2019-2020年高考数学一轮复习二项式定理教学案(I)
高三数学第一轮复习 第68课时 二项式定理(1)教案

二项式定理(1)一.复习目标:1.掌握二项式定理和二项展开式的性质,并能用它们讨论整除、近似计算等相关问题.2.能利用二项展开式的通项公式求二项式的指数、求满足条件的项或系数.二.知识要点:1.二项式定理: .2.二项展开式的性质:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数 .(2)若n 是偶数,则 的二项式系数最大;若n 是奇数,则 的二项式系数最大.(3)所有二项式系数的和等于 .(4)奇数项的二项式系数的和与偶数项的二项式系数的和 .三.课前预习:1.设二项式n xx )13(3+的展开式的各项系数的和为P ,所有二项式系数的和为S ,若272=+S P ,则=n ( A )()A 4 ()B 5 ()C 6 ()D 8 2.当+∈N n 且2≥n 时,q p n +=++++-52221142 (其中N q p ∈,,且50<≤q ),则q 的值为 ( A )()A 0 ()B 1 ()C 2 ()D 与n 有关3.在62)12(xx -的展开式中常数项是605=T ;中间项是34160x T -=. 4.在1033)3(x x -的展开式中,有理项的项数为第3,6,9项.5.求62)321(x x -+展开式里5x 的系数为-168. 6.在7)1(+ax 的展开式中,3x 的系数是2x 的系数与4x 的系数的等差中项,若实数1>a ,那么=a 5101+. 四.例题分析:例1.求9)23(x -展开式中系数绝对值最大的项.解:9)23(x -展开式的通项为r r r r r r r r x C x C T ⋅⋅⋅-=-⋅⋅=--+999913)2()2(3,设第1+r 项系数绝对值最大,即⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅-----++-r r r r r r r r r r r r C C C C 101919981919932323232, 所以⎩⎨⎧≥--≥+r r r r 322021833,∴43≤≤r 且N r ∈,∴3=r 或4=r , 故系数绝对值最大项为3448988x T -=或45489888x T =.例2.已知n x x )12(2lg lg ++展开式中最后三项的系数的和是方程0)7272lg(2=--y y 的正数解,它的中间项是2lg 2410+,求x 的值.解:由0)7272lg(2=--y y 得073722=--y y ,∴1-=y (舍去)或73=y , 由题意知,732412=+⋅+⋅--n n n n n n C C C ,∴6=n已知条件知,其展开式的中间项为第4项,即20001016022lg 24)2lg (lg 3)2lg (lg 3336==⋅=⋅⋅+++x x x x C ,∴012lg lg 2lg lg 2=-+⋅+x x ,∴1lg -=x 或5lg 2lg 1lg =-=x ,∴101=x 或5=x .经检验知,它们都符合题意。
2019-2020年高考数学复习教学案:排列组合及二项式定理

2019-2020年高考数学复习教学案:排列组合及二项式定理【三维目标】一、知识与技能1. 理解两个计数原理,并会应用解题;2. 理解排列组合(数)的概念产生过程,辨析常见排列组合模型的特点并掌握常用解法;3. 掌握二项式定理的内容和灵活运用解题.二、过程与方法1. 学生小组合作学习,在总结归纳知识的过程中,提高学生“建模”和解决实际问题的能力,渗透类比、化归、分类讨论等数学思想;2. 培养学生学习数学的兴趣和合作探究学习的意识,激励学生互相交流分享学习成果.三、情感态度与价值观1.发展学生的抽象能力和逻辑思维能力,培养学生分析问题和解决实际问题的能力;2.通过小组合作学习,分享学习成果的学习形式,锻炼学生组织表达能力,引导学生探究学习数学的有效方式,体验合作学习的乐趣,培养集体责任感与荣誉感.【教学重点】重点是辨析常见排列组合模型的特点并掌握常用解法.【教学难点】难点是辨析常见排列组合模型的特点并掌握常用解法.【教学过程】一、复习回顾:主干知识梳理1.分类计数原理和分步计数原理运用两个计数原理解题的关键在于正确区分“分类”与“分步”.分类就是能“一步到位”——任何一类中任何一种方法都能完成这件事情,而分步则只能“局部到位”——任何一步中任何一种方法都不能完成这件事情,只能完成事件的某一部分,只有当各步全部完成时,这件事情才完成.即:类类独立,步步关联2.排列和组合 (1)排列与组合的定义(2)排列数与组合数公式推导过程及关系组合数的性质: , (3)排列组合应用题的解题策略:①特殊元素、特殊位置优先安排的策略; ②合理分类与准确分步的策略; ③正难则反,等价转化的策略;④相邻问题捆绑法,不相邻问题插空法的策略; ⑤元素定序,先排后除的策略; ⑥排列、组合混合题先选后排策略; ⑦复杂问题构造模型策略. 3.二项式定理 (1)定理:(a +b )n =C 0n a n b 0+C 1n a n -1b +C 2n a n -2b 2+…+C r n an -r b r +…+C n n a 0b n(r =0,1,2,…,n ).(2)二项展开式的通项T r +1=C r n a n -r b r,r =0,1,2,…,n ,其中C r n 叫做二项式系数.()()()()!! 121m n n m n n n n A m n -=+---= .,,*n m N m n ≤∈并且()()()()!!!!121m n m n m m n n n n C mn -=+---= mn nm n C C -=m n m n m n C C C 11+-=+(3)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C k n =C n -kn ,….②最大值:当n 为偶数时,中间的一项的二项式系数 2nnC 取得最大值;当n为奇数时,中间的两项的二项式系数相等,且同时取得最大值2121-+=n nn nCC.③各二项式系数的和a .C 0n +C 1n +C 2n +…+C k n +…+C n n =2n;b .C 0n +C 2n +…+C 2r n +…=C 1n +C 3n +…+C 2r +1n +…=12·2n =2n -1.(4)解决二项式定理问题的注意事项①运用二项式定理一定要牢记通项T k +1=C k n an -k b k ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的.另外,二项式系数与项的系数是两个不同概念,前者指C r n ,后者指字母外的部分.②求二项式中项的系数和,用“赋值法”解决,通常令字母变量的值为1、-1、0等.③证明整除问题一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”、“消去法”结合整除的有关知识解决. 二.小组合作,分享交流 题型一:两个计数原理例1、现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画。
高三数学人教版A版数学(理)高考一轮复习教案二项式定理1

第三节 二项式定理二项式定理的应用(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 知识点一 二项式定理 1.定理公式(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n (n ∈N *)叫作二项式定理. 2.通项T k +1=C k n an -k b k为展开式的第k +1项. 易误提醒 (1)二项式的通项易误认为是第k 项实质上是第k +1项.(2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)通项是T k +1=C k n an -k b k (k =0,1,2,…,n ).其中含有T k +1,a ,b ,n ,k 五个元素,只要知道其中四个即可求第五个元素.[自测练习]1.⎝⎛⎭⎫2x -1x 6的展开式中常数项为________. 解析:由题意可知常数项为C 46(2x )2⎝⎛⎭⎫-1x 4=60. 答案:602.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项. 解析:∵T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r 4∴r 为4的倍数,故r =0,4,8共3项. 答案:3知识点二 二项式系数与项的系数 1.二项式系数与项的系数 (1)二项式系数二项展开式中各项的系数C k n (k ∈{0,1,…,n })叫作二项式系数. (2)项的系数项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.2.二项式系数的性质性质内容对称性与首末两端等距离的两个二项式系数相等,即C m n=C n-mn增减性当k<n+12时,二项式系数逐渐增大;当k>n+12时,二项式系数逐渐减小最大值当n是偶数时,中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大,最大值为Cn2n;当n 是奇数时,中间两项⎝⎛第n-12+1项和⎭⎫第n+12+1项的二项式系数相等,且同时取得最大值,最大值为Cn-12n或Cn+12n3.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C0n+C1n+C2n+…+C k n+…+C n n=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1.易误提醒二项式系数与展开式项的系数的异同:在T k+1=C k n a n-k b k中,C k n就是该项的二项式系数,它与a,b的值无关;T k+1项的系数指化简后除字母以外的数,如a=2x,b=3y,T k+1=C k n2n-k·3k x n-k y k,其中C k n2n-k3k就是T k +1项的系数.[自测练习]3.(2015·高考四川卷)在(2x-1)5的展开式中,含x2的项的系数是________.(用数字填写答案).解析:由二项展开式的通项T r+1=C r5(2x)5-r(-1)r(r=0,1,…,5)知,当r=3时,T4=C35(2x)5-3(-1)3=-40x2,所以含x2的项的系数是-40.答案:-404.C0n+3C1n+5C2n+…+(2n+1)C n n=________.解析:设S=C0n+3C1n+5C2n+…+(2n-1)·C n-1n+(2n+1)C n n,∴S=(2n+1)C n n+(2n-1)C n-1n+…+3C1n+C0n,∴2S=2(n+1)(C0n+C1n+C2n+…+C n n)=2(n+1)·2n,∴S=(n+1)·2n.答案:(n +1)·2n考点一 二项展开式中特定项与系数问题|1.(2016·海淀模拟)⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为( ) A .12 B .-12 C .6D .-6解析:由题意可得,二项展开式的通项为T r +1=C r 3·(x 2)3-r ⎝⎛⎭⎫-2x r =(-2)r C r 3x 6-3r ,令6-3r =0,得r =2,∴⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为T 2+1=(-2)2C 23=12,故选A. 答案:A2.(2015·高考安徽卷)⎝⎛⎭⎫x 3+1x 7的展开式中x 5的系数是________.(用数字填写答案) 解析:由题意知,展开式的通项为T r +1=C r 7(x 3)7-r ⎝⎛⎭⎫1x r =C r 7x 21-4r ,令21-4r =5,则r =4,∴T 5=C 47x 5=35x 5,故x 5的系数为35.答案:353.若⎝⎛⎭⎫1x -x x n 展开式中含有x 2项,则n 的最小值是________.解析:⎝⎛⎭⎫1x -x x n 的展开式的通项是T r +1=C r n ·⎝⎛⎭⎫1x n -r ·(-x x )r =C r n ·(-1)r ·x 52r -n .依题意得,关于r 的方程52r -n =2,即r =2×(n +2)5有正整数解;又2与5互质,因此n +2必是5的倍数,即n +2=5k ,n =5k -2,n 的最小值是3.答案:3求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.考点二 二项式系数性质与各项系数和问题|(1)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是( )A .360B .180C .90D .45(2)若a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,则a 2+a 3+a 4=________. [解析] (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10, 通项公式为T r +1=C r 10(x )10-r ·⎝⎛⎭⎫2x 2r =C r 102r x 5-52r , 所以r =2时,常数项为180.(2)x 4=[(x -1)+1]4=C 04(x -1)4+C 14(x -1)3+C 24(x -1)2+C 34(x -1)+C 44,对照a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4得a 2=C 14,a 3=C 24,a 4=C 34,所以a 2+a 3+a 4=C 14+C 24+C 34=14.[答案] (1)B (2)14(1)赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大. (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第⎝⎛⎭⎫n +12+1项的二项式系数相等并最大.(2015·成都一中模拟)设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:令等式中x =-1可得a 0+a 1+a 2+…+a 11=(1+1)(-1)9=-2,故选A. 答案:A考点三 多项式展开式中特定项或系数问题|在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力,归纳起来常见的命题角度有:1.几个多项式和的展开式中的特定项(系数)问题. 2.几个多项式积的展开式中的特定项(系数)问题. 3.三项展开式中的特定项(系数)问题.探究一几个多项式和的展开式中的特定项(系数)问题1.(2016·商丘月考)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.74 B.121C.-74 D.-121解析:展开式中含x3项的系数为C35(-1)3+C36(-1)3+C37(-1)3+C38(-1)3=-121.答案:D探究二几个多项式积的展开式中的特定项(系数)问题2.(2015·高考全国卷Ⅱ)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.解析:法一:直接将(a+x)(1+x)4展开得x5+(a+4)x4+(6+4a)x3+(4+6a)x2+(1+4a)x +a,由题意得1+(6+4a)+(1+4a)=32,解得a=3.法二:(1+x)4展开式的通项为T r+1=C r4x r,由题意可知,a(C14+C34)+C04+C24+C44=32,解得a=3.答案:3探究三三项展开式中特定项(系数)问题3.(2015·高考全国卷Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.60解析:(x2+x+y)5=[(x2+x)+y]5的展开式中只有C25(x2+x)3y2中含x5y2,易知x5y2的系数为C25C13=30,故选C.答案:C(1)对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.(3)对于三项式问题一般先变形化为二项式再解决.30.一般与特殊的思想在二项式问题中的应用(赋值法)【典例】若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是________.[思维点拨] 要求解的问题与二项式系数有关考虑赋值法,令x =±1,可求得奇数项与偶数项系数之和.[解析] 令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,① 令x =-1,得a 0-a 1+a 2-a 3+a 4=(-2+3)4.②故(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)(a 0+a 2+a 4-a 1-a 3)=(2+3)4×(-2+3)4=(3-4)4=1.[答案] 1[方法点评] 赋值法是求展开式中的系数与系数和的常用方法,注意所赋的值要有利于问题的解决,可以取一个或几个值,常赋的值为0,±1.一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. [跟踪练习] 若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析:令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案:364A 组 考点能力演练1.若⎝⎛⎭⎫x 2-1x n 的展开式中的所有二项式系数之和为512,则该展开式中常数项为( ) A .-84 B .84 C .-36D .36解析:由二项式系数之和为2n =512,得n =9.又T r +1=(-1)r C r 9x18-3r , 令18-3r =0,得r =6,故常数项为T 7=84.故选B. 答案:B2.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2D .-1解析:(1+x )5中含x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1.答案:D3.(2016·青岛模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3解析:∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3.答案:B4.(2016·西城一模)若⎝⎛⎭⎪⎫3x -13x 2m 的展开式中二项式系数之和为128,则展开式中1x 3的系数是( )A .21B .-21C .7D .-7解析:∵2m =128,∴m =7,∴展开式的通项T r +1=C r 7(3x )7-r ·⎝ ⎛⎭⎪⎫-13x 2r =C r 737-r (-1)r x 7-5r3, 令7-53r =-3,解得r =6,∴1x 3的系数为C 6737-6(-1)6=21,故选A. 答案:A5.(2016·广州调研)已知a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x ,则二项式⎝⎛⎭⎫x 2+ax 5的展开式中x 的系数为( )A .10B .-10C .80D .-80解析:a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x =2sin ⎝⎛⎭⎫x +π6| π0=-2,展开式的通项为T r +1=C r 5(-2)r x 10-3r ,令10-3r =1,则r =3,T 4=C 35(-2)3x =-80x.答案:D6.⎝⎛⎭⎫x -12x 6的展开式中常数项为________. 解析:⎝⎛⎭⎫x -12x 6的通项为T k +1=C k 6x 6-k ⎝⎛⎭⎫-12x k =⎝⎛⎭⎫-12k C k 6x 6-2k ,令6-2k =0,得k =3,故展开式中常数项为-52.答案:-527.(2015·高考天津卷)在⎝⎛⎭⎫x -14x 6的展开式中,x 2的系数为________. 解析:二项式⎝⎛⎭⎫x -14x 6展开式的第r +1项为T r +1=C r 6x 6-r ·⎝⎛⎭⎫-14r x -r =C r 6⎝⎛⎭⎫-14r x 6-2r ,令6-2r =2,解得r =2,故x 2的系数为C 26⎝⎛⎭⎫-142=1516. 答案:15168.若(1-2x)2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015,则a 12+a 222+…+a 2 01522 015=________.解析:当x 0=0时,左边=1,右边=a 0,∴a 0=1 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01522 015∴0=1+a 12+a 222+…+a 2 01522 015∴a 12+a 222+…+a 2 01522 015=-1 答案:-19.已知(a 2+1)n 展开式中的各项系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求正数a 的值.解:⎝⎛⎭⎫165x 2+1x 5展开式的通项T r +1=C r5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =⎝⎛⎭⎫1655-r C r 5x 20-5r 2, 令20-5r =0,得r =4,故常数项T 5=C 45·165=16,又(a 2+1)n 展开式的各项系数之和为2n , 由题意,得2n =16,∴n =4.∴(a 2+1)4展开式中系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3.10.(1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除;(2)求S =C 127+C 227+…+C 2727除以9的余数.解:(1)证明:∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.(2)S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.B 组 高考题型专练1.(2014·高考湖北卷)若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B.54 C .1D.24解析:T r +1=C r 7·(2x )7-r ·⎝⎛⎭⎫a x r =27-r C r 7a r ·1x 2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1,故选C.答案:C2.(2014·高考四川卷)在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .10解析:在(1+x )6的展开式中,含x 2的项为T 3=C 26·x 2=15x 2,故在x (1+x )6的展开式中,含x 3的项的系数为15.答案:C3.(2015·高考湖北卷)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212解析:因为(1+x )n 的展开式中第4项与第8项的二项式系数相等,所以C 3n =C 7n,解得n =10,所以二项式(1+x )10的展开式中奇数项的二项式系数和为12×210=29.答案:A4.(2015·高考广东卷)在(x -1)4的展开式中,x 的系数为________. 解析:由题意得T r +1=C r 4(x )4-r (-1)r =(-1)r C r 4·x 4-r 2,令4-r2=1,得r =2,所以所求系数为(-1)2C 24=6.答案:65.(2013·高考浙江卷)设二项式⎝⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.解析:展开式通项为T r +1=C r 5·(x )5-r⎝⎛⎭⎪⎫-13x r =C r 5(-1)r x 52-56r .令52-56r =0,得r =3, 当r =3时,T 4=C 35(-1)3=-10.故A =-10.答案:-10。
高三数学一轮复习精品教案2:二项式定理(理)教学设计

10.7 二项式定理考纲传真1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *). (2)第r +1项,T r +1=C r n an -r b r. (3)第r +1项的二项式系数为C r n . 2.二项式系数的性质(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n .(2)二项式系数先增后减中间项最大且n 为偶数时第n2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n .(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.1.(人教A 版教材习题改编)(1+x )6的展开式中,二项式系数最大的项是( ) A .20x 3 B .15x 2 C .15x 4 D .x 6『解析』 二项展开式中间一项(第4项)的二项式系数最大,∴T 4=C 36x 3=20x 3.『答案』 A2.(2012·天津高考)在(2x 2-1x )5的二项展开式中,x 的系数为( )A .10B .-10C .40 D.-40『解析』 因为T r +1=C r 5(2x 2)5-r (-1x)r=C r 525-r x 10-2r(-1)r x -r =C r 525-r (-1)r x 10-3r,令10-3r =1,所以r =3,所以x 的系数为C 3525-3(-1)3=-40. 『答案』 D3.若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为( ) A .1 B .129 C .128 D .127『解析』 令x =1得a 0+a 1+…+a 7=128.令x =0得a 0=(-1)7=-1,∴a 1+a 2+a 3+…+a 7=129. 『答案』 B4.(2012·陕西高考)(a +x )5展开式中x 2的系数为10,则实数a 的值为________.『解析』 (a +x )5的展开式的通项公式为T r +1=C r 5a 5-r x r . 当r =2时,由题意知C 25a 3=10,∴a 3=1,∴a =1.『答案』 15.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =________.『解析』 T r +1=C r n (3x )r =3r C r n x r . 由已知条件35C 5n =36C 6n ,即C 5n =3C 6n .n !5!(n -5)!=3n !6!(n -6)!,整理得n =7.『答案』 7(见学生用书第201页)通项公式及其应用已知在(3x -123x )n 的展开式中,第6项为常数项.(1)求含x 2的项的系数; (2)求展开式中所有的有理项.『思路点拨』 (1)写出通项T r +1,先求n ,再求含x 2的项的系数.(2)寻找使x 的指数为整数的r 值,从而确定有理项.『尝试解答』 (1)(3x -123x )n 的展开式的通项为T r +1=C r n x n -r 3(-12)r x -r 3=C r n (-12)rx n -2r3.因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10.令n -2r 3=2,得r =12(n -6)=12×(10-6)=2, ∴含x 2的项的系数为C 210(-12)2=454. (2)根据通项公式,由题意10-2r 3∈Z ,且0≤r ≤10.令10-2r 3=k (k ∈Z ),则10-2r =3k ,即r =5-32k . ∵r ∈N ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项和第9项为有理项,它们分别为C 210(-12)2x 2,C 510(-12)5,C 810(-12)8x -2.,1.解此类问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.(1)(2012·浙江高考)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.(2)设二项式(x -a x)6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是________.『解析』 (1)f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )5-r ·(-1)r , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.(2)(x -a x)6展开式的通项T r +1=(-a )r C r 6x 6-32r , ∴A =(-a )2C 26,B =(-a )4C 46,由B =4A ,得(-a )4C 46=4(-a )2C 26,解之得a =±2.又a >0,所以a =2. 『答案』 (1)10 (2)2二项展开式的系数与二项式系数(1)(2013·厦门模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3(2)(2012·大纲全国卷)若(x +1x )n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x2的系数为________.『思路点拨』 (1)先赋值求a 0及各项系数和,进而求得n 值,再运用二项式系数性质与通项公式求解.(2)根据二项式系数性质,由C 2n =C 6n ,确定n 的值,求出1x2的系数. 『尝试解答』 (1)∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3. (2)由题意知,C 2n =C 6n ,∴n =8.∴T r +1=C r 8·x 8-r ·(1x )r =C r 8·x 8-2r , 当8-2r =-2时,r =5, ∴1x 2的系数为C 58=C 38=56. 『答案』 (1)B (2)56,1.第(1)题求解的关键在于赋值,求出a 0与n 的值;第(2)小题在求解过程中,常因把n的等量关系表示为C 3n =C 7n ,而求错n 的值.2.求解这类问题要注意:(1)区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质.(2)根据题目特征,恰当赋特殊值代换.对于展开式中的系数和、隔项系数和、系数的绝对值和等问题,通常运用赋值法进行构造(构造出目标式).赋值时要注意根据目标式进行灵活的选择,常见的赋值方法是使字母因式的值为1,-1或目标式的值.(2013·合肥质检)设(x-1)21=a0+a1x+a2x2+…+a21x21,则(1)a10+a11=________;(2)a1+a2+…+a21=________.『解析』(1)由二项展开式知T r+1=C r21x21-r(-1)r,∴a10+a11=C1121(-1)11+C1021(-1)10=-C1121+C1021=-C1021+C1021=0.(2)令x=0,得a0=-1,令x=1得a0+a1+a2+…+a21=0,所以a1+a2+…+a21=1.『答案』(1)0(2)1二项式定理的应用(2012·湖北高考)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a=() A.0B.1C.11D.12『思路点拨』注意到52能被13整除,化51为52-1,从而运用二项式定理展开512012,由条件求a的值.『尝试解答』512 012+a=(52-1)2 012+a=C02 012·522 012-C12 012·522 011+…+C2 0112 012×52·(-1)2 011+C2 0122 012·(-1)2 012+a,∵C02 012·522 012-C12 012·522 011+…+C2 0112 012×52·(-1)2 011能被13整除.且512 012+a能被13整除,∴C2 0122 012·(-1)2 012+a=1+a也能被13整除.因此a可取值12.『答案』D,1.本题求解的关键在于将512 012变形为(52-1)2 012,使得展开式中的每一项与除数13建立联系.2.用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:(1)余数的范围,a=cr+b,其中余数b∈『0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;(2)二项式定理的逆用.1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数是()A.-1B.1C.-87D.87『解析』1-90C110+902C210+…+(-1)k90k C k10+…+9010C1010=(1-90)10=8910=(88+1)10=8810+C110889+…+C91088+1∵前10项均能被88整除,∴余数是1.『答案』B一个定理二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)揭示二项展开式的规律,一定牢记通项公式T r+1=C r n a n-r b r.一个防范切记二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n,而后者是字母外的部分.前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.两种应用1.通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.2.展开式的应用:利用展开式(1)可求解与二项式系数有关的求值;(2)可证明不等式;(3)可证明整除问题(或求余数).三条性质1.对称性.2.增减性.3.各项二项式系数的和.(见学生用书第202页)从近两年的高考试题来看,求二项展开式中特定项及特定项的系数是考查的热点,题型为选择题或填空题,属容易题,在考查基本运算、基本概念的基础上注重考查方程思想、等价转化思想.预测2014年高考,求二项展开式的特定项和特定项的系数仍然是考查的重点,同时应注意二项式系数性质的应用.思想方法之十九 赋值法在二项展开式中的应用(2012·上海高考改编)(x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 『解析』 在(x +a x )(2x -1x )5中,令x =1,得(1+a )(2-1)5=1+a =2,∴a =1.∵(2x -1x )5展开式的通项T r +1=C r 5(2x )5-r (-1x)r =C r 5·25-r (-1)r ·x 5-2r.令5-2r =1,得2r =4,即r =2,因此(2x -1x )5展开式中x 的系数为C 2525-2(-1)2=80. 令5-2r =-1,得2r =6,即r =3,因此(2x -1x )5展开式中1x 的系数为C 3525-3·(-1)3=-40. 所以(x +1x )(2x -1x )5展开式中的常数项为80-40=40.『答案』 D易错提示:(1)混淆各项系数的和与二项式系数和,难以运用赋值法正确求出a 的值. (2)对展开式中的常数项的来源构成分析不清,盲目把(x +a x )(2x -1x )5全部展开,运算繁琐,导致计算错误.防范措施:(1)二项式定理是一个恒等式,因此我们可以根据需要对变量x 进行赋值,从而得到关于参数的方程,求出参数的值.(2)展开式的常数项来源于:①“x +a x ”中的x 与(2x -1x )5展开式中含1x 的项相乘;②ax 与(2x-1x)5展开式中含x 的项相乘.1.(2013·烟台模拟)设(5x -1x)n的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( )A .-150B .150C .300D .-300 『解析』 由已知条件4n -2n =240,解得n =4,T r +1=C r 4(5x )4-r (-1x)r =(-1)r 54-r C r 4x 4-3r 2, 令4-3r2=1,得r =2,T 3=150x . 『答案』 B2.(2012·安徽高考)(x 2+2)(1x 2-1)5的展开式的常数项是( )A .-3B .-2C .2D .3『解析』 二项式(1x 2-1)5展开式的通项为:T r +1=C r 5(1x 2)5-r·(-1)r =C r 5·x 2r -10·(-1)r . 当2r -10=-2, 即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0, 即r =5时,有2·C 55x 0·(-1)5=-2.∴展开式中的常数项为5-2=3,故选D. 『答案』 D。
2019-2020年高三数学大一轮复习 10.3二项式定理教案 理 新人教A版

2019-2020年高三数学大一轮复习 10.3二项式定理教案 理 新人教A 版xx 高考会这样考 1.利用二项式定理求二项展开式的特定项或系数、二项式系数、系数和等;2.考查二项式定理的应用.复习备考要这样做 1.熟练掌握二项展开式的通项公式;2.注意二项式定理在解决有关组合数问题中的应用;3.理解二项式系数的性质.1. 二项式定理(a +b )n=C 0n a n+C 1n an -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *).这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a +b )n的二项展开式,其中的系数C k n (k =0,1,2,…,n )叫做二项式系数.式中的C k n a n -k b k叫做二项展开式的通项,用T k +1表示,即展开式的第k +1项;T k +1=C k n a n -k b k.2. 二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C nn . 3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn . (2)增减性与最大值:二项式系数C kn ,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,中间的一项C n2n 取得最大值.当n 是奇数时,中间两项C n -12n和Cn +12n相等,且同时取得最大值.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n. 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.[难点正本 疑点清源]1. 二项式的项数与项(1)二项式的展开式共有n +1项,C k n a n -k b k是第k +1项.即k +1是项数,C k n an -k b k是项. (2)通项是T k +1=C k n an -k b k(k =0,1,2,…,n ).其中含有T k +1,a ,b ,n ,k 五个元素,只要知道其中四个即可求第五个元素. 2. 二项式系数与展开式项的系数的异同在T k +1=C k n an -k b k中,C k n 就是该项的二项式系数,它与a ,b 的值无关;而T k +1项的系数是指化简后字母外的数. 3. 二项式定理的应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等.1. (xx·广东)x ⎝⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是______.(用数字作答)答案 84解析 x ⎝⎛⎭⎪⎫x -2x 7的展开式的通项是T r +1=x C r 7x 7-r ·⎝ ⎛⎭⎪⎫-2x r =C r 7(-2)r x 8-2r.令8-2r =4,得r =2,故x 4的系数是C 27·4=84.2. (xx·陕西)(a +x )5展开式中x 2的系数为10,则实数a 的值为________.答案 1解析 (a +x )5的展开式的通项公式为T r +1=C r 5a5-r x r.当r =2时,由题意知C 25a 3=10,∴a 3=1,∴a =1.3. (xx·安徽)(x 2+2)⎝ ⎛⎭⎪⎫1x2-15的展开式的常数项是( )A .-3B .-2C .2D .3答案 D解析 二项式⎝ ⎛⎭⎪⎫1x2-15展开式的通项为:T r +1=C r 5⎝ ⎛⎭⎪⎫1x 25-r ·(-1)r =C r 5·x 2r -10·(-1)r. 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5; 当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2. ∴展开式中的常数项为5-2=3,故选D.4. 若⎝ ⎛⎭⎪⎫3x -1x n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为( )A .-5B .5C .-405D .405答案 C解析 根据已知,令x =1,得2n=32,即n =5. 二项展开式的通项公式是T r +1=C r 5(3x )5-r·⎝ ⎛⎭⎪⎫-1x r =(-1)r 35-r C r 5x 5-2r ,令5-2r =3,r =1, 此时的系数是-34×5=-405.5. 若⎝ ⎛⎭⎪⎫x -12n的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( )A.132B.164 C .-164D.1128答案 B解析 由题意知C 2n =n n -2=15,所以n =6,故⎝ ⎛⎭⎪⎫x -12n =⎝ ⎛⎭⎪⎫x -126,令x =1得所有项系数之和为⎝ ⎛⎭⎪⎫126=164.题型一 求二项展开式的指定项或指定项系数例1 已知在⎝⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.思维启迪:先根据第6项为常数项利用通项公式求出n ,然后再求指定项. 解 (1)通项公式为T k +1=C k n x n -k 3⎝ ⎛⎭⎪⎫-12k x -k 3=C k n ⎝ ⎛⎭⎪⎫-12k xn -2k3. 因为第6项为常数项, 所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x 2的项的系数是C 210⎝ ⎛⎭⎪⎫-122=454. (3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k 3∈Z0≤k ≤10k ∈N ,令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项, 它们分别为C 210⎝ ⎛⎭⎪⎫-122x 2,C 510⎝ ⎛⎭⎪⎫-125,C 810⎝ ⎛⎭⎪⎫-128x -2.探究提高 求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.(1)(xx·重庆)⎝ ⎛⎭⎪⎫x +12x 8的展开式中常数项为( )A.3516B.358C.354D .105(2)(xx·上海)在⎝⎛⎭⎪⎫x -2x 6的二项展开式中,常数项等于________.答案 (1)B (2)-160 解析 (1)T r +1=C r8(x )8-r⎝ ⎛⎭⎪⎫12x r =12r C r8x 4-r 2-r 2=12r C r 8x 4-r .令4-r =0,则r =4, ∴常数项为T 5=124C 48=116×70=358.(2)方法一 利用计数原理及排列、组合知识求解. 常数项为C 36x 3⎝ ⎛⎭⎪⎫-2x 3=20x 3⎝ ⎛⎭⎪⎫-8x 3=-160.方法二 利用二项展开式的通项求解.T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r 6x6-2r, 令6-2r =0,得r =3.所以常数项为T 4=(-2)3C 36=-160. 题型二 求最大系数或系数最大的项例2 已知(3x 2+3x 2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求该展开式中的二项式系数最大的项; (2)求该展开式中的系数最大的项.思维启迪:可先根据条件列方程求n ,然后根据二项式系数的性质及系数的大小关系求二项式系数最大的项、系数最大的项.解 令x =1,得各项的系数之和为(1+3)n=4n,而二项式系数之和为C 0n +C 1n +C 2n +…+C nn =2n.根据题意,4n=2n+992,得2n=32或2n=-31(舍去),所以n =5. (1)二项式系数最大的项为第3项和第4项,T 3=C 25(3x 2)3(3x 2)2=90x 6, T 4=C 35(3x 2)2(3x 2)3=270x 223. (2)设第r +1项系数最大,则⎩⎪⎨⎪⎧C r5·3r≥C r +15·3r +1,C r 5·3r ≥C r -15·3r -1,即⎩⎪⎨⎪⎧15-r ≥3r +1,3r ≥16-r ,解得72≤r ≤92.又r ∈N ,得r =4,所以系数最大的项为T 5=405x 263.探究提高 展开式的系数和与展开式的二项式系数和是不同的概念,二项式系数最大的项与系数最大的项也是不同的概念,解题时要注意辨别.第(2)小题解不等式时可将组合数展开为阶乘形式.已知f (x )=(1+x )m+(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11. (1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和. 解 (1)由已知C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m m -2+2n (n -1)=m 2-m2+(11-m )⎝⎛⎭⎪⎫11-m 2-1=⎝ ⎛⎭⎪⎫m -2142+35116.∵m ∈N *,∴m =5时,x 2的系数取得最小值22,此时n =3. (2)由(1)知,当x 2的系数取得最小值时,m =5,n =3,∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30. 题型三 二项式定理的应用 例3 (1)已知2n +2·3n+5n -a 能被25整除,求正整数a 的最小值;(2)求1.028的近似值.(精确到小数点后三位)思维启迪:(1)将已知式子按二项式定理展开,注意转化时和25的联系;(2)近似值计算只要看展开式中的项的大小即可.解 (1)原式=4·6n +5n -a =4(5+1)n+5n -a =4(C 0n 5n+C 1n 5n -1+…+C n -2n 52+C n -1n 5+C nn )+5n -a =4(C 0n 5n +C 1n 5n -1+…+C n -2n 52)+25n +4-a ,显然正整数a 的最小值为4.(2)1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.探究提高 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式. 求证:(1)32n +2-8n -9能被64整除(n ∈N *);(2)3n>(n +2)·2n -1(n ∈N *,n >2).证明 (1)∵32n +2-8n -9=32·32n-8n -9=9·9n-8n -9=9(8+1)n-8n -9 =9(C 0n 8n+C 1n 8n -1+…+C n -1n ·8+C nn ·1)-8n -9=9(8n +C 1n 8n -1+…+C n -2n 82)+9·8n +9-8n -9=9×82(8n -2+C 1n ·8n -3+…+C n -2n )+64n=64[9(8n -2+C 1n 8n -3+…+C n -2n )+n ],显然括号内是正整数,∴原式能被64整除.(2)因为n ∈N *,且n >2,所以3n =(2+1)n展开后至少有4项. (2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1≥2n +n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1,故3n>(n +2)·2n -1(n ∈N *,n >2).混淆二项展开式的系数与二项式系数致误典例:(12分)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n的展开式的二项式系数和大992.求在⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.易错分析 本题易将二项式系数和系数混淆,利用赋值来求二项式系数的和导致错误;另外,也要注意项与项的系数,系数的绝对值与系数的区别. 规范解答解 由题意知,22n-2n=992,即(2n-32)(2n+31)=0,∴2n=32,解得n =5.[2分] (1)由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大,即C 510=252.∴二项式系数最大的项为T 6=C 510(2x )5⎝ ⎛⎭⎪⎫-1x 5=-8 064.[6分](2)设第r +1项的系数的绝对值最大, ∴T r +1=C r 10·(2x )10-r·⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 10·210-r·x10-2r,∴⎩⎪⎨⎪⎧C r10·210-r≥C r -110·210-r +1C r 10·210-r ≥C r +110·210-r -1,得⎩⎪⎨⎪⎧C r10≥2C r -1102C r 10≥C r +110,即⎩⎪⎨⎪⎧11-r ≥2rr +-r,解得83≤r ≤113,[10分]∵r ∈Z ,∴r =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15 360x 4.[12分]温馨提醒 (1)本题重点考查了二项式的通项公式,二项式系数、项的系数以及项数和项的有关概念.(2)解题时要注意区别二项式系数和项的系数的不同;项数和项的不同. (3)本题的易错点是混淆项与项数,二项式系数和项的系数的区别.方法与技巧1. 二项展开式的通项T k +1=C k n an -k b k是展开式的第k +1项,这是解决二项式定理有关问题的基础.2. 求指定项或指定项的系数要根据通项公式讨论对k 的限制.3. 性质1是组合数公式C kn =C n -k n 的再现,性质2是从函数的角度研究二项式系数的单调性,性质3是利用赋值法得出的二项展开式中所有二项式系数的和.4. 因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.5. 二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系. 失误与防范1. 要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来.2. 求通项公式时常用到根式与幂指数的互化,易出错.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (xx·天津)在⎝⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40答案 D解析 因为T r +1=C r5(2x 2)5-r⎝ ⎛⎭⎪⎫-1x r =C r 525-r x 10-2r(-1)r x -r =C r 525-r(-1)r x10-3r,所以10-3r =1,所以r =3, 所以x 的系数为C 3525-3(-1)3=-40.2. (xx·重庆)(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( )A .6B .7C .8D .9答案 B解析 (1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7.3. 在⎝⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是 ( )A .-7B .7C .-28D .28答案 B解析 只有第5项的二项式系数最大,则展开式共9项,即n =8,T k +1=C k 8⎝ ⎛⎭⎪⎫x 28-k ⎝ ⎛⎭⎪⎪⎫-13x k =C k8(-1)k ·⎝ ⎛⎭⎪⎫128-k ·x 8-43k ,当k =6时为常数项,T 7=7. 4. (xx·陕西)(4x-2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .20答案 C解析 设展开式的常数项是第r +1项,则T r +1=C r 6·(4x )6-r·(-2-x )r =C r 6·(-1)r ·212x-2rx·2-rx=C r 6·(-1)r ·212x -3rx,∴12x -3rx =0恒成立.∴r =4,∴T 5=C 46·(-1)4=15. 二、填空题(每小题5分,共15分)5. (xx·浙江)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 将f (x )=x 5进行转化,利用二项式定理求解.f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r5(1+x )5-r·(-1)r,T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.6. (xx·大纲全国)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为________.答案 0解析 ∵T r +1=C r 20(-x 12)r =(-1)r ·C r20·x r 2,∴x 与x 9的系数分别为C 220与C 1820. 又∵C 220=C 1820,∴C 220-C 1820=0.7. (xx·大纲全国)若⎝⎛⎭⎪⎫x +1x n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________.答案 56解析 利用二项展开式的通项公式求解. 由题意知,C 2n =C 6n ,∴n =8. ∴T r +1=C r8·x8-r ·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-2r, 当8-2r =-2时,r =5, ∴1x2的系数为C 58=C 38=56.三、解答题(共22分)8. (10分)已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.方法二 |a 0|+|a 1|+|a 2|+…+|a 7|, 即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187.9. (12分)已知⎝ ⎛⎭⎪⎫12+2x n,(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项. 解 (1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5. ∴T 4的系数为C 37⎝ ⎛⎭⎪⎫12423=352,T 5的系数为C 47⎝ ⎛⎭⎪⎫12324=70, 当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C 714⎝ ⎛⎭⎪⎫12727=3 432.(2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设T k +1项的系数最大,∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k124k≥C k -1124k -1,C k 124k ≥C k +1124k +1. ∴9.4≤k ≤10.4,∴k =10.∴展开式中系数最大的项为T 11,T 11=C 1012·⎝ ⎛⎭⎪⎫122·210·x 10=16 896x 10.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分) 1. (xx·天津)在⎝⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为( )A .-154B.154C .-38D.38答案 C解析 该二项展开式的通项为T r +1=C r6⎝ ⎛⎭⎪⎫x 26-r ·⎝⎛⎭⎪⎫-2x r =(-1)r C r 6·126-2r ·x 3-r.令3-r=2,得r =1.∴T 2=-6×124x 2=-38x 2,∴应选C.2. (xx·湖北)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a 的值为 ( )A .0B .1C .11D .12答案 D解析 化51为52-1,用二项式定理展开.512 012+a =(52-1)2 012+a =C 02 012522 012-C 12 012522 011+…+C 2 0112 012×52×(-1)2 011+C 2 0122 012×(-1)2 012+a .因为52能被13整除, 所以只需C 2 0122 012×(-1)2 012+a 能被13整除,即a +1能被13整除,因为0≤a <13,所以a =12.3. (xx·课标全国)(x +a x)(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40答案 D解析 令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此(x +1x )(2x -1x )5展开式中的常数项即为(2x -1x )5展开式中1x的系数与x 的系数的和.(2x -1x)5展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r ·x -r =C r 525-r x 5-2r ·(-1)r.令5-2r =1,得2r =4,即r =2,因此(2x -1x)5展开式中x 的系数为C 2525-2(-1)2=80.令5-2r =-1,得2r =6,即r =3,因此(2x -1x )5展开式中1x的系数为C 3525-3·(-1)3=-40.所以(x +1x )(2x -1x)5展开式中的常数项为80-40=40.二、填空题(每小题5分,共15分)4. 在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是________.答案 -121解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121. 5. 已知(1+x +x 2)⎝ ⎛⎭⎪⎫x +1x 3n 的展开式中没有常数项,n ∈N *,且2≤n ≤8,则n =________.答案 5解析 ⎝⎛⎭⎪⎫x +1x 3n展开式中的通项为T r +1=C r n x n -r ⎝ ⎛⎭⎪⎫1x 3r =C r n xn -4r(r =0,1,2,…,n ), 将n =2,3,4,5,6,7,8逐个检验可知n =5.6. 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是________.答案 1解析 原式=(1-90)10=(88+1)10=8810+C 110889+…+C 91088+1,因为前10项均能被88整除,故余数为1. 三、解答题7. (13分)已知等式(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10,其中a i (i =0,1,2,…,10)为实常数.求:(1)∑10n =1a n 的值;(2)∑10n =1na n 的值. 解 (1)∵(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10, ∴令x =0,则a 0+a 1+a 2+…+a 9+a 10=25=32;令 x =-1,则a 0=1,即∑10n =1a n =31. (2)∵(x 2+2x +2)5=[1+(x +1)2]5=C 05×15+C 15(x +1)2+C 25(x +1)4+C 35(x +1)6+C 45(x +1)8+C 55(x +1)10=a 0+a 1(x +1)+a 2(x +1)2+…+a 10(x +1)10, ∴a 0=C 05,a 1=a 3=a 5=a 7=a 9=0,a 2=C 15,a 4=C 25,a 6=C 35,a 8=C 45,a 10=C 55. ∴∑10n =1na n =a 1+2a 2+3a 3+…+10a 10 =2C 15+4C 25+6C 35+8C 45+10C 55 =10C 15+10C 25+10C 55 =50+100+10=160.。
【数学】2019届一轮复习人教A版理第10章第3节 二项式定理教案

第三节二项式定理[考纲传真](教师用书独具)会用二项式定理解决与二项展开式有关的简单问题.(对应学生用书第173页)[基础知识填充]1.二项式定理(1)二项式定理:(a+b)n =C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质性质性质描述对称性与首末等距离的两个二项式系数相等,即C k n=C n-kn增减性二项式系数C k n当k<n+12(n∈N*)时,是递增的当k>n+12(n∈N*)时,是递减的二项式系数最大值当n为偶数时,中间的一项取得最大值当n为奇数时,中间的两项与取得最大值(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n +…=C1n+C3n+C5n+…=2n-1.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.()(2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )[解析] (1)错误.应为第k +1项.(2)错误.当a ,b 中包含数字时,系数最大的项不一定为中间一项或中间两项.(3)正确.二项式系数只与n 和项数有关.(4)错误.令x =1,可得a 7+a 6+…+a 1+a 0=27=128. [答案] (1)× (2)× (3)√ (4)×2.(教材改编)二项式⎝ ⎛⎭⎪⎫2x +1x 26的展开式中,常数项的值是( )A .240B .60C .192D .180A [二项式⎝ ⎛⎭⎪⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫1x 2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.] 3.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45A [由题意得a 8=C 81022(-1)8=180.]4.(2017·山东高考)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________.4 [(1+3x )n 的展开式的通项为T r +1=C r n (3x )r .令r =2,得T 3=9C 2n x 2.由题意得9C 2n =54,解得n =4.]5.在⎝ ⎛⎭⎪⎫x +2x 25的展开式中,x 2的系数是________,各项系数之和为________.(用数字作答)10 243 [x 2的系数为C 15×2=10;令x =1,得各项系数之和为(1+2)5=243.](对应学生用书第173页)二项展开式中的特定项或特定项的系数◎角度1 求展开式中的某一项(2018·合肥二测)在⎝ ⎛⎭⎪⎫x -1x -14的展开式中,常数项为________.-5 [由题知,二项式展开式为C 04⎝ ⎛⎭⎪⎫x -1x 4·(-1)0+C 14⎝ ⎛⎭⎪⎫x -1x 3·(-1)+C 24⎝ ⎛⎭⎪⎫x -1x 2·(-1)2+C 34⎝ ⎛⎭⎪⎫x -1x ·(-1)3+C 44⎝ ⎛⎭⎪⎫x -1x 0·(-1)4,则常数项为C 04·C 24-C 24·C 12+C 44=6-12+1=-5.]◎角度2 求展开式中的项的系数或二项式系数(2017·全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35C [对于⎝ ⎛⎭⎪⎫1+1x 2(1+x )6,若要得到x 2项,可以在⎝ ⎛⎭⎪⎫1+1x 2中选取1,此时(1+x )6中要选取含x 2的项,则系数为C 26;当在⎝⎛⎭⎪⎫1+1x 2中选取1x 2时,(1+x )6中要选取含x 4的项,即系数为C 46,所以,展开式中x 2项的系数为C 26+C 46=30,故选C .] ◎角度3 由已知条件求n 的值或参数的值(2018·云南二检)在(x -2-1x )n 的二项展开式中,若第四项的系数为-7,则n =( )A .9B .8C .7D .6B [由题意,得C 3n ⎝ ⎛⎭⎪⎫-123=-7,解得n =8,故选B .] [规律方法] 求二项展开式中的特定项的方法求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k 的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程. 特定项的系数问题及相关参数值的求解等都可依据上述方法求解.(4)求特定项或特定项的系数要多从组合的角度求解,一般用通项公式太麻烦.[跟踪训练] (1)(2017·全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80(2)在⎝ ⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( ) 【导学号:97190351】A .-7B .7C .-28D .28(3)(2018·西宁检测(一))若⎝ ⎛⎭⎪⎫x 2+a x n的展开式中,二项式系数和为64,所有项的系数和为729,则a 的值为________.(1)C (2)B (3)-4或2 [(1)因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40,x 3y 3=y ·(x 3y 2),其系数为C 25·23=80. 所以x 3y 3的系数为80-40=40.故选C .(2)由题意知n 2+1=5,解得n =8,⎝⎛⎭⎪⎪⎫x 2-13x 8的展开式的通项T k +1=C k 8⎝ ⎛⎭⎪⎫x 28-k ⎝⎛⎭⎪⎪⎫-13x k=(-1)k 2k -8C k 8x8-43k. 令8-4k3=0得k =6,则展开式中的常数项为(-1)626-8C 68=7.(3)由二项式系数和为64得2n =64,解得n =6.令x =1,得所有项的系数和为(1+a )6=729,解得a =2或a =-4.]二项式系数的和或各项系数和(1)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29(2)(2015·全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.(1)D (2)3 [(1)∵(1+x )n 的展开式中第4项与第8项的二项式系数相等,∴C 3n =C 7n ,解得n =10.从而C 010+C 110+C 210+…+C 1010=210,∴奇数项的二项式系数和为C 010+C 210+…+C 1010=29.(2)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5. ①令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5. ②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.] [规律方法] 赋值法的应用(1)对形如(ax +b )n (a ,b ∈R )的式子求其展开式各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)一般地,对于多项式(a +bx )n =a 0+a 1x +a 2x 2+…+a n x n ,令g (x )=(a +bx )n ,则(a +bx )n 展开式中各项的系数的和为g (1),(a +bx )n 展开式中奇数项的系数和为12[g (1)+g (-1)], (a +bx )n 展开式中偶数项的系数和为12[g (1)-g (-1)].[跟踪训练] (1)(2018·合肥一检)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6展开式所有项系数之和为( )A .-1B .1C .32D .64(2)(2018·杭州质检)若⎝ ⎛⎭⎪⎫2x -1x 2n的展开式中所有二项式系数和为64,则n =________;展开式中的常数项是________.(1)D (2)6 240 [(1)由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得⎩⎪⎨⎪⎧ a =1,b =-3或⎩⎪⎨⎪⎧a =-1,b =3,则(ax +b )6=(x -3)6,令x =1得展开式中所有项的系数和为(-2)6=64,故选D .(2)由⎝ ⎛⎭⎪⎫2x -1x 2n的展开式中所有二次项系数和为64,得2n =64,n =6,则展开式第r +1项是T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫-1x 2r=C r 6·26-r ×(-1)r x 6-3r ,当r =2时为常数项,则常数项是C 26×24×(-1)2=15×16=240.]二项式定理的应用(1)(2017·豫东名校模拟)设复数x =2i1-i(i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x2 017=( ) A .i B .-i C .-1+I D .-1-i(2)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12 (1)C (2)D [(1)x =2i1-i=-1+i , C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x2 017=(1+x )2 017-1=i 2 017-1=-1+i. (2)512 012+a =(52-1)2 012+a =C 02 012·522 012-C 12012·522 011+…+C 2 0112 012·52·(-1)2 011+ C 2 0122 012·(-1)2 012+a , ∵C 02 012·522 012-C 12012·522 011+…+C 2 0112 012·52·(-1)2 011能被13整除. 且512 012+a 能被13整除,∴C 20122012·(-1)2 012+a =1+a 也能被13整除. 因此a 可取值12.][规律方法] 1.逆用二项式定理的关键根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.2.利用二项式定理解决整除问题的思路(1)观察除式与被除式间的关系.(2)将被除式拆成二项式.(3)余数是非负整数.(4)结合二项式定理得出结论.[跟踪训练] 1.028的近似值是________.(精确到小数点后三位)【导学号:97190352】1.172[1.028=(1+0.02)8≈C08+C18·0.02+C28·0.022+C38·0.023≈1.172.]。
2020年高考数学一轮复习教案(全国通用版)-二项式定理

一、自我诊断 知己知彼1.在()()()()()12345x x x x x -----的展开式中,含4x 的项的系数是( ) A.-15 B.85 C.-120 D.274 【答案】A【解析】 本题可通过选括号(即5个括号中4个提供x ,其余1个提供常数)的思路来完成。
故含4x 的项的系数为()()()()()1234515-+-+-+-+-=- 2.()52y x x++的展开式中,25y x 的系数为( )A.10B.20 C .30 D .60 【答案】C【解析】r r r r y x x C T -++=5251)(,令r=2,则232253)(y x x C T +=,对于二项式()32x x +,由tt t t t t x C x x C T --+=⋅=633231)(,令t=1, 所以25y x 的系数为301325=C C .【易错点】通项公式易错.【方法点拨】求二项展开式特定项的系数的关键是求出满足条件的r 的值,因此应通过求出二项展开式的通项,然后根据已知条件列出方程,解出r 的值,最后代入通项中,求出特定项的系数. 3.()4x y y x -的展开式中,55y x 项的系数为________. 【答案】6【解析】由二项展开式的通项可得22244441)1()()(r r r rr rrr yxC x y y x C T +--+⋅-=-⋅-=.令⎩⎨⎧4-r 2=32+r2=3解得r =2,所以展开式中55y x 的系数为()61242=-C .4.若512⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+x x x a x 的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40【答案】D【解析】令x =1,得(1+a )(2-1)5=2,∴a =1.∴512⎪⎭⎫ ⎝⎛-x x 的通项为()()r r r rrrrr x C x x C T 25555512112---+⋅⋅-=⎪⎭⎫ ⎝⎛-⋅=. 令521r -=,得2r =.令521r -=-,得3r =∴展开式的常数项为()()233223551212804040C C -⨯⋅+-⋅⋅=-=二、温故知新 夯实基础1.二项式定理公式())(1110*--∈+++++=+N n b C b a C b aC a C b a nn n k k n k n n n n n nΛΛ叫做二项式定理.公式中右边的多项式叫做nb a )(+的二项展开式,其中的系数),,1,0(n k C k n Λ=叫做二项式系数,式中的kk n k n b a C -叫做二项展开式的通项,用1+k T 表示. 2.二项式系数的性质(1)对称性:在二项展开式中与首末两端“等距离”的两个二项式系数相等,即mn n m n C C -=.(2)增减性与最大值:二项式系数kn C ,当21+<n k 时,二项式系数逐渐增大,当21+>n k 时,二项式系数逐渐减小.当n 是偶数时,中间一项的二项式系数最大;当n 是奇数时,中间两项的二项式系数最大.(3)各二项式系数的和:nb a )(+展开式的各个二项式系数的和等于n2,即nn n n n C C C 210=+++Λ(4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即131202-=++=++n n n n n C C C C ΛΛ.三、典例剖析 思维拓展考点一 求展开式中的指定项例1 ()52y x x ++的展开式中,25y x 的系数为( )A.10B.20 C .30 D .60 【答案】C【解析】r r r r y x x C T -++=5251)(,令r=2,则232253)(y x x C T +=,对于二项式()32x x +,由tt t t t t x C x x C T --+=⋅=633231)(,令t=1, 所以25y x 的系数为301325=C C .【易错点】通项公式易错.【方法点拨】求二项展开式特定项的系数的关键是求出满足条件的r 的值,因此应通过求出二项展开式的通项,然后根据已知条件列出方程,解出r 的值,最后代入通项中,求出特定项的系数.例2.6221⎪⎭⎫⎝⎛-x x 的展开式中,常数项是( ) A. 54-B. 54 C .1516- D. 1516【答案】D【解析】 ()rr rr rr r xC x xC T 312662612121--+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=,令12-3r =0,解得r =4.∴常数项为161521464=⎪⎭⎫ ⎝⎛-C .故选D .例3.8421⎪⎭⎫ ⎝⎛-x x 的展开式中的有理项共有________项. 【答案】3 【解析】()4316848812121rrr r rrr xC x x CT --+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Θ,∴r 为4的倍数,故r =0,4,8共3项.考点二 利用二项式定理求参数例1 .若521⎪⎭⎫ ⎝⎛+x ax 的展开式中x 5的系数是-80,则实数a =________.【答案】-2 【解析】rrr r xaC T 2510551--+=,令10-52r =5,解之得r =2,所以80325-=a C ,a =-2.例2.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式中31x 的系数是84,则实数a =( )A .2 B.54 C .1 D.24【答案】C【解析】727777112)2(---+=⎪⎭⎫ ⎝⎛⋅=x rr r rr r r x a C x a x C T .令2r -7=3,则r =5.由8425572=⋅a C 得a =1.故选C.考点三 二项式系数的和或各项系数的和例1.二项式()923x y -的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和; (4)各项系数绝对值之和.【答案】(1)92(2)1- (3)9512- (4)95【解析】设()992728190932ya y x a y x a x a y x ++++=-Λ.(1)二项式系数之和为9992919092=++++C C C C Λ.(2)各项系数之和为9210a a a a ++++Λ,令x =1,y =1,得()13299210-=-=++++a a a a Λ.(3)由(2)知19210-=++++a a a a Λ,①令x =1,y =-1,得992105=--+-a a a a Λ,②①+②得215986420-=++++a a a a a ,此即为所有奇数项系数之和.(4)92109210a a a a a a a a --+-=++++ΛΛ,令x =1,y =-1,得9921092105=--+-=++++a a a a a a a a ΛΛ,此即为各项系数绝对值之和.考点四 项的系数的最值问题例1.已知nx x ⎪⎪⎭⎫ ⎝⎛+2323的展开式中,各项系数和与它的二项式系数和的比为32. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项. 【答案】(1)322270x;(2)326405x.【解析】令x =1,则展开式中各项系数和为()nn2231=+.又展开式中二项式系数和为2n.∴22n 2n =2n=32,n =5.(1)∵n =5,展开式共6项,∴二项式系数最大的项为第三、四两项,()622332253903x x x C T =⎪⎪⎭⎫ ⎝⎛=∴, ()322322323542703x x x C T =⎪⎪⎭⎫ ⎝⎛=. (2)设展开式中第k +1项的系数最大, 则由()3410525325133k k k kkk k xC x x C T +-+=⎪⎪⎭⎫ ⎝⎛=,得⎪⎩⎪⎨⎧≥≥++--151515153333k k k k k k k k C C C C ∴72≤k ≤92,∴k =4, 即展开式中系数最大的项为()32642324554053xx x C T =⎪⎪⎭⎫ ⎝⎛=.考点五 与整除有关的问题例1.设a Z ∈,且013a ≤<,若201851a +能被13整除,则a =( ) A .0 B .1 C .11 D .12【答案】D【解析】 由于51521=-,()15252521521201720182017120182018020182018+-+-=-C C C Λ,又由于13整除52,所以只需13整除1a +,013a ≤<,a Z ∈,所以12a =考点六 求近似值问题例1.求60.998的近似值,使误差小于0.001. 【答案】0.988【解析】()()()()62660.99810.002160.002150.0020.002=-=+⨯-+⨯-++-L∵()23150.0020.000060.001T =⨯-=<, 即第3项以后的项的绝对值都小于0.001, ∴从第3项起,以后的项可以忽略不计, 即()()660.99810.002160.0020.988=-≈+⨯-=四、举一反三 成果巩固考点一 求展开式中的指定项1.8⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式中22y x 的系数为 ( ) A. 70 B. 80 C. -1 D. -80 【答案】A【解析】因为8⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式的通项公式为2832388881)1(---+-=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=r r rr rrr r yx C x y y x C T令3388222r r --==,得4r =所以22y x 的系数为70)1(448=-C .2.的展开式中,的系数为__________.【答案】90【解析】把()621+-y x 看成6个相同因式12+-y x 的乘积, 6个因式中有两个因式提供2x , 余下的4个因式有两个提供y -,其余的因式提供常数,故系数为()9011222426=⨯-C C .填90.点睛:一般地,()s s r rn sr rn nc b aC C c b a --=++,其中rn C 表示n 个因式()c b a ++中有r n -个因式提供a ,s r C 表示余下的r 个因式()c b a ++中有s 提供c ,余下的s r -个因式()c b a ++提供b ,这样的思想方法来自二项展开式的推导过程.3.已知nx x ⎪⎪⎭⎫⎝⎛+12的展开式中各项的二项式系数之和为32.(1)求n 的值; (2)求n x x )12(+的展开式中2x 项的系数;(3)求n xx xx )12)(1(+-展开式中的常数项.【答案】(1)5;(2)80;(3)-30.【解析】(1)由题意结合二项式系数的性质可得322=n , 解得5=n . (2)由题意得5)12(xx +的通项公式为()23555551212rr r rr r r x C x x C T ---+=⎪⎪⎭⎫ ⎝⎛=, 令2235=-r,解得2=r , 所以5)12(xx +的展开式中2x 项的系数为802253=⨯C .(3)由(2)知,5)12(xx +的展开式的通项为2355512r r rr xC T --+=,令1235-=-r,解得4=r ; 令21235=-r ,解得3=r .故2nx x⎛ ⎝展开式中的常数项为5445335522104030C C ---=-=-考点二 利用二项式定理求参数1.若6)(xa x -的展开式中含23x 项的系数为160,则实数a 的值为( )A.2B.-2C. 22D. -22 【答案】B【解析】二项式6)(xa x -的展开式的通项为23661)(r r rr xC a T -+-=,令23236=-r ,解得3=r ,160)(363=-∴C a , 解得2-=a故选B.2.已知5)1)(1(xax x -+的展开式中常数项为-40,则a 的值为( )A. 2B. -2C. 2±D. 4【答案】C 【解析】5)1(x ax -展开式的通项公式为:r r r r r r r r x C a xax C T 2555551)1()1()(---+-=-=, 令125-=-r 可得:,结合题意可得:3=r 40)1(35353-=--C a ,即40102=a ,2±=∴a .本题选择C 选项.3.若52)12)(3(xx a x --的展开式中3x 的系数为80,则a= . 【答案】-2.【解析】二项式5)12(x x -展开式的通项为r r r r r r rr x C xx C T 25555512)1()1()2(---+-=-=, 故展开式中3x 的系数为a C a C 801202)1()(23154253+=⋅⋅-⨯-+⋅⨯,由题意得8080240=+a , 解得2-=a .考点三 二项式系数的和或各项系数的和 1. 已知)()1()1()1()1()21(201720172016201622102017R x x a x a x a x a a x ∈-+-++-+-+=-Λ,则=+-+-+-20172016432120172016432a a a a a a Λ .【答案】-4034. 【解析】因为)()1()1()1()1()21(201720172016201622102017R x x a x a x a x a a x ∈-+-++-+-+=-Λ,两边同时求导可得)()1(2017)1(2016)1(2)21(201722016201720152016212016R x x a x a x a a x ∈-+-++-+=-⨯-Λ,令0=x ,得40342017201643220172201720164321-=+-+-+-=⨯-a a a a a a Λ.2. 已知6)(b ax +的展开式中4x 项的系数与5x 项的系数分别为135与-18,则6)(b ax +的展开式中所有项系数之和为______________. 【答案】10.【解析】因为6)(b ax +的展开式中4x 项的系数为135,所以1352426=b a C ;又因为6)(b ax +的展开式中5x 项的系数为-18,所以181516-=b a C ,解得3,1=-=b a ,或3,1-=-=b a ,令1=x ,可得6)(b ax +的展开式中所有项系数之和为6426=.3.若()5234501234523x a a x a x a x a x a x -=+++++,则123452345a a a a a ++++=__________. 【解析】对等式两边求导得()42341234510232345x a a x a x a x a x -=++++, 令1x =得12345102345a a a a a =++++,故答案为10.考点四 项的系数的最值问题1.设nn n x a x a x a a x ++++=-Λ2210)12(展开式中只有第1010项的二项式系数最大.(1)求n ; (2)求n a a a a ++++Λ210;(3)求n n a a a a 222233221++++Λ. 【答案】(1)2018;(2)20183;(3)-1. (1)由二项式系数的对称性,101012=+n,2018=∴n . (2)2018201821020182103=+++-=++++a a a a a a a a ΛΛ.(3)12222201820183201822018120182018201833221-=++-+-=++++C C C C a a a a ΛΛ. 2.设)()1(*2210N n x a x a x a a x n n n ∈++++=+Λ,若6321=+++n a a a Λ,则展开式中系数最大的项是__________. 【答案】320x .【解析】因为)()1(*2210N n x a x a x a a x n n n ∈++++=+Λ,所以10=a , 所以63121)11(21=-=-+=+++nn n a a a Λ,所以6=n , 所以展开式中系数最大的项是333620x x C =.3. 求10)12(xx -的展开式中:(1)第10项 (2)常数项;(3)系数的绝对值最大的项.【答案】(1)820--x ;(2)-8064;(3)415360x -. 【解析】r r r r r r r r x C xx C T 210101010101)1(2)1()2(---+-=-=(1)10)12(xx -的展开式中第10项,即81020--=x T(2)常数项为第6项。
高中数学-二项式定理复习课-教学设计

二项式定理复习课教学设计一 教学对象分析学生已经在高二学习了《二项式定理》的全部内容,对这部分内容已经有了全面的了解。
在这个基础上,让学生在老师的指导下,对《二项式定理》进行全面的复习应用,巩固和加深。
在复习的过程中,渗透了《排列组合》等其它的内容,加强了知识点之间的联系,培养学生综合运用知识的能力。
二 教学内容分析1.本节内容包括以下几部分:(1)二项式展开式的特点。
(2)二项式定理的证明。
(3)二项式定理的应用。
2.本节内容不多,但运用了多种数学方法,对于培养学生的发散思维能力和逆向思维 能力等都有很大的帮助。
三 重点 二项式定理难点 《二项式定理》的应用四 教学过程(一)复习《二项式定理》(a+b )n =C n 0a n +Cn 2a n-1+…+Cnn (1)要学好该定理,应注意从以下几方面进行理解和应用1. 展开式的特点(1) 项数 n+1项(2) 系数 都是组合数,依次为C ,C ,C ,…,C(3)指数的特点 1)a 的指数 由n 0( 降幂)。
2 )b 的指数由0 n (升幂)。
3)a 和b 的指数和为n 。
2。
定理的证明方法:数学归纳法(运用了组合数的性质)(略,学生自己看书)3.展开式(1)是一个恒等式,a ,b 可取任意的复数,n 为任意的自然数。
例1 的展开式求511⎪⎭⎫ ⎝⎛+x (学生先练,老师后讲) 练习:.126的展开式求⎪⎭⎫ ⎝⎛-x x 例2 81x ⎪⎪⎭⎫ ⎝⎛-x 展开式的第5项?第5项的二项式系数?第5项的系数? 练习:10x 2-x ⎪⎭⎫ ⎝⎛展开式中的第四项的二项式系数及项的系数?评析:定理的逆用是全面掌握好定理的一个必不可少的环节,利用逆向思维解题也是数学思想的一个重要组成部分。
四小结1.本节主要复习了《二项式定理》的展开式的特点和证明方法。
2.复习了《二项式定理》在解题中的应用。
其中包括赋值法求系数和的方法和逆向应用等。
五.作业处理1.教材部分相应的练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一轮复习二项式定理教学案(I) 计数原理 二项式定理 √
(1); (2)
(3)当时,;当时,;
(4);
(5)当是偶数时,二项式系数中,以最大,当为奇数时,二项式系数中,以和最大。
(6)在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即
021312n n n n n C C C C -+=++=。
3. 注意二项式系数与二项展开式某一项的系数不一定相同。
如展开式第项的系数是。
三、课前热身:
1.在二项式的展开式中,含的项的系数是 。
2.已知(1+ax )3,=1+10x+bx 2+…+a 3x 3,则b= .
3. 在()n 的展开式中,所有奇数项二项式系数之和等于1024,则中间项 的二项式系数是
4. 在的展开式中,的幂的指数是正整数的项共有
四、典型例题:
例1:如果的展开式中,第四项和第七项的二项式系数相等,
⑴求展开式的中间项;
⑵求展开式中所有的有理项.
变式训练1:的展开式中,含的正整数次幂的项共有
例2:(1)已知7722107)21(x a x a x a a x +⋯+++=-,那么 .
⑵设,)1(...)1()1()1(2222102n n n x a x a x a a x x -++-+-+=-+
则 .
变式训练2:①若在的展开式中的系数为,则
②如果的展开式各项系数之和为128,则展开式中的系数是 。
例3:已知的展开式中,某一项的系数是它前一项系数的2倍,而等于它后一项的系数的,⑴
求该展开式中二项式系数最大的项;⑵展开式中系数最大的项.
变式训练3: 若n 展开式中含项的系数与含项的系数之比为-5,则n 等
于
例4:证明:(1),其中;
(2)对任意非负整数,可被676整除。
例5:(xx·苏北四市调研(二))已知a n =(1+2)n (n ∈N *).
(1)若a n =a +b 2(a ,b ∈Z ),求证:a 是奇数;
(2)求证:对于任意n ∈N *,都存在正整数k ,使得a n =k -1+k .
五、课堂小结:
六、课堂检测:
1.在的展开式中,的系数是
2.若20092009012009(12)()x a a x a x x R -=+++∈,则的值为 。
3.如果ab<0,a+b=1,且二项式(a+b )3按a 的降幂展开后,第二项不大于第三项,则a 的
取值范围是
4.观察下列等式:
,
,
159131151313131322C C C C +++=-,
1591317157171717171722C C C C C ++++=+,
………
由以上等式推测到一个一般的结论:
对于,1594141414141n n n n n C C C C +++++++++= .
七、千思百练:
1.在展开式中,如果第项和第项的二项式系数相等,则 , .
2.在(1+x)7的展开式中,x 3项的系数是x 2项系数与x 5项系数的等比中项,
则的值为 。
3.3410
(1)(1)(1)x x x ++++++的展开式中的的系数为_ ;
4.数的末尾连续出现零的个数是__ __;
5.如果12212222187n n n n n C C C ++++=,则
6.今天是星期一,10045天后是星期_____;
7.若展开式中系数为21,则____________;
8.)30()16)(14)(12(++++x x x x 的展开式中,项的系数是____________。
9.用二项式定理计算,精确到1的近似值为____________。
10.已知n m m n m
i i a a a a
+++=+=∑ 1(其中,且),若 ∑∑=-==--=n
i i n i i
i
n n i i x a x C x f 0
0)3()1()(,则 = 。
11.1010
1010310321021109090)1(9090901C C C C C k k k ++-++-+- 除以88的余数是____。
12.已知7722107)21(x a x a x a a x ++++=- ,求(1)的值;
(2)及的值;(3)各项二项式系数和。
.
13.(1)在的展开式中,若第项与第项系数相等,求的值;
(2)的展开式奇数项的二项式系数之和为,求展开式中二项式系数最大项.
14.已知5025001250(2)
,a a x a x a x =++++其中是常数,计算 220245013549()()a a a a a a a a ++++-++++
15.(xx·苏锡常镇四市调研)(1)当k∈N*时,求证:(1+3)k+(1-3)k是正整数;
(2)试证明大于(1+3)2n的最小整数能被2n+1整除(n∈N*).。