浙江省慈溪市横河初级中学八年级数学上册 1.2第二节平行线的判定教案(2) 新人教版

合集下载

浙江省慈溪市横河初级中学八年级数学上册 1.2第二节平行线的判定教案 新人教版

浙江省慈溪市横河初级中学八年级数学上册 1.2第二节平行线的判定教案 新人教版

〖教学目标〗◆1、理解平行线的判定方法1:同位角相等,两直线平行;◆2、学会用“同位角相等,两直线平行”进行简单的几何推理; ◆3、体会用实验的方法得出几何性质(规律)的重要性与合理性. 〖教学重点与难点〗◆教学重点:是“同位角相等,两直线平行”的判定方法.◆教学难点:是例1的推理过程的正确表达.〖教学过程〗1. 合作动手实验引入复习画两条平行线的方法:提问:(1)怎样用语言叙述上面的图形?(直线l1,l2被AB 所截)(2)画图过程中,什么角始终保持相等?(同位角相等,即∠1=∠2)(3)直线l1,l2位置关系如何?( l1∥l2)(4)可以叙述为:∵∠1=∠2∴l1∥l2 ( ? )2. 平行线的判定方法1:由上面,同学们你能发现判定两直线平行的方法吗?o o A BL 1L 2(图形的平移变换)抽象成几何图形A B 21L 1L 2语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两 条直线平行。

简单地说:同位角相等,两直线平行。

几何叙述:∵∠1=∠2∴l1∥l2 (同位角相等,两直线平行)3. 课堂练习:4.画图练习: ab c 12若∠1=∠2则b c 12a c b 若a⊥b,b⊥c 则a cA B CD 123若∠ ∠ 则AD∥BC A B CD 123若∠1=∠2 则 ∥ 若 = 则AB ∥DCP6 课内练习1、3P6 作业题15. 例1 P6已知直线l1,l2被l3所截,如图,∠1=45°,∠2=135°,试判断l1与l2是否平行.并说明理由.解:l1 ∥ l2理由如下:∵ ∠2+∠3=180°,∠2=135° ∴∠3=180°-∠2=180°-135°=45° ∵∠1=45°∴∠1=∠3∴l1∥l2(同位角相等,两直线平行)思路:(1)判定平行线方法.(2)图中有无同位角(注∠3位置)(3)能说明∠3=∠1吗?(4)结论.(5)∠3还可以是其它位置吗?你能说明l1∥l2吗?6.练习:P7 作业题3作业题2作业题4对于2、4你有不同的方法吗?7.小结与反思:(1) 你学到了什么?(2) 你认为还有什么不懂的?(3) 你有什么经验与收获让同学们共享呢?8.布置作业.见作业本 l 3l 1l 2123。

浙江省慈溪市横河初级中学八年级数学上册 1.2第二节平行线的判定教案(1) 新人教版

浙江省慈溪市横河初级中学八年级数学上册 1.2第二节平行线的判定教案(1) 新人教版

【教学目标】1.知识与技能:(1)理解平行线的判定方法一:同位角相等,两直线平行。

(2)会用“同位角相等,两直线平行”进行简单的几何推理,培养推理能力。

2.过程与方法:经历平行线判定方法一的发现过程,体验数学语言进行推理的简洁性。

3.情感态度与价值观:让学生体会用数学实验得出几何规律的重要性与合理性。

【重点难点】重点:利用“同位角相等,两直线平行”判定两条直线平行。

难点:用数学语言表达几何的推理过程。

【教学过程】教学环节活动过程设计意图创设情景引入新课1.复习:你会用直尺和三角板推画平行线吗?请画一画。

2.学生画好后,教师出示图1,并提问:在推画平行线的过程中,有哪些量保持不变?l1l1l2l2图 1通过对平行线画法形成过程的复习,为学习新课打好基础。

合作探究获取结论1.讨论:(1)上面的画法可以看作是哪一种图形变换?(2)在画图过程中,什么角保持不变?(3)把图中的直线l1、l2看成被AB所截,则l1和l2的位置有什么关系?(4)你能用数学语言叙述上面的结论吗?复习旧知识,为学习新知识作好准备。

2.在学生讨论归纳的基础上,教师归纳小结出“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

”简单地说就是“同位角相等,两直线平行”。

培养学生合作交流的意识,并在合作交流中形成对知识的认识。

教学环节活动过程设计意图合作探究获取结论3.练习:看图2,完成填空。

(1)如图1(1)所示,若a⊥c,b⊥c,则∠1=∠2=900,所以∥。

(2)如图1(2)所示,若∠1=∠,则AB∥CD。

及时巩固所学知识,加强应用。

讲练结合放飞思维1.讲解课本例1(先引导学生进行分析,然后教师解题)。

分析:要判定l1与l2是否平行,只要考虑∠1是否与∠3相等。

由条件知∠1=450,为此只要确定∠3是否为450即可。

引申:当∠3与哪个角相等时,你也可以判定l1∥l2?2.补充讲解例2:如图3所示,点D是CB延长线上的一点,已知BE平分∠ABD,∠C=620,∠ABD=1240,则BE∥AC吗?请说明理由。

八年级数学上册 1.3 平行线的性质(第2课时)教案 浙教版

八年级数学上册 1.3 平行线的性质(第2课时)教案 浙教版

平行线的性质【教学目标】◆知识目标:理解掌握平行线的性质并能应用◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。

◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

【教学重点、难点】◆重点:平行线的性质是重点◆难点:例4是难点【教学过程】一、知识回顾:1、平行线的判定2、平行线的性质二、1.合作学习:如图,直线AB∥CD,并被直线EF所截。

∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:(1)图中有哪几对角相等?(2)∠3与∠1有什么关系?∠4与∠2有什么关系?2.你发现平行线还有哪些性质?平行线的性质:两条平行线被第三条直线所截,内错角相等。

简单地说,两直线平行,内错角相等。

两条平行线被第三条直线所截,同旁内角互补。

简单地说,两直线平行,同旁内角互补。

3.做一做:如图,AB,CD被EF所截,AB∥CD(填空)若∠1=120°,则∠2= ()∠3= -∠1= ()4.例3 如图1-14,已知AB∥CD,AD∥BC。

判断∠1与∠2是否相等,并说明理由。

思考下列几个问题:(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?(3)那么∠1与∠2是否相等?为什么?解:∠1=∠2∵AB∥CD(已知)∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)∴∠2+∠BAD=180°(两直线平行,同旁内角互补)∴∠1=∠2(同角的补角相等)讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?5.练一练:(P.14课内练习1、2)6.例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。

∠CBD与∠D相等吗?请说明理由。

思考下列几个问题:(1)AB与CD平行吗?为什么?(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?(3)∠CBD与∠ABD相等吗?为什么?教学反思学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.所以理解由判定公理推出判定定理的证明过程是重点,也是难点.。

八年级数学上册《平行线的判定》教案、教学设计

八年级数学上册《平行线的判定》教案、教学设计
5.教师点评:强调平行线知识在实际生活中的应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学内容,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,重点在于运用平行线的判定方法解决问题。
要求:学生在完成作业时,注意理解题意,规范作图,仔细计算,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平行线的定义及其判定方法,包括同位角相等、内错角相等、同旁内角互补等。
2.难点:理解平行线性质的推理过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际案例,让学生感知平行线在实际中的应用,激发学生学习兴趣。
例:在建筑工地,工人师傅如何保证两条直线平行?引导学生思考平行线在实际生活中的重要性。
二、学情分析
八年级学生已经具备了一定的几何基础,掌握了直线、射线、角等基本概念,能够进行简单的几何推理。在此基础上,学习平行线的判定,对于学生来说是一个新的挑战。他们需要将已知的几何知识进行拓展,运用逻辑推理和空间想象能力来探索平行线的性质和判定方法。考虑到学生的认知发展水平,他们可能在学习过程中遇到以下困难:对平行线性质的理解不够深入,判定方法的选择和应用存在困惑,以及在实际问题中运用平行线知识解决问题的能力不足。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,鼓励学生积极参与讨论,培养他们的几何思维和解决问题的能力。同时,通过实际案例的引入,激发学生的学习兴趣,增强他们对数学知识实用性的认识。
(2)针对学生的疑惑,给予耐心解答,帮助他们克服学习难点。
(3)课后辅导,针对学生的薄弱环节,进行有针对性的辅导。
6.评价方式多样化,关注学生的全面发展。

八年级数学上册 1.2平行线的判定(2)导学案 浙教版

八年级数学上册 1.2平行线的判定(2)导学案 浙教版

EF4A BC D132EFGA BC D132H内容:1.2平行线的判定(2)课型:新授授课时间:2009年月日学习目标1.使学生掌握平行线的第二、三个判定方法.2.能运用所学过的平行线的判定方法,进行简单的推理和计算.3.使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法.学习重点:是第二、三个判定方法的发现、说理和应用。

学习难点:问题的思考和推理过程是难点。

学习过程:一、课前导学(一)自主预习课本P8---P10,并思考以下问题:1. 如图,(1)∠1与∠3是直线被直线所截而得到的角;(2)∠2与∠E是直线被直线所截而得到的角;(3)∠4与∠E是直线被直线所截而得到的角;2. 如图,直线a、b被c所截,当时,a//b.。

(二)预习中你有哪些困惑?二、新课学习1. 合作学习,提出猜想.①图中,直线AB与CD被直线EF所截,若∠3=∠4,则AB与CD平行吗?②图中,直线AB与CD被直线EF所截,若∠2+∠4=180°,则AB与CD平行吗?归纳平行线判定方法2、3.文字叙述:几何语言:做一做:(1)如图,∠1=121°,∠2=120°,∠3=120°。

说出其中的平行线,并说明理由。

A C DB ED A B C(2)如图,直线a 、b 被直线l 所截。

①若∠1=75°, ∠2=75°,则a 与b 平行吗?请说明理由;②若∠2=75°, ∠3=105°,则a 与b 平行吗?请说明理由;2. 例1:如图,根据下列条件可判定哪两条直线平行?并说明理由。

(1)∠1=∠2;(2)∠3=∠A ;(3)∠A+∠2+∠4=180°.3. 例2:如图,∠C+∠A=∠AEC 。

判断AB 与CD 是否平行,并说明理由。

4.例3:如图∠A+∠B+∠C+∠D=360°,且∠A=∠C ,∠B=∠D ,那么AB ∥CD ,AD ∥BC .请说明理由。

初中平行线的判定教案

初中平行线的判定教案

初中平行线的判定教案教学目标:知识与技能目标:理解平行线的定义,掌握平行线的判定方法,能够运用判定定理进行证明。

过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

教学重点:平行线的定义,平行线的判定方法。

教学难点:平行线的判定定理的理解和应用。

教学准备:三角板、直尺、橡皮擦、多媒体教学设备。

教学过程:一、导入新课1. 利用多媒体展示生活中含有平行线的图片,如教室的黑板、自行车的轮胎等,引导学生观察并说出平行线的特点。

2. 教师总结平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

二、探究平行线的判定方法1. 教师提出问题:如何判断两条直线是否平行?2. 学生分组讨论,教师巡回指导。

3. 各小组汇报讨论成果,教师总结并给出平行线的判定方法:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

三、例题讲解1. 教师出示例题,引导学生运用判定方法进行解答。

2. 学生独立思考,教师巡回指导。

3. 学生汇报解题过程,教师点评并总结。

四、练习巩固1. 教师出示练习题,学生独立完成。

2. 教师选取部分学生的作业进行点评,指出错误并讲解。

五、课堂小结1. 教师引导学生总结本节课所学内容,巩固平行线的定义和判定方法。

2. 学生分享学习收获,教师给予鼓励和评价。

六、课后作业1. 完成课后练习题。

2. 观察生活中的平行线,拍摄照片,下节课分享。

教学反思:本节课通过观察生活中的平行线,引导学生发现平行线的特点,从而引入平行线的定义。

在探究平行线的判定方法时,鼓励学生分组讨论,培养学生的合作意识。

在例题讲解和练习巩固环节,注重培养学生的逻辑思维能力和空间想象能力。

通过课堂小结和课后作业,使学生巩固所学知识,提高运用所学知识解决实际问题的能力。

整体来说,本节课教学目标明确,教学方法得当,学生参与度高,达到了预期的教学效果。

初中数学说课教案平行线的判定

初中数学说课教案平行线的判定

初中数学说课教案:平行线的判定《平行线的判定》说课稿今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。

下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。

一、教学内容“平行线”是我们在日常生活中都经常接触到的。

它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。

在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。

在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。

经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行”。

因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。

在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。

它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。

在七年级的学习中,学生已经初步接触了简单的说理过程。

因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。

二、教学目标基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。

由此确定本节课的教学目标为:1、让学生通过直观认识,掌握平行线的判定方法;2、会根据判定方法进行简单的推理并能写出简单的说理过程;3、运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。

同时确定本节课的重难点:重点:在观察实验的基础上进行判定方法的概括与推导.难点:方法的归纳、提炼;例2教学中的辅助线的添加。

三、教学方法及手段布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。

八年级数学上册《平行线的性质定理和判定定理》教案、教学设计

八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
(2)运用判定定理判断两条直线是否平行。
(3)综合应用平行线的性质和判定定理解决几何问题。
2.根据课堂学习,同学们尝试自己设计一道关于平行线的性质或判定的几何题目,并给出解题步骤和答案。
3.结合生活中的实例,举例说明平行线的性质定理在实际中的应用,并简述其原理。
4.撰写一篇关于平行线性质定理和判定定理的学习心得,内容包括:
(4)情境教学:创设生活情境,让学生在实际问题中感受几何知识的应用价值。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如参与度、思维活跃度等,及时给予鼓励和指导。
(2)形成性评价:通过作业、测试等形式,了解学生对平行线性质定理和判定定理的掌握程度。
(3)综合性评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评估学生的学习成果。
3.布置课后作业,巩固学生对平行线性质和判定方法的理解。
4.鼓励学生继续探索几何知识,激发他们对数学的兴趣和热情。
五、作业布置
为了巩固学生对平行线性质定理和判定定理的理解,以及提高学生的几何解题能力,特布置以下作业:
1.请同学们完成课本第十章第2节后的练习题,重点掌握以下题型:
(1)运用性质定理解决角度问题。
八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平行线的定义,掌握平行线的性质定理,如同位角相等、内错角相等、同旁内角互补等。
2.学会使用直尺和圆规画平行线,掌握平行线的判定定理,如同位角相等、内错角相等、同旁内角互补等。
3.能够运用平行线的性质和判定定理解决几何图形中的相关问题,如求角度、证明线段平行等。
(1)自己在本节课中的收获和感悟。
(2)对平行线性质定理和判定定理的理解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〖教学目标〗
1、使学生掌握平行线的第二、三个判定方法.
2、能运用所学过的平行线的判定方法,进行简单的推理和计算.
3、使学生初步理解;“从特殊到一般,又从一般到特殊”是认识客观事物的基本方法. 〖教学重点与难点〗
教学重点:本节教学的重点是第二、三个判定方法的发现、说理和应用. 教学难点:问题的思考和推理过程是难点. 〖教学过程〗
一、从学生原有认知结构提出问题 如图,问21l l 与平行的条件是什么?
在学生回答的基础上再问:三线八角分为三类角, 当同位角相等时,两直线平行,
那么内错角或同旁内角具有什么关系时,也能判定两直线平行呢?这就是我们今天要学习的问题.(板书课题)
学生会跃跃欲试,动脑思考.
教师引导学生:将内错角或同旁内角设法转化为利用同位角相等. 二、运用特殊和一般的关系,发现新的判定方法 1.通过合作学习,提出猜想.
①若图中,直线AB 与CD 被直线EF 所截,若∠3=∠4,则AB 与CD 平行吗? 你可以从以下几个方面考虑:
⑴我们已经有怎样的判定两直线平行的方法? ⑵有∠3=∠4,能得出有一对同位角相等吗? 由此你又获得怎样的判定平行线的方法?
要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法二: 两条直线被第三条直线所截,如果内错角相等,则两条直线平行. 教师并强调几何语言的表述方法
∵∠3=∠4
∴AB ∥CD (内错角相等,两条直线平行)
然后,完成“做一做”
E
F
4
A B C
D
1
3 2 1l
2l
1
2 3
E
F
G
A
B C
D
1
3
2
H
∠1=121°, ∠2=120°,∠3=120°。

说出其中的平行线,并说明理由。

②若图中,直线AB 与CD 被直线EF 所截,若∠2+∠4=180°,则AB 与CD 平行吗? 你可以由类似的方法得到正确的结论吗? 由此你又获得怎样的判定平行线的方法?
要求学生板书说理过程,在此基础上.将“猜想”更改成判定方法三: 两条直线被第三条直线所截,如果同旁内角互补,则两条直线平行. 教师并强调几何语言的表述方法 ∵∠2+∠4=180°
∴AB ∥CD (同旁内角互补,两条直线平行)
当学生都得到正确的结论后,引导学生猜想:同旁内角互补,两条直线平行. 2.例题教学,体验新知
例2.如图,∠C+∠A=
∠AEC 。

判断AB 与CD 是否平行,并说明理由。

分析:延长CE ,交AB 于点F ,则直线CD ,AB 被直线CF 所截。

这样, 我们可以通过判断内错角∠C 和∠AFC 是否相等,来判定AB 与CD 是否平行。

板书解答过程。

提问:能否用不一样的方法来判定AB 与CD 是否平行? 提示:连结AC 。

例3 如图∠A+∠B+∠C+∠D=360°,且∠A=∠C ,∠B=∠D , 那么AB ∥CD ,AD ∥BC .请说明理由。

E
F
4
A B C D
1
3 2 A
C D B
E
A
C
D B E
F
先让学生思考,以小组为单位进行讨论,然后派出代表发言,学生基本上都能想到,用同旁内角互补,两条直线平行的判定,但书写难度较大,教师要加以引导说理过程 三、应用举例,变式练习(讲与练结合方式进行教学)
1、课内练习1、2
2、如图
⑴∠1=∠A ,则GC ∥AB ,依据是 ; ⑵∠3=∠B ,则EF ∥AB ,依据是
; ⑶∠2+∠A=180°,则DC ∥AB ,依据是 ; ⑷∠1=∠4,则GC ∥EF ,依据是 ; ⑸∠C+∠B=180°,则GC ∥AB ,依据是 ; ⑹∠4=∠A ,则EF ∥AB ,依据是 . 3怎样检验纸带的两条边沿是否平行?如果没有工具呢? 请说出你的方法和依据。

提示:可尝试用折叠的方法,与你的同伴交流。

四、小结
1.先由教师问学生:到目前为止学习了哪些判定两直线平行的方法?在选择方法时应注意什么问题?
2.在学生回答的基础上,教师总结指出: (1)学习了3种判定方法.
(2)学习了由特殊到一般,又由一般到特殊的认识客观事物的基本方法. (3)在平行线的判定问题中,要“有的放矢”,根据不同情况作出选择. 五、作业 选用课本题
A
B
F E G
D
C
1 2
3
4。

相关文档
最新文档