大一上微积分知识点重点
大一微积分基础教程知识点

大一微积分基础教程知识点微积分是数学中的一个重要分支,也是大学数学课程的基础内容之一。
在大一的微积分基础教程中,有一些重要的知识点需要我们掌握和理解。
本文将介绍大一微积分基础教程的几个主要知识点。
一、函数与极限在微积分中,函数是非常重要的概念。
我们通常用符号f(x)表示函数,其中x是自变量,f(x)是因变量。
函数可以有不同的形式,比如多项式函数、三角函数等。
我们需要掌握如何求函数的定义域、值域以及函数的性质。
极限是微积分中的基础概念,它描述了函数在某一点附近的趋势。
我们需要理解极限的定义,并能够计算一些基本的极限值。
同时,还需要了解无穷大与无穷小的概念,以及它们与函数极限之间的关系。
二、导数与微分导数是微积分中的重要概念,它描述了函数在某一点的变化率。
我们需要学习如何计算函数的导数,并可以利用导数来研究函数的性质。
同时,还需要了解导数的几何意义和物理意义,以及导数的基本运算法则。
微分是导数的一个重要应用,它用于描述函数在某一点附近的近似变化情况。
我们需要了解微分的定义,并能够计算一些简单的微分。
同时,还需要掌握微分的几何意义和物理意义,以及微分的基本性质。
三、积分与定积分积分是微积分中的重要概念,它是导数的逆运算。
我们需要学习如何计算函数的积分,并可以利用积分来解决一些实际问题。
同时,还需要了解积分的几何意义和物理意义,以及积分的基本运算法则。
定积分是积分的一种特殊形式,它描述了函数在某一区间上的累积效应。
我们需要了解定积分的定义,并能够计算一些简单的定积分。
同时,还需要掌握定积分的几何意义和物理意义,以及定积分的性质和应用。
四、微分方程微分方程是微积分的一个重要应用领域,它描述了包含导数的方程。
我们需要学习如何解微分方程,并可以利用微分方程来分析和预测一些实际问题。
同时,还需要了解一阶和二阶微分方程的基本解法,并可以应用到具体问题中去。
通过学习以上几个知识点,我们可以建立起微积分的基础框架,为进一步学习和研究微积分的高级内容奠定坚实的基础。
大一上微积分知识点重点

大一上微积分知识点重点微积分作为数学的一门基础课程,是大一上学期中不可忽视的一门学科。
它的重要性和广泛应用性使其成为大学学习过程中必不可少的一环。
在本文中,我将为您详细介绍大一上微积分的知识点重点,并逐一阐述其核心概念和应用。
1. 函数与极限函数是微积分的基础概念之一。
在微积分中,我们学习了各种类型的函数,例如常数函数、幂函数、指数函数、对数函数、三角函数等。
理解函数的性质以及它们的图像是学习微积分的第一步。
极限是微积分的核心概念之一。
通过极限的概念,我们可以研究函数的趋势和性质。
在学习极限时,需要掌握定义、性质和计算方法。
例如,当自变量趋近于某个值时,函数的极限是什么?如何计算无穷大和无穷小?2. 导数与微分导数是微积分中的重要概念,它刻画了函数在给定点的变化率。
学习导数的定义、性质和计算方法十分关键。
同时,我们还需要熟悉一阶导数和高阶导数的概念,并能够应用它们解决实际问题。
微分是导数的一个应用,它可用于求函数在给定点的线性近似值。
在学习导数和微分的过程中,需要重点掌握基本函数的导数性质,如常数函数导数为0,幂函数导数的求法,指数函数和对数函数的导数等等。
此外,还需了解导数在生活和科学领域的应用,如速度、加速度、边际效应等。
3. 积分与定积分积分是微积分的另一个重要概念,它与导数相对应。
积分的概念可以理解为函数的反导数,并且它还可以用于计算区域的面积、体积、质量、位移等。
定积分是积分的一种形式,在学习过程中需要深入理解定积分的定义和计算方法。
积分的应用非常广泛,可以应用于物理、经济、统计学、几何学等各个领域。
例如,利用定积分可以计算曲线下面积、求解定积分方程、计算概率密度函数,以及求解平面曲线的弧长等。
4. 微分方程微分方程是微积分中的一个重要分支,它建立了函数与其导数之间的关系。
通常情况下,微分方程会涉及到一个或多个未知函数的导数,我们需要求解这些方程来获得函数的解析形式。
学习微分方程时,需要了解常微分方程和偏微分方程的概念,学习解微分方程的常用方法如变量分离、常系数线性微分方程的特征方程求解、齐次方程和非齐次方程的求解等。
大一微积分复习总结

微积分期中复习第一章 函数与极限一、函数1、数轴、区间、领域2、函数的概念:设有两个变量x 和y ,如果当某非空集合D 内任取一个数值时, 变量y 按照一定的法则(对应规律)f ,都有唯一确定的值y 与之对应,则称y 是x 的函数。
记作()y f x =,其中变量x 称为自变量,它的取值范围D 称为函数的定义域;变量y 称为因变量,它的取值范围是函数的值域,记作()Z f ,即(){|(),}Z f y y f x x D ==∈。
函数的表示:函数的表示有三种。
公式法、表格法和图示法。
3、函数的几种特性函数的有界性、奇偶性、单调性和周期性。
4、初等函数(1) 基本初等函数① 幂函数:y x μ=(μ为任意实数), y kx b =+, 2y ax bx c =++ ② 指数函数:x y a =(0a >且1a ≠) ③ 对数函数:log a y x =(0a >且1a ≠)。
恒等式: log (0,1)a N a N a a =>≠ 换底公式: log log log c a c bb a=运算的性质:log log log a a a xy x y =+,log log log aa a yy x x=-。
④ 三角函数:sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ======。
⑤ 反三角函数:arcsin ,arccos ,arctan ,cot y x y x y x y arc x ====。
(2) 反函数: (3) 复合函数: 5、常见的经济函数(1) 成本函数、收益函数和利润函数01()()C x C C x =+, ()()R x p x x =⋅,()()()L x R x C x =-。
(2) 需求函数与供给函数 (),()d d s s Q f p Q f p ==二、极限的概念与性质1、数列的极限 (1) 数列(2) 数列极限的定义 (3) 数列极限的几何意义 2、函数的极限(1) 当自变量x →∞时函数()f x 的极限 (2) 当自变量0x x →时函数()f x 的极限 (3) 左右极限3、函数极限的主要性质极限的唯一性、局部有界性、局部保号性。
大一上微积分的知识点总结

大一上微积分的知识点总结微积分是数学的一个重要分支,是研究物体变化和运动的规律的数学工具。
在大一上学期的微积分课程中,我们学习了许多基础的微积分知识点。
本文将对这些知识点进行总结,以便加深理解和复习。
一、导数与微分导数是描述函数变化率的概念。
在微积分中,我们学习了如何计算函数的导数,并研究了导数的性质和应用。
导数的计算方法包括基本函数的求导法则,如常数规则、幂函数规则、指数函数规则、对数函数规则、三角函数规则等。
此外,我们还学习了利用导数来解决最优化问题、刻画曲线的凹凸性和拐点等内容。
微分是导数的几何意义,描述了函数局部近似线性化的过程。
利用微分,我们可以计算函数在某一点的增量和近似值。
微分的计算方法包括利用导数求微分和利用微分的性质进行计算。
二、积分与定积分积分是导数的逆运算,表示曲线下的面积。
在微积分课程中,我们主要学习了不定积分和定积分两个概念。
不定积分是求导运算的逆运算,表示函数的原函数。
我们学习了求不定积分的基本方法,如分部积分法、换元积分法等。
通过不定积分,我们可以得到函数的通解。
定积分是求曲线下面积的运算。
我们学习了利用定积分计算曲线下面积的方法,如用定积分求曲线与坐标轴所围成的面积、利用定积分计算弧长等。
三、微分方程微分方程是描述变化率关系的方程。
在微积分课程中,我们学习了一阶和二阶微分方程的基本概念和解法。
一阶微分方程的解法包括分离变量法、齐次方程法、一阶线性微分方程法等;二阶微分方程的解法包括特征方程法、常系数法等。
通过学习微分方程的解法,我们可以求得函数的特解,满足初始条件的解。
四、多元函数的导数与积分多元函数是自变量有多个的函数,我们学习了多元函数的偏导数和全微分。
偏导数描述了多元函数在某一方向上的变化率,全微分则表示了多元函数在各个方向上的线性化过程。
多元函数的积分可以通过重积分进行计算,如二重积分和三重积分。
以上是大一上学期微积分课程的主要知识点总结。
通过学习这些知识,我们能够更好地理解函数的性质和变化规律,为后续学习和应用打下坚实的基础。
大学微积分l知识点总结(一)

大学微积分l知识点总结【第一部分】大学阶段准备知识1、不等式:引申双向不等式:两侧均在ab≥0或ab≤0时取等号柯西不等式:设a1、a2、..。
a n,b1、b2、。
..b n均是实数,则有:2、函数周期性和对称性的常用结论1、若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b—x),则f(x)具有对称性。
口诀:“内同表示周期性,内反表示对称性”2、周期性(1)若f(x+a)=f(b+x),则T=|b—a|(2)若f(x+a)=—f(b+x),则T=2|b-a|(3)若f(x+a)=±1/f(x),则T=2a(4)若f(x+a)=【1—f(x)】/【1+f(x)】,则T=2a(5)若f(x+a)=【1+f(x)】/【1-f(x)】,则T=4a3、对称性(1)若f(a+x)=f(b-x),则f(x)的对称轴为x=(a+b)/2(2)若f(a+x)=-f(b-x)+c,则f(x)的图像关于((a+b)/2,c/2)对称4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然.(1)若f(x)的图像有两条对称轴x=a和x=b,则f(x)必定为周期函数,其中一个周期为2|b-a|。
(2)若f (x)的图像有两个对称中心(a ,0)和(b ,0),(a ≠b),则f(x )必定为周期函数,其中一个周期为2|b-a |。
(3)若f (x )的图像有一个对称轴x=a 和一个对称中心(b,0),(a ≠b ),则f (x)必定为周期函数,其中一个周期为4|b-a |.3、三角函数倒数关系: 商的关系: 平方关系:平常针对不同条件的两个常用公式: 一个特殊公式: 二倍角公式: 半角公式: 三倍角公式: 万能公式: 两角和公式: 和差化积公式: 积化和差公式:口诀:奇变偶不变,符号看象限4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
大一微积分基础知识点总结

大一微积分基础知识点总结微积分是数学的重要分支,对于大一学生来说,微积分是一个重要的学科。
它是理解和应用其他科学和工程学科的基础。
在大一的微积分课程中,我们学习了许多基础知识点。
下面是对这些知识点的总结。
1. 函数和极限函数是微积分的基础概念之一。
我们学习了如何定义函数、函数的性质以及函数的图像。
在函数的基础上,我们引入了极限的概念。
极限描述了函数在某一点附近的变化趋势。
我们学习了如何计算极限,并且掌握了一些常见函数的极限计算方法。
2. 导数和微分在微积分中,导数是一个重要的概念。
导数描述了函数在某一点的斜率,也可以理解为函数的变化率。
我们学习了如何计算导数,并且掌握了一些基本的导数计算法则。
导数的应用广泛,例如在求解函数的最大值和最小值、描绘函数的图像等方面。
3. 积分积分是导数的逆运算,也是微积分中的一个重要概念。
我们学习了如何计算不定积分和定积分,并且掌握了一些基本的积分计算方法。
积分在求解曲线下面积、求解定积分等方面有广泛的应用。
4. 微分方程微分方程是微积分的一个重要应用领域。
微分方程描述了变量之间的关系及其导数与变量的关系。
我们学习了如何求解一阶和二阶微分方程,并且掌握了一些基本的求解方法。
微分方程在物理、生物、经济等领域都有广泛的应用。
5. 泰勒级数泰勒级数是一种用无穷级数表示函数的方法,是微积分中的一个重要概念。
我们学习了如何计算函数的泰勒级数,并且掌握了一些基本的计算技巧。
泰勒级数在函数的近似计算、数值计算等方面有广泛的应用。
6. 空间解析几何空间解析几何是微积分的一个扩展领域。
我们学习了三维空间中点、直线、平面以及它们之间的关系和性质。
通过空间解析几何,我们可以进一步理解和应用微积分中的概念。
以上总结了大一微积分课程中的一些基础知识点。
这些知识点对于我们理解微积分的基本概念和方法非常重要,也为我们进一步学习和应用微积分打下了坚实的基础。
希望通过这篇总结,能够让大家对微积分的基础知识点有一个清晰的理解。
微积分大一上学期知识点笔记

微积分大一上学期知识点笔记微积分是数学的一个分支,研究数学函数的变化和性质,被广泛应用于自然科学、工程学以及经济学等领域。
下面是微积分大一上学期的知识点笔记,帮助大家回顾和总结学习内容。
一、函数与极限函数是一种特殊的关系,将一个数集的每个元素与另一个数集中的唯一元素相对应。
函数的表示方式有多种,例如函数表达式、图像等。
极限是函数概念的重要部分。
设函数f(x)在点x=a的某个去心邻域内有定义,如果存在常数L,对于任意给定的正数ε,都存在正数δ,使得当0 < |x - a| < δ时,有|f(x) - L| < ε成立,则称函数f(x)当x趋近于a时的极限为L,记作lim┬(x→a)〖f(x) = L〗。
二、导数与微分导数是描述函数在某一点的变化率,或者说切线的斜率。
设函数f(x)在点x=a的某个去心邻域内有定义,如果极限lim┬(h→0)〖(f(a+h) - f(a))/h = L〗存在,则称函数f(x)在点x=a处可导,L为函数f(x)在x=a处的导数,记作f'(a)。
导数的求解可以使用导数的定义或求导法则。
微分是导数的一个应用,仅在某一点附近考虑,表示函数在该点的局部变化。
记dx为自变量x的增量,dy为函数y=f(x)在x点的增量,则有dy = f'(x)dx。
微分可以近似描述函数的变化情况,例如在曲线上某一点的切线方程。
三、常用函数的导数计算1. 幂函数导数计算:设f(x) = x^n,其中n为自然数,则f'(x) = nx^(n-1)。
2. 指数函数导数计算:设f(x) = a^x,其中a为正数且a≠1,则f'(x) = a^x * lna。
3. 对数函数导数计算:设f(x) = lnx,则f'(x) = 1/x。
4. 三角函数导数计算:常见的三角函数包括正弦函数sinx、余弦函数cosx、正切函数tanx等。
它们的导数分别为cosx、-sinx、sec^2x。
大一微积分每章知识点总结

大一微积分每章知识点总结微积分是数学的重要分支之一,用于研究变化率与累积效应。
在大一微积分课程中,我们学习了许多重要的知识点,这些知识点为我们进一步学习高级数学打下了坚实的基础。
本文将对大一微积分每章的知识点进行总结,以帮助读者巩固所学内容。
第一章:函数与极限在这一章中,我们学习了函数的概念与性质,以及极限的定义与运算法则。
函数是一种将一个数集映射到另一个数集的规则,可以用数学公式或图形表示。
极限是函数在某个点无限接近于某个值的情况,是微积分的基础概念之一。
第二章:导数与微分导数是用来描述函数变化率的概念,它表示函数在某一点处的切线斜率。
我们学习了导数的计算方法,包括基本导数公式、加减乘除法则、链式法则等。
微分则是导数的应用,用于计算函数在某一点的近似值,并研究函数的局部特征。
第三章:微分中值定理与导数的应用在这一章中,我们学习了微分中值定理和导数的应用。
微分中值定理是描述函数在某个区间内存在某点的斜率等于该区间的平均斜率的定理,包括拉格朗日中值定理和柯西中值定理。
导数的应用包括函数的单调性、极值点、凹凸性等的判断与求解。
第四章:不定积分不定积分是导数的逆运算,用于求解函数的原函数。
我们学习了不定积分的基本性质和常用的积分公式,包括换元法、分部积分法、有理函数的积分等。
通过不定积分,我们可以求解函数的面积、曲线长度等问题。
第五章:定积分与定积分的应用定积分是用来计算曲线下面积的工具,也可以表示变化率与累积效应。
我们学习了定积分的定义和性质,以及计算定积分的方法,如换元法、分部积分法和定积分的几何应用等。
定积分的应用包括计算曲线的弧长、质量、物体的质心等。
第六章:微分方程微分方程是用导数和未知函数构成的方程,研究函数之间的关系。
我们学习了常微分方程的基本概念和解法,包括一阶线性微分方程和可分离变量的方程等。
微分方程是实际问题建模与求解的重要工具,应用广泛于物理、化学、工程等领域。
通过对大一微积分每章的知识点进行总结,我们回顾了函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分与定积分的应用、微分方程等内容,巩固了所学知识,并为之后学习高级数学打下了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
————————————————————————————————作者:
————————————————————————————————日期:
ﻩ
大一(上)微积分知识点
第1章函数
1、A B= ,则A、B是分离的。
二、设有集合A、B,属于A而不属于B的所有元素构成的集合,称为A与B的差。
④当极限过程是 时,分子最高次项的指数低于分母最高次项的指数时,结果为0;分子最高次项的指数高于分母最高次项的指数时,结果为 ;分子、分母最高次项的指数相等时,结果为最高次项的系数比。
八、两个重要极限:
九、等价无穷小量(乘积的时候才可以换):
十、证明在某一点 处连续:需证明
十一、出现函数的间断点的情况:
A-B={x|x A且x B}(属于前者,不属于后者)
三、集合运算律:交换律、结合律、分配律与数的这三定律一致;
摩根律:交的补等于补的并。
四、笛卡尔乘积:设有集合A和B,对 x A, y B,所有二元有序数组(x,,y)构成的集合。
五、相同函数的要求:定义域相同对应法则相同
六、求反函数:反解互换
七、关于函数的奇偶性,要注意:
推论:如果函数 在闭区间 上连续,且 与 异号,则至少存在一点 ,使得 。
第3章导数与微分
1、 在 处不可导( 就在 处不可导)
第5章不定积分
一、基Hale Waihona Puke 积分公式表:1、2、
3、
4、
5、
6、
7、
8、
9、
10、
11、
12、
13、
14、
15、
16、
17、
18、
19、
20、
二、一般地,如被积函数含有 ,令 =t,可以消去根号,如被积函数含有 , ,令 =t,k为m与n的最小公倍数,可同时消去两个根号。
在点 处 没有定义;
不存在;
虽然 有定义,且 存在,但
十二、间断点分类:
1、第一类间断点:如果函数 在点 处的左、右极限都存在,但不全等于 ,就称点 为 的第一类间断点。
可去间断点(属于第一类间断点):函数间断点的左、右极限存在并相等,只是不等于该点的函数值,那么我们可以重新定义函数在间断点的值,使得所形成的函数,在该点连续。
三、无穷小量的几个性质:
1、 =0,则
2、若 = =0,则
3、若 = =0,则 ·
4、若g(x)有界(|g(x)|<M),且 =0,则 ·g(x)=0
四、无穷小量与无穷大量的关系:
若y是无穷大量,则 是无穷小量;
若y(y 0)是无穷小量,则 是无穷大量。
5、无穷小量的阶数比较(假设 ):
若 称f(x)是较g(x)高阶的无穷小量;
若 称f(x)是较g(x)低阶的无穷小量;
若 称f(x)是较g(x)同阶的无穷小量;
④若 称f(x)是较g(x)等价的无穷小量,记为 。
六、极限的运算法则:
= · = ·
· = ④ =
⑤ = ⑥
七、求极限的几种技巧:
当极限过程是 时,除以最高次项;
当带有根号时,进行有理化;
当遇到分式的加、减运算时,进行通分;
1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数;
2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的 , 成立,则 为偶函数;若对所有的 , 成立,则 为奇函数;若 或 不能对所有的 成立,则 既不是奇函数也不是偶函数;
3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。
第2章极限与连续
一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。
二、极限存在定理:左、右极限都存在,且相等。
三、三角代换:
被积函数含有 ,可作代换 或
被积函数含有 ,可作代换 或
被积函数含有 ,可作代换 或
化被积函数为新变量t的三角函数的积分,积分后将新变量t还原为原积分变量x时,可借助直角三角形的边角关系找出积分结果中新变量t的三角函数还原为原积分变量的关系式。
跳跃间断点(属于第一类间断点):函数间断点的左、右极限存在但不相等。
2、第二类间断点:如果函数 在点 处的左、右极限至少有一个不存在,就称点 为 的第二类间断点。
无穷间断点(属于第二类间断点):只要左右极限有一个为 。
振荡间断点
13、介值定理:如果函数 在闭区间 上连续,m和M分别为 在 上的最小值和最大值,则对介于m与M之间的任一实数c(即 ),至少存在一点 ,使得 。