艾瑞报告:中国商业智能行业研究报告2017(附PDF下载)

艾瑞报告:中国商业智能行业研究报告2017(附PDF下载)
艾瑞报告:中国商业智能行业研究报告2017(附PDF下载)

艾瑞报告:中国商业智能行业研究报告2017(附PDF下载)

区别于能够实现海量数据的管理、简单分析与可视化的传统商业智能,艾瑞的此份商业智能报告将聚焦于人工智能技术如何用于商业智能决策,实现商业经营的智能化与自动化。本报告将通过剖析商业智能行业发展背景、技术动态、多场景应用状况等方面,对人工智能在商业落地的真实现状进行说明,凸显AI技术(不包含语音、视觉等感知智能)在现阶段真实应用的价值。

报告核心观点

1、中国企业精细化运营的需求正在爆发

2、商业智能,帮助企业实现数据驱动认知到数据驱动决策的转变

3、商业智能主要应用于金融、电商、物流、出行等领域

4、中国AI论文成果达到国际一线水平

5、技术方面,商业智能的未来将从强调单一技术,到各学科、分支、算法等融会贯通

6、技术以外,企业、技术供应商对场景的理解是产业升级的关键

7、商业智能的落地是一项系统工程,企业的工程实践能力有待增强

目录

报告摘要1 商业智能概述1.1 商业智能行业概念界定1.2 商业智能与大数据1.3 商业智能发展宏观环境分析1.4 商业智能产业图谱1.5 投融资状况分析2 商业智能核心技术剖析

2.1 机器学习2.2 知识图谱2.3 运筹学3 商业智能典型应用

3.1 广告营销3.2 电商3.3 交通出行3.4 供应链3.5 金融风控3.6 投研分析 3.7 智能投顾3.8 智能客服4 典型公司案例

4.1明略数据 4.2第四范式4.3 杉数科技4.4 百分点4.4 文因互联4.5 ZRobot5 商业智能的未来与挑战

商业智能行业概念界定商业智能的下一步,智能化与自动化商业智能(BI,Business Intelligence)概念的提出可追溯至1958年,通常将其视为把企业中现有数据转化为知识,帮助企业做出明智的业务经营决策的工具。过去的商业智能不能给出决策方案,也不能自动处理企业运行过程中遇到的问题。借助于人工智能与其他相关学科的技术进步,现代商业智能已能在特定场景中实现商业经营的智能化与自动化。因此,本报告聚焦于将人工智能技术用于商业智能决策,试图对人工智能在商业落地的真实现状进行说明,凸显AI技术(不包括智能语音、计算机视觉等感知智能)在现阶段应用的价值。商业智能与大数据大数据为商业智能的发展提供土壤互联网、移动互联网高速发展,海量、高维度且可实时接入更新的数据随之而来,为机器学习等前沿技术在各领域中的探索及落地提供可能,进一步拓展了被服务人群且显著提升服务质量。另一面,产业缺乏通用标准约束,数据在采集及流转过程中污染程度不一,数据加密不规范引致的数据泄露时有发生,数据孤岛亦成为企业业务发展的掣肘(如金融

方面,企业多为基于自身平台积累的独有数据做征信,评分适用范围将大大受限),通用标准的建立需要政府及产业界的共同努力。商业智能与大数据从数据驱动认知,到数据驱动决策智能技术的运用一方面将拓展大数据的应用场景,从帮助业务人员认知到实现企业最优决策,另一方面,自然语言处理的进步也正在解决人机交互的部分问题,自然语言查询、自然语言生成都将进一步释放商业智能的效率和价值。商业智能应用场景

商业智能主要应用于金融、电商、物流、出行等领域类比人类智能,人工智能可分为赋予机器语音、图像等感知能力的感知智能和赋予机器思考能力的认知、决策智能。认知能提升感知(如对语义的理解判断将提升机器的语音识别率),感知也会辅助决策(如智慧商超中机器视觉对客流属性、消费行为的观察、记录可辅助商超做出营销决策),本报告聚焦于认知智能在商业场景中的应用情况。中美商业智能环境对比中美同属商业智能第一方阵,发展态势各有千秋过去的几十年中,中国科技智能环境不如西方几乎成了很多人的刻板印象,但在如今的商业智能领域,我国从“中国制造”到“中国智造”,从奋起直追到弯道超车,已进入商业智能领域第一方阵,成为发展最快的国家之一。总的来说,由于中美文化差异、人口差别、工作强度不同等因素,相比美国,中国将技术落地的加速度更快,新兴商业模式拓展力强,但

业务的发展仍缺乏全面性与标准化。目前,中国通过单点突破弯道超车,并开始重视精细化运营,由局部最优逐渐向全局最优靠拢。中国商业智能技术环境论文成果达到国际一线水平,企业积极应用创新性成果AAAI(The Association for the Advancement of Artificial Intelligence)是人工智能领域顶级的综合性会议,会议论文涉及机器学习、自然语言处理、搜索、规划、视觉、知识表达等人工智能各分支的学术探讨和应用研究。2017年AAAI大会收到论文2571篇,创下新高,中国学者的论文提交量与录用率均达到国际一线水平,与美国持平。收录论文不仅有来自高校学者,还有来自百度、腾讯、华为、360、今日头条等企业研究人员,如百度的《Collaborative Company Profiling:Insights from an Employee’s Perspective》——从员工角度出发,尝试利用AI让企业人力价值最大化。国内企业与高校间的合作也愈发紧密,腾讯即有与香港科技大学的实验室合作,高校可利用企业的海量数据与测试平台,企业则可将创新性成果落地实践。需要指出的是,尽管目前AI的商业应用中国并不落后甚至在某些维度领先美国,但在原创性研究、创新土壤、人才储备方面,中美仍有较大差距。

商业智能产业图谱商业智能行业投融资梳理行业集中度低,融资火热,天使轮、A轮居多商业智能应用场景众多,包括营销、金融、交通等领域,各领域涉及企业众多,行业集中

度较低,融资方面,2012-2016年最为火热,其中,2015年融资次数达到31次,同时有两家新三板挂牌企业,是2012-2016年中融资次数最多的一年;从融资轮次来看,大部分融资尚处于早期的天使轮、A轮阶段;另外,从企业所涉领域来看,服务于金融领域的企业最受资本市场青睐。商业智能核心技术剖析

了解技术是发展技术的前提人工智能正在重塑科学、技术、商业、政治以及战争,而大众对技术的认知程度和该技术的重要性相比显得远远不够。即使只有工程师和机修工有必要知道汽车发动机如何运作,每位司机也都必须明白转动方向盘会改变汽车的方向、踩刹车会让车停下。另外,当今人工智能的各个分支其实在五十年前就已有相关基础,当时的一些科学家认为,人工智能的所有问题都将在十年内解决。但事实是直到今天,很多问题仍悬而未决并难以解决。过高的预期引致不当的失望,人工智能历史上的两次冬天无疑阻碍了技术、产业发展的步伐,并让踏实做事的人受到伤害。因此,我们有必要对商业智能技术的概念模型、发展现状与应用前景进行客观认知,了解它的能力与边界。核心技术之机器学习机器学习概述将数据输入计算机,一般算法会利用数据进行计算然后输出结果,机器学习的算法则大为不同,输入的是数据和想要的结果,输出的则为算法模型,即把数据转换成结果的算法模型。通过机器学习,计算机能够自己生

成模型,进而提供相应的判断,实现某种人工智能。工业革命使手工业自动化,而机器学习则使自动化本身自动化。核心技术之机器学习

支持向量机、朴素贝叶斯、决策树、神经网络等经典算法核心技术之机器学习人工智能、机器学习及深度学习的相互关系近几年掀起人工智能热潮的深度学习,属于机器学习的一个子集,在思想和理论上并未显著超越二十世纪八十年代中后期神经网络学习的研究,但得益于海量数据的出现、计算能力的提升,原来复杂度很高的算法得以落地使用,并在边界清晰的领域获得比过去更精细的结果,大大推动了机器学习在工业实践中的应用。但值得指出的是,深度学习的应用范围还很有限,统计学习仍然在机器学习中被有效地普遍采用。另外,人工智能不是一种特定的技术方法,所有方法都是在对人工智能这个课题进行研究的产物。机器学习和象征着理性主义的知识工程、行为主义的机器人一样,是人工智能的一个分支。核心技术之知识图谱知识图谱的应用就覆盖范围而言,知识图谱可分为应用相对广泛的通用知识图谱和专属于某个特定领域的行业知识图谱。通用知识图谱注重广度,强调融合更多的实体,主要应用于智能搜索等领域。行业知识图谱需要考虑到不同的业务场景与使用人员,通常需要依靠特定行业(如金融、公安、医疗、电商等)的数据来构建,实体的属性与数据模式往往比较丰富。核心技术之运

筹学运筹学概述

运筹学是一门用量化分析的方法做决策与优化的科学和艺术,它为管理决策提供智慧,并以自己的智慧解决管理决策问题。体现运筹学思想和方法的某些早期先驱性的研究工作,可以追溯到20世纪初期,如1908年丹麦工程师Erlang 提出的电话话务理论(运筹学中排队论的起源)。运筹学是一门应用性很强的学科,在研究和解决各种复杂的实际问题中综合使用代数、统计学、计算机科学、模拟(仿真)等各种方法,不断得到创新和发展,至今已成为一个包括许多分支的庞大的学科。在大数据时代,数据科学结合运筹学尖端理论是实现数据驱动的科学决策的坚实基础。核心技术之运筹学从军事到民用,优化各领域组织决策最早期的较为正式的运筹学活动出现在第二次世界大战时期,有一批英国的科学家着手研究利用科学方法进行决策,以最佳使用战时资源,当时的工作小组将自己的工作称为Operational Research (简称OR)。战后的工业复苏时期,运筹学思想被引入民用领域,用来应对组织中与日俱增的复杂性和专业化所产生的问题,大幅提升了生产力。虽然运筹学的大部分实践应用产生的效益小于下表所列案例,但这些典型反映了大型的计划完善的运筹学的研究可能带来的重要影响。商业智能应用之广告营销精准营销负责引流获客,个性化推荐促活留存商业智能在广告营销领域的主要应用为精准营销与个性化推荐,

两者均通过用户数据,对用户贴标签,并基于产品特征与投放需求,建立不同的决策模型进行营销;两者最大的不同在于,精准营销用于引流获客阶段,以短信或优惠券的方式进行营销,提升响应率,优化企业运营;个性化推荐用于留存促活阶段,使得消费者在最合适的时间,以最恰当的方式,获得最合意的产品、资讯以及服务的推荐。商业智能应用之电商收益管理的本质是优化商业智能在电商领域的主要应用为商品组合、定价策略、促销管理等多方面的优化,可归结为收益管理,即指在适当的时间和地点下,以合适的价格向不同的用户提供最恰当的服务或产品,以实现资源约束下,企业收益最大化的目标。收益管理最早起源于航空运输业,当时的民航处于价格管制状态,为解决旅客误机导致的座位虚耗、企业收益流失,出现了“超售”思想,除航空业外,收益管理也广泛应用于酒店服务、电子商务、交通出行以及物流运输等领域。商业智能应用之交通出行通过人工智能运筹学,最小化路程与出行时间路径优化是指如何找到从出发地到达目的地之间最短时间、最优价格的最短路径;订单分配研究的是供需匹配问题,结合多维度影响因素(例如路途距离、路况、骑手骑行速度、需求时间段等)匹配需求和供给;另外,除路径优化与订单分配外,电商领域中提到的定价优化也应用于交通出行,例如网约车定价,但与电商不同的是,网约车因其需求的及时性要求较强,账号共享

性弱,使其拥有更大的个性化定价空间。

路径优化可理解为寻求由起点出发,通过所有给定需求点后再回到原点的最短路径问题,路径优化诞生于TSP问题(Traveling Salesman Problem,旅行销售员问题),即访问除原出发结点以外的每个节点一次且仅一次,应用场景例如拼车实时路线规划、某些货物需在某一时间段送到(时间窗口)。

订单分配可理解为供需匹配问题,供需匹配可分为静态匹配与动态匹配,静态匹配即有n个需求,n个供给,每一个供给只能满足一个需求,每一个需求也只需要一个供给,应用场景例如物流追踪、车辆与乘客静态匹配等;当匹配双方并非事先确定时,则为动态匹配问题,动态匹配的本质在于优化结合随机建模,当匹配的一端实时产生时,以优化模型决定如何匹配能够达到最大价值,应用场景例如网约车随时产生的乘客与车辆匹配。商业智能应用之供应链

通过大数据与优化技术提升供应链系统效率与柔性物流系统分为多层,包括入库前的仓库地址选择、入库时的策略以及销售预测、入库后的库存优化、仓储优化、清仓以及出库时货运分配、配送路线规划等。其中,仓库的选择和物流的配送是供应链管理的核心,在某地区开展新业务时,如何设定枢纽的数量、枢纽位置等对最终运送的成本有着很大的影响;配送路线规划涉及到我们在交通出行领域中谈到的路径

优化与车辆调度问题,通过结合实时需求、时间窗口、承重限制等因素,对送货路线进行制定,最小化成本与时间,实现物流智能化高效运营。商业智能应用之金融风控利用数据与技术,提高风控准确率,布局全流程风控

金融的本质在于给风险定价,对于风险及时且有效的识别、预警、防控一直是金融机构的核心。金融风控强调数据与技术,智能风控企业结合高维度的大数据,利用决策树、神经网络等机器学习技术,针对信贷评级、授信、贷后预警,反欺诈等场景提供解决方案,传统金融机构由过去的以经验或小量数据对风险进行把控,到现在以大数据及技术进行风控,实现金融风控升级。但同时,精细化运营全覆盖也是风控市场需考虑的关键点,即从系统的第一层出发,做全流程的金融风控,识别真正符合金融产品的优质客户,当潜在用户的信用存在风险时,应从营销端就避免引入此类风险用户。商业智能应用之投研分析人机协作,助力投研分析质效提升

商业智能在投研分析中的应用可与食材料理类比,将原始数据比喻成料理中的原料A,A被清洗择选后成为可用烹饪原料B,参考不同料理食谱,对B进行制作,最终生成佳肴,映射于投研分析领域中,清洗择选方法包括去重、数据排序、实体发现、实体关联、领域知识图谱等,食谱即不同算法与模型,最终生成可视化投研报告。与人工分析生成的报告不

同,机器人报告最大的优势在于生成快、可以清晰明了的将大量数据进行罗列呈现;智能机器的效率相对高,但目前仍缺少创造性,在投研分析领域,机器人与分析师的协同合作将提升分析质量与效率。商业智能应用之智能投顾

自动化程度逐步提高,AI 投顾新模式将用户资金自动对接智能投顾,顾名思义即人工智能投资顾问。传统的投资顾问相当于私人银行中的客户经理通过与客户的深度沟通,结合客户个人的风险偏好和理财目标,传达给后台技术人员制定理财配置模型,再由客户经理将此方案给到客户;智能投顾可被理解为将私人银行的后台标准服务线上化。相比传统投顾,智能投顾拥有可简化流程、适合全民理财、可定制短/中/长多周期投资方案、可进行风险预警等优势,同时也面临客户对机器的弱信任感问题、现阶段政策以及所需客户财务状况全面性等限制与挑战。商业智能的挑战与未来从强调单一技术,到各领域融会贯通在大数据的背景下,商业场景中任一问题的解决,往往是多学科思想的交融,而非对单一方法的依赖。在计算机科学、人工智能、运筹学、博弈论等诸多学科领域的综合与交叉中,一个个贴合实际业务场景的解决方案应运而生,使得商业智能切实优化企业决策方式,助力业务增长。融合也表现在人工智能的各分支上,如关于语义网的研究,自然语言理解、机器学习、人机交互都很重要。最后,任何一种学习算法都有自己的优势和局限,所谓

的解决一切问题的终极算法,很有可能是对现有算法的兼容并包。当然,如何让各算法相遇相融并在不大幅降低效率的前提下提升通用性,仍是一个非常复杂但值得探索的难题。商业智能的挑战与未来技术以外,对场景的理解是产业升级的关键在人工智能成为产业界、学术圈、投资人以及媒体关注的焦点以来,大众对深度学习等技术尤为关注。但在工业实践中,对具体业务场景的理解与对实际问题的界定,与采用何种模型、算法同等重要,前者在很大程度上决定了后者是否能够有效降低企业运营成本或者帮助相关业务增加收入,这是技术能够落地、产业得以升级的关键。

在AAAI2017中,Uber人工智能实验室主任Gary Marcus即表示当前飞速发展的深度学习等技术可能只是在不断逼近通用人工智能的一个局部最优点,而这样的逼近方式可能让我们错过那些真正更好地实现通用人工智能的方法。因此,在运用技术解决某个问题之前,绝不应先入为主地认定要是用某个具体的机器学习算法,而应首先对业务场景加以分析,抓住核心问题要素,这是做出最优技术选择的前提。商业智能的挑战与未来智能的落地是一项系统工程,企业的工程实践能力有待增强商业智能业务应用的落地需要建立在完善的数据整合、管理之上,再由相应的算法、模型基于高效的计算框架将数据转化为可视化的业务规律,进一步驱动或直接生成企业决策,因此商业智能是一项系统工程,算法

设计、架构搭建、系统配合、流程控制、质量监督、危机处理等缺一不可,项目工程经验非常重要。

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理基础实验报告_

本科生实验报告 实验课程数字信号处理基础 学院名称地球物理学院 专业名称地球物理学 学生姓名 学生学号 指导教师王山山 实验地点5417 实验成绩 二〇一四年十一月二〇一四年十二月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm, 左右2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一生成离散信号并计算其振幅谱 并将信号进行奇偶分解 一、实验原理 单位脉冲响应h(t)=exp(-a*t*t)*sin(2*3.14*f*t)进行离散抽样,分别得到t=0.002s,0.009s,0.011s采样的结果。用Excel软件绘图显示计算结果。并将信号进行奇偶分解,分别得到奇对称信号h(n)-h(-n)与偶对称信号h(n)+h(-n)。用Excel 软件绘图显示计算结果。 二、实验程序代码 (1)离散抽样 double a,t; a=2*f*f*log(m); int i; for(i=0;i

数字信号处理基础综合复习题

数字信号处理模拟试题1(2014年秋季学期) 1. 已知模拟信号013()cos()cos()4 a x t t t =Ω+Ω, 其中,44012210/, 10/63 rad s rad s ππΩ= ?Ω=? 以f s =10kHz 进行采样,得到()x n 。 (1)判断是否满足采样定理要求并说明原因; (2)写出序列()x n 的表达式,并求其周期; (3)截取N 点长序列利用DFT 进行频谱分析,要分辨出各个频率分量,N 的最小值为多少? 2. 一个15点长序列x(n)和6点长序列y(n)(第一个非零点均从n=0开始),各作15点DFT ,得到X(k)和Y(k),再求X(k)Y(k)的IDFT ,得到f(n),问 f(n)的哪些点对应于 x(n)*y(n)应该得到的点? 3.序列x(n)长度为N (N 为偶数),且满足()(2),0,1,...,21x n x n N n N =-+=-,证明: x(n)的N 点DFT X(k)仅有奇次谐波,即:X(k)=0,k 为偶数 4. 设()j X e ω为序列1()()2n x n u n ??= ???的傅里叶变换。令()y n 表示一个长度为10的有限长序列,其10点DFT 用()Y k 表示,已知21010()()()j k Y k X e R k π=,即()Y k 对应于()j X e ω的(0,2)π区间上的10个等间隔样本。求()y n 。 5. 设有一谱分析用的信号处理器,抽样点数必须为2的整数幂,假定没有采用任何特殊数据处理措施,要求频率分辨力≤10Hz ,如果采用的抽样时间间隔为0.1ms ,试确定 (1)最小记录长度; (2)允许处理的信号的最高频率; (3)在一个记录中的最少点数。 6.已知某系统的系统函数为12112921123()11111423 z z H z z z z -------=?+-+ (1)画出级联型的结构流图: (2)画出直接Ⅱ型的结构流图。 (3)级联型结构与直接型结构相比有什么特点? 7. 下图为某FIR 系统的级联型流图。 x

数字信号处理基础实验(Laboratory Exercise 1)

Laboratory Exercise1(2class hours) DISCRETE-TIME SIGNALS:TIME-DOMAIN REPRESENTATION Project1.1Unit impulse and unit step sequences A copy of Program P1_1is given below. %Program P1_1 %Generation of a Unit impulse Sequence clf; %Generate a vector from-10to20 n=-10:20; %Generate the unit impulse sequence delta=[zeros(1,10)1zeros(1,20)]; %Plot the unit impulse sequence stem(n,delta); xlabel('Time index n');ylabel('Amplitude'); title('Unit Impulse Sequence'); axis([-10200 1.2]); Answers: Q1.1The unit impulse sequenceδ[n]generated by running Program P1_1is shown below:

Q1.2The modified Program P1_1to generate a delayed unit sample sequenceδd[n]with a delay of11samples is given below along with the sequence generated by running this program. %Program Q1.2 %Generation of a Unit impulse Sequence with a delay of11samples clf; n=-10:20; delta=[zeros(1,21)1zeros(1,9)]; stem(n,delta); xlabel('Time index n');ylabel('Amplitude'); title('Unit Impulse Sequence with a delay of11samples'); axis([-10200 1.2]); Q1.3The modified Program P1_1to generate a unit step sequence u[n]is given below along with the sequence generated by running this program. %Program Q1.3 %Generation of a unit step sequence clf; n=-10:20; delta=[zeros(1,10),ones(1,21)]; stem(n,delta); xlabel('Time index n');ylabel('Amplitude'); title('Unit Step Sequence'); axis([-10200 1.2]);

1_数字信号处理基础知识

数字信号处理基础知识 Digital Signal Processing 编写:刘馥清

模拟信号与数字信号 (基本术语) 过程:物理量(位移、速度、加速度、声压、声强、压强、应力、应变、温度…)随时间变化的历程。 信息:研究问题所关心的过程特征。 信号:通常指物理过程通过传感器(也称换能器)转换成电信号。 信号是信息的载体。信号处理即从信号获取有用信息。 连续信号:幅值随时间连续变化的信号。 离散信号:只在离散时刻取值的信号。通常对连续信号“采(抽)样” 而得到。 模拟信号:未经数字化处理的连续信号。 数字信号:数字化的离散信号,适用于计算机处理。 A/D:Analog to Digital Conversion

物理过程与信号的分类 (一)

简谐过程两种数学表达形式 1 三角函数形式 ()()?ω+=t A t x sin A —振幅 ?—初相角 ω—角频率 ω=2πf = 2π/T 2 复指数形式 ()()1?===+j e A Ae t x t j t j ω?ω ? j Ae A = —复振幅 (相量—Phasor) 相互关系:()t A t A t A ω?ω??ωsin cos cos sin sin +=+ t A t A ωωsin cos 21+=

() ()t j t j t j t j e A e A e e A t A ωωωωω??+=+= 222cos 1111 () ? ???? ? ??? ???? ? ??? =?= 21 22222 2 2sin πωπωωωωt j t j t j t j e A e A e e j A t A ?? ?????=?=21 πj e j j 2 221A A A += 21 A A arctg =? 欧拉公式的几何意义

毕业设计106 数字信号处理基础

3 数字信号处理 动态应变产生的原因有载荷随时间变化,也有因构件运动,按动态应变随时间变化的性质可分为确定性和非确定性两类。对动态应变信号进行数据分析要分析其频谱,从频域的角度来反映和揭示信号的变化规律。 将信号的时域描述通过数学处理变换为频域分析的方法称为频谱分析。根据信号的性质及变换方法的不同,可以表示为幅值相位谱、功率谱、幅值密度谱、能量谱密度以及功率谱密度。频谱是人们认识信号最重要的手段之一,根据频谱的组成,人们很容易抓住信号与系统的特征,据此可以有效地对信号进行分析、处理、合成以及设计特定的系统。傅立叶变换和信号的采样是进行动态应变信号分析时用到的最基本的技术,只有将被测信号先进行采样,然后才能对信号进行下一步的分析与处理。 3.1 信号的采样[15-17] 用计算机对信号进行分析处理,由于许多信号都是连续变化的模拟量,而计算机只能识别和处理离散型的数字量,所以必须建立模拟量转换为数字量的装置,才能发挥计算机的一系列性能。把连续的时间信号转换为离散的数字信号的过程称为模/数(D A /)转换过程,这是数字信号分析的必要过程。D A /转换过程包括采样、量化和编码,其工作原理如图3.1所示。 图3.1 A/D 转换过程 Fig.3.1 Conversion process of A/D 信号)(t x 经过上述变换后,变成为时间上离散,幅值上量化的数字信号,通过接口电路输入计算机,这样,计算机才能进行进一步的处理。 1101

(1)采样过程 采样,又称为抽样,是利用采样脉冲序列)(t p ,从连续时间信号)(t x 中抽取一系列离散样值,使之成为采样信号)(t n x ?的过程,其中,△t 称为采样周期, s f t =?/1称为采样频率,n=0,1,2, …。 则采样信号为: )()()(t p t x t x s = (3.1) 设)()]([ωX t x F =, )()]([ωP t p F = 那么根据时域相乘频域卷积定理,有 )(*)(21)(ωωπ ωP X X s = (3.2) 又因为采样脉冲序列是一个周期函数,所以 )(2)(s n n C P ωωδπω-=∑∞ ∞- (3.3) C n 为p(t)的傅立叶系数。当p(t)为脉冲序列时,有 t T C s n ?==1 (3.4) 所以,采样信号的频谱为 )()(s n s n X C X ωωω-=∑∞ ∞- =)(1s n s n X C T ωω-∑∞ ∞ - (3.5) 可见,信号在时域的离散化导致了频域的周期化,采样后信号频谱的变化与信号的最高频率max f 及采样频率s f 之间的关系有关。 (2)采样定理 采样周期s T 决定了采样信号的质量和数量,s T 太小,显然信息不易丢失,但使)(s nT x 的数量增加,占用大量的内存单元,数据处理速度变慢;s T 太大,采集的数据太少,会使某些信号丢失,难以恢复原来的信号,造成失真现象。因此,选择一个合理的采样频率s s T f /1=就显得十分重要。 采样定理是C.E.Shannon 在1948年提出的,其具体表述为:一个具有有限能量的带限信号)(t x ,其最高频率分量为max f ,则该信号在频域内完全可由一系列时间间隔T 的等于或小于2/max f 的采样点所确定,即

数字信号处理基础答案第四章sol

Chapter 4 Solutions 4.1 (a) The pass band gain for this filter is unity. The gain drops to 0.707 of this value at 2400 Hz and 5200 Hz. Thus, the frequencies passed by the filter lie in the range 2400 to 5200 Hz. (b) The filter is a band pass filter. (c) The bandwidth is the range of frequencies for which the gain exceeds 0.707 of the maximum value, or 5200 –2400 = 2800 Hz. 4.2 A low pass filter passes frequencies between DC and its cut-off frequency. The bandwidth is identical to the cut-off frequency. Thus, the cut-off frequency is 2 kHz. 4.3 The maximum pass band gain of the filter is 20 dB. The bandwidth is defined as the range of frequencies for which the gain is no more than 3 dB below the pass band gain, or 17 dB. This gain occurs at the cut-off frequency of 700 Hz. For a high pass filter, the bandwidth is the range of frequencies between the cut-off frequency, 700 Hz, and the Nyquist frequency (equal to half the sampling rate), 2 kHz. The bandwidth is 1300 Hz. 4.4 The low pass filter has a cut-off frequency of 150 Hz and bandwidth 150 Hz. The band pass filter has cut-off frequencies at 250 Hz and 350 Hz for a bandwidth of 100 Hz. The high pass filter has a cut-off frequency of 400 Hz and a bandwidth of 100 Hz, which extends from its cut-off frequency to the Nyquist limit at half the sampling rate. 4.5 (a) The low pass filter output is on the left. The high pass filter output is on the right. (b) An approximation to the original vowel signal can be found by adding the high and low pass waveforms together. 4.6 (a) linear (b) non-linear (c) non-linear (d) linear 4.7 Since the new input is shifted to the right by two positions from the original input, the new output is shifted to the right by two positions from the original output. 4.8 (a) y[n] = –0.25y[n –1] + 0.75x[n] – 0.25x[n –1] (b) y[n] = y[n –1] – x[n] – 0.5x[n –1] x[n] n y[n] n

数字信号处理基础答案第十二章sol

Chapter 12 Solutions 12.1 Von Neumann architectures rely on one address bus and one data bus, so activities requiring bus usage must wait until the bus is free. Harvard architectures have multiple address and data buses. As a result, less bus contention occurs, and items can be collected from memory in parallel. Also, Harvard architectures have several memories that can contain program instructions, data, or both; von Neumann architectures feature only one memory that must contain both program instructions and data. 12.2 Pipelining refers to the overlapping of processor tasks made possible by multiple buses and multiple memories. A program instruction can be fetched from one memory while a piece of data is collected from another, all while a previous instruction is being executed. 12.3 (a) 4480310 = 1010 1111 0000 00112 29910 = 0000 0001 0010 10112 (b) The product of the two numbers is 10 = 1100 1100 0110 1000 1000 00012. At least twenty-four bits are needed to represent the product. (c) Rounded to its sixteen most significant bits, the product becomes 1100 1100 0110 1001 0000 00002, where bit 8 changes to one because the lower eight bits, 1000 0001 are greater than 1000 0000. The rounded product equals 10, for an error of 12710. (d) The 32-bit product is 0000 0000 1100 1100 0110 1000 1000 00012. Rounded to the sixteen most significant bits, the product becomes 0000 0000 1100 1100 0000 0000 0000 00002 = 10. An error of –2675310 is committed. 12.4 causes a “one” bit to be lost at the right, precision is lost. For example, half of 41 is 20.5, which cannot be represented. Instead, the result is a truncated 20. 12.5 (a) 23745 (b) –18468 (c) –1 (d) –32768 (e) 32767 12.6 (a) 0000 1100 (b) 1011 0001 (c) 1000 0000 (d) 1111 1111 (e) 0111 1111 12.7 Before shifting, 0110 11102 = 11010. After shifting, 1101 11002 = 22010. 12.8 Before shifting, 0110 11102 = 11010. After shifting, 1101 11002 = –3610. The sign of the number changes as a result of shifting. 12.9 (a) An exponent of –4 can be used to normalize all numbers in the block. This choice of exponent ensures one sign bit remains in each number.

相关文档
最新文档