时,柱子既产生压缩变形又产生弯曲变形。
再如图10-1(c)所示的曲拐轴,在力F作用下,AB 段同时产生弯曲变形和扭转变形。
10.1 组合变形的概念图10-110.1 组合变形的概念上述这些构件的变形,都是两种或两种以上的基本变形的组合,称为组合变形。
研究组合变形问题依据的是叠加原理,进行强度计算的步骤如下:(1)将所作用的荷载分解或简化为几个只引起一种基本变形的荷载分量。
(2)分别计算各个荷载分量所引起的应力。
(3)根据叠加原理,将所求得的应力相应叠加,即得到原来荷载共同作用下构件所产生的应力。
(4)判断危险点的位置,建立强度条件。
10.2例如图10-2(a)所示的横截面为矩形的悬臂梁,外力F作用在梁的对称平面内,此类弯曲称为平面弯曲。
斜弯曲与平面弯曲不同,如图10-2(b)所示同样的矩形截面梁,外力F的作用线通过横截面的形心而不与截面的对称轴重合,此梁弯曲后的挠曲线不再位于梁的纵向对称面内,这类弯曲称为斜弯曲。
斜弯曲是两个平面弯曲的组合,本节将讨论斜弯曲时的正应力及其强度计算。
10.2图10-210.210.2.1 正应力计算斜弯曲时,梁的横截面上同时存在正应力和切应力,但因切应力值很小,一般不予考虑。
下面结合图10-3(a)所示的矩形截面梁说明斜弯曲时正应力的计算方法。
图10-310.2.1 正应力计算10.2.1.1 外力的分解由图10-3(a)可知:10.2.1.2 内力的计算如图10-3(b)所示,距右端为a 的横截面上由F y 、F z 引起的弯曲矩分别是:10.2 10.2.1 正应力计算10.2.1.3 应力的计算由M z 和M y (即F y 和F z )在该截面引起K 点的正应力分别为:F y 和F z 共同作用下K 点的正应力为:10.210-110.210.2.1 正应力计算10.2.1.3 应力的计算通过以上分析过程,我们可以将组合变形问题计算的思路归纳为“先分后合”,具体如下:10.210.2.2 正应力强度条件同平面弯曲一样,斜弯曲梁的正应力强度条件仍为:10-2即危险截面上危险点的最大正应力不能超过材料的许用应力[σ]。
材料力学第八章组合变形

例题: 图示吊车大梁,由32a热轧普通工字钢制成,许 用应力 [σ]=160MPa ,L=4m 。起吊的重物重量F =80kN,且作用在梁的中点,作用线与y轴之间的夹角α =5°,试校核吊车大梁的强度是否安全。
F
Fy F cos 50
L2
L2
解:1. 外力分解
Fy F cos 80 cos 50 79.7kN Fz F sin 80 sin 50 6.96kN
材料力学
Mechanics of Materials
例:图示梁,已知F1=800N,F2=1650N,截面宽度 b=90mm,高度h=180mm。求:
1、梁上的max及所在位置; 2、若改为a=130mm的正方形截面,梁上的max; 3、若改为d=130mm圆形截面,梁上的max。
F2
F1 z
32
32 6
d3
72.6mm
取 d 73mm
构件在荷载的作用 下如发生两种或两种以 上基本形式的变形,且 几种变形所对应的应力 (和变形)属于同一数 量级,则构件的变形称 为组合变形。
❖组合变形的分析方法 线弹性小变形范围内,采用叠加原理
材料力学
Mechanics of Materials
二.组合变形分析方法 条件:线弹性小变形
组合 变形
0.642q 106 31.5 103
0.266q 106 237 103
160MPa
q 7.44kN / m
材料力学
Mechanics of Materials
M zD 0.456q
M zA 0.266q
z
M yD 0.444q
M yA 0.642q
A截面
y
max
材料力学 第11章 组合变形习题集
横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件
第八章-组合变形及连接部分的计算-习题选解.docx
[8-1] 14号工字钢悬臂梁受力情况如图所示。
已知F2 l.OkN,试求危险截面上的最大正应力。
解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因[8-2]矩形截面木標条的跨度1 4m ,荷载及截面尺寸如图所示,木材为杉木, 弯曲许用正应力[]12MPa , E 9GPa ,许可挠度[w] 1/200 o试校核標条的强度和刚度。
1 0.8m , Fl 2.5kN ,钢材的拉压性能相同, 故只计算最大拉应力:maxMz MyWz Wy Wz Wy式中,Wz , Wy由14号工字钢, 查型钢表得到Wz 102cm^ , Wymax79.1 io'Pa MPa79 J2 102 10 6m3 16.1 10 6 n?■ . , ■ l ・6kN/m ________A 戈HHluq习题8解:(1)受力分析COS1.6 cos26° 34 1.431(/ kN mq z q sin 1.6 sin26°340.716( kN/m)(2)内力分析My .max4qz 1 81 2-q yl 2 8(3)应力分析Mz.max-4 0.716 8-1 1.432 84 2 1.432(kN m) 4? 2.864(kN m) 最大的拉应力出现在跨中截面的右上角点, 最大压应力出现在左下角点。
M y ・ maxz.maxmax式中,160 11026322667 mm?maxWz110 16O 26469333mm^1.432 1()6 N mm2.86425 心隔(4)强度分析 因为max(5)变形分析322667 mm?469333mm310.54MPa , [ ] 12MPa ,即max[所以杉木的强度足够。
最大挠度出现在跨中,查表得:■1-60-1-1^ 17746667 (mn?)12(6)刚度分析 12屮一37546667 mm^12Wcy5qyl4 5 1.431N/mm 4000^ mm^ 384EIz 384 9 1()3 N/mn? 37546667mm^14.12mmwcz5qzl^ 5 0.716N/mm 400()4 mn? 384EIy384 9103 N/mm217746667mm° 14.94.mm (Wc/ \i4.12 214.94220,56(mm)式中,ly12因为WmaxWc 20・56(mm) , [ w]400020(mm),即 Wmax [w],200 200 所以,从理论上讲,变形过大,不符合刚度要求。
结构力学 第八章
wmax 0.0202 0.76 1 = = < l 4 150 150
解、将均布载荷分解为沿轴线方向和垂直于轴线方向的两个分力,可得: qx = q sin α ; 距离 B 端为 x 的截面上的轴力和弯矩分别为
q y = q cos α
M=
该截面的最大压应力为
q y lx 2
−
qy x2 2
=
q ( lx − x 2 ) cos α 2
σ
所以该点最大切应力为: τ max =
8-16、铁道路标圆信号板,装在外径 D=60mm 的空心圆柱上,所受的最大风载 p=2kN/m2,[σ]=60MPa。试 按第三强度理论选定空心柱的厚度。
解、结构的危险截面为空心柱的固定端,截面的弯矩和扭矩分别为
M = 2×
π × 0.52
4
× 0.8 = 0.314(kN .m);
当中性轴为①时,中性轴的截矩为: 偏心力作用点的位置为:
a y = −0.3; az → ∞ ;
z
②
iz2 0.019333 ey = − = − = 0.0644(m), ay −0.3
当中性轴为②时,中性轴的截矩为: 偏心力作用点的位置为:
iz2 ez = − = 0 az
①
a y = 0.4; az = −0.4 ;
解、将外载荷分解为沿 y 和 z 方向的力,可得
q y = q cos 300 = 2 × cos 300 = 1.732kN / m qz = q sin 300 = 2 × sin 300 = 1kN / m
梁的最大弯矩发生在梁的中间截面,值分别为
M zmax =
max My
1.732 × 42 = 3.464 ( kN .m ) 8 8 q z l 2 1× 4 2 = = = 2 ( kN .m ) 8 8 =
材料力学经典练习题(按章节汇总)
第一章 绪论一、是非判断题1.1 内力只作用在杆件截面的形心处。
( ) 1.2 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.3 材料力学的研究方法与理论力学的研究方法完全相同。
( )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 同一截面上各点的切应力τ必相互平行。
( ) 1.6 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( ) 1.9 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ) 1.14 若物体内各点的应变均为零,则物体无位移。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( ) 1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 拉伸或压缩的受力特征是 ,变形特征是 。
1.2 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.3 剪切的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.4 扭转的受力特征是 ,变形特征是 。
1.5 构件的承载能力包括 , 和 三个方面。
1.6 弯曲的受力特征是 ,变形特征是 。
1.7 组合受力与变形是指 。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空题
01 ( 5 )
偏心压缩实际不就就是 _______________ 与 ____________ 得组合变形问题。
02、( 5 )
铸铁构件受力如图所示,其危险点得位置有四中种答案:
(A ) ①点;(B)②点;(C ) ③点;(D ) ④点。
正确答案就是 ___________________
03、(5)
图示矩形截面拉杆中间开一深度为 h/2得缺口,与不开口得拉杆相比,开中处得最大应力得增大倍数有四种答
05、 一空间折杆受力如图所示,则AB 杆得变形有四种答案
组合变形部分
(A)
2倍; (B) 4 倍;(C)
8 倍; 叫
正确答案就是
04.三种受压杆件如图,设杆1、2、与杆3中得最大压应力
答案:
(绝对值)分别用、与表示,它们之间得关系有四种 (A)
v<; ( B ) <=;
(C ) <<;
正确答案就是
P
P
f
1丿1 -J
(D) 16 倍;
(A) 偏心拉伸;(B )纵横弯曲;(C )弯扭组合;(D )拉弯扭组合;
正确答案就是_____________________
06、图示正方形截面杆承受弯扭组合变形,在进行强度计算时,其任一截面得危险点位置有四种答案
:
(A) 截面形心;(B )竖边中点A点;(C )横边中点B点;(D )横截面得角点D点;
正确答案就是_____________________
07.折杆危险截面上危险点得应力状态,现有四种答案:
正确答案就是_____________________
() () ()
08用第三强度理论校核图示杆得强度时,有四种答案:
(A) ;
(B) ;
(C) ;
(D) ;
正确答案就是_____________________
09.按第三强度理论计算等截面直杆弯扭组合变形得强度问题时
,应采用得强度公式有四种答案
(A) ;
(B) ;
(C) ;
(D) ; 正确答案就是 ___________
10. 悬臂梁AB,A 端固定,B 端自由,在B 端作用横向集中力,横截面形状与力作用线如图所示。
什么变形 (a ) ____________________________ ; ( b ) ___________________________ ;
(c ) ____________________________ ; ( d ) ___________________________ ;
11、结构如图,折杆AB 与直杆BC 得横截面面积为“。
求此结构得许用载荷。
f HL
■ ---------------------- 匸
L _________ ——
--------------- 二1 B 12.
混凝土柱受力如图,已知,,,柱宽,若要求柱子横截面内不岀现拉应力 ,求值。
请回答将产生
13. 图示预应力简支梁。
已知:,,。
求:
(1) 、分别作用时,跨中截面得”并绘相应得正应力分布图;
(2) 、同时作用时,跨中截面得,,并绘相应得正应力分布图;
(3) 、值不变,欲使、同时作用时,跨中底部正应力为零,有什么办法?
15.传动轴AB 直径,轴长,,轮缘挂重,与转矩平衡,轮直径。
试画岀轴得内力图,并用第三强度理论校核轴得强 度。
14.托架如图,已知AB 为矩形截面梁,宽度,高度,杆CD 为圆管,其外径,内径,材料得。
若不考虑 CD 杆得稳定 问题,试按强度要求计算该结构得许可载荷。
1/2 1/2
16•图示传动轴,B 轮皮带张力铅垂方向,D 轮皮带张力沿水平方向,B 、C 两轮直径为D = 600 mm 。
轴得,。
按 第三强度理论确定轴得直径。
1 1皐牺mmj
r" ---------- "4 17.图示圆截面杆受横向力与转矩联合作用。
今测得
A 点轴向应变,与
B 点与母线成方向应变。
已知杆得抗
弯截面模量。
”。
试用第三强度理论校核杆得强度。
18. 试作用图示空间折杆得内力图,(弯曲剪应力图可略)。
\P
\P
i 丄卫 ■f
:0 <■ 1
Q i I —z 佔
p
p :: 1
k-
19. 矩形截面木受力如图,已知,“试验算木条得强度与刚度。
20. 图示矩形截面简支梁受均布载荷作用,载荷作用方向如图示,,简支梁受均布载荷时平面弯曲得跨度挠度 值,试求该梁得最大总挠度及挠曲线平面得位置。
-4
21. 悬重物架,如图所示。
已知载荷。
(1) 试给出立柱AB 得内力图;
(2) 设许用应力,试为立柱选择圆截面直径。
计算题:
01切槽得正方形木杆,受力如图所示。
求:1) m -m 截面上得、;2 )此就是削弱前得值得几倍。
02图示结构,AB 为矩形截面等直梁,C 、D 、E 各点均为铰结,试求AB 梁中得最大拉应力。
03图示插刀刀杆得主切削力为,偏心矩为,
刀杆直径为。
试求刀杆内得最大压应力与最大拉应力
fi-80cm
2rn.
(10 分)
04 (20 分)
图示一传动轴P i 4.5 kN, P2 4 kN, P3 13.5 kN, P4 5.2 kN, D F 100mm, d 50mm,许用应力。
求:(1 )画轴得受力简图;(2 )作内力图(弯矩图与扭矩图);(3 )按三强度理论校核轴得强度。
y
丄
丄
05 ( 15 )
圆轴直径,已知”,。
求轴内危险截面主应力与最大剪应力。
rrif。