数学建模之微分方程建模与平衡点理论

合集下载

微分方程的平衡点及稳定性分析

微分方程的平衡点及稳定性分析
, () 4
者 可 以不 一致 , 比如 说 , 线性 近 似方 程 的平衡 点 为 中心 时 , 用其 它 的方 法来判 断( ) 要 4 式平 衡 点 的稳
12 判 定 平 衡 点 稳 定 性 的 方 法 .
① 间接法 : 定义3 的方法称为间接法。 ②直接法 : 不求方程式( 的解 ) 1 ) 0的方法 , 称
为直接法。 方法: 在 将 ) 。 处作泰勒展开, 只取一
次项 , 有微 分方 程 ( ) 近似 为 1可
变化规律 , 预测它的未来形态时 , 要建立对象 的动 态模 型 , 常 要用到 微分方 程模 型 。 通 而稳 定性 模 型 的对象仍是动态过程 ,而建模 的目的是研究时间 充分 长 以后 过程 的变 化趋 势— — 平衡 状 态是 否 稳 定。 稳定性模型不求解微分方程 , 而是用微分方程
) ) () 1
①羞 0 0则称 ), < 。 为方程(和(的稳定的 1 3 ) ) 平
衡点。
o 则称 为方 程() 3的不稳 定 的平 , 1和() 衡点。
定义2 代数方程 ) 的实根 。 : = 0 称为微分方
程() 1的平衡 点 。 定 义 3从 某 领 域 的任 意 值 出发 , 方 程 ( ) : 使 1
。 o 作 泰勒 展 开 , ,) y处 只取 一 次项 , (在 P 。 。 得 4 ) 0 ,) Y
的线 性近 似方 程 为 :
贝 ) 却 r0 则根据定理 1x O I => , , 是不稳定的平衡 =
点 . I 一rO 是稳定的平衡点。 厂) <,
分 析 : 平衡 点 的稳 定性 来 看 , 从 随着 时 间 的推 移 , 口的增 长在 人 处 趋于 稳定 , 也就 是人 口达

数学建模之机理模型建立的平衡原理

数学建模之机理模型建立的平衡原理

k x1 +1 = 1.22×1011n/(1.22×1011 + n)
得到迭代关系 X k+1 = Φ(X k ) 稳定性条件||J(x)||<1 是迭代函数的Jacobi矩阵。 ||J(x)||<1。 Jacobi矩阵 稳定性条件||J(x)||<1。J是迭代函数的Jacobi矩阵。 总的捕鱼量为
0 ≤ t ≤ 2/ 3 2/ 3 ≤ t ≤ 1
0 x4e−(r4 +E4 )t x4(t) = −2E4 −r4 (t−2) 0 3 x4e 3 e
不考虑新生鱼, 不考虑新生鱼,年末和年初鱼群数量的关系为
1 0 x1 = x1 e−r1 x = x e
1 2
0 −r2 2
x =x e
0 ≤ t ≤ 2/ 3 2/ 3 ≤ t ≤1
0 ≤ t ≤ 2/ 3 2/ 3≤ t ≤1
x4e−(r4 +E4 )t x4(t) = −2E4 −r4 (t−2) 3 x4e 3 e
例3:棒球球棒的SWEETSPOT的确定
问题:
由盐的数量守恒得到
p (t + ∆t )V (t + ∆t ) − p(t )V (t ) = ∫
等式两端同除以△ 等式两端同除以△t取极限得到
t + ∆t
t
pi (τ )ri (τ )dτ − ∫
t + ∆t
t
po (τ )ro (τ )dτ
d p(t )V (t ) = pi (t )ri (t ) − po (t )ro (t ) dt
1 3Байду номын сангаас
r 0.84 E4 − 3 − 0 3 3 3

《微分方程数学建模》课件

《微分方程数学建模》课件

实际问题的转化
了解如何将实际问题转化为数学模型, 培养建模思维。
边界条件的确定
掌握边界条件的重要性,学会确定合适 的边界条件来求解微分方程。
数学建模实例
弹性材料的振动问题
通过建立微分方程模型,分析弹 性材料的振动特性和共振现象。
传染病传播模型
运用微分方程建模技巧,研究传 染病在人群中的传播规律和防控 策略。
《微分方程数学建模》 PPT课件
这份PPT课件将带领您深入了解微分方程数学建模,并探讨其应用与意义。通 过丰富的实例和技巧,让您轻松掌握数学建模的要点。
微分方程数学建模简介
微分方程简述
了解微分方程的基本概念和定义,掌握它在数学建模中的核心作用。
微分方程的应用和意义
探索微分方程在科学、工程和社会问题中的广泛应用,体会它的重要性。
4 高阶线性微分方程
探讨高阶线性微分方程的常见形式和特殊解 法,拓宽解题思路。
5 常系数齐次线性微分方程
学习处理常系数齐次线性微分方程的技巧和 常见应用场景。
建立微分方程模型
1
变量的择和定义
2
学习选择和定义适当的变量来建立准确
和有效的微分方程模型。
3
模型的求解方法
4
了解常见微分方程模型的解法,探索解 析和数值解的求解技巧。
相关教材
推荐一些优秀的教材,帮助 您进一步学习微分方程和数 学建模。
网络资源
介绍一些优质的网络资源, 供您查阅更多有关微分方程 数学建模的资料。
城市汽车拥堵问题的建模
通过建立微分方程模型,解析城 市交通拥堵的成因和调控方案。
总结
1 微分方程数学建模的重要性
总结微分方程在解决实际问题中的重要作用和应用前景。

数学建模微分方程模型

数学建模微分方程模型

我国是世界第一人口大国,地球上每九 个人中就有二个中国人,在20世纪的一段 时间内我国人口的增长速度过快,如下表:
年 1908 1933 4.7 1953 6.0 1964 7.2 1982 10.3 1990 11.3 2000 12.95
人口(亿)3.0
有效地控制人口的增长,不仅是使我国全面进 入小康社会、到21世纪中叶建成富强民主文明的社 会主义国家的需要,而且对于全人类社会的美好理 想来说,也是我们义不容辞的责任。
1.人口模型
问题的提出 假设和定义 模型的建立 分析和求解 结论和讨论

1 问题的提出
人口问题是当今世界上最令人关注的问题之一, 一些发展中国家的人口出生率过高,越来越威胁着 人类的正常生活,有些发达国家的自然增长率趋于 零,甚至变为负数,造成劳动力紧缺,也是不容忽 视的问题。另外,在科学技术和生产力飞速发展的 推动下,世界人口以空前的规模增长,统计数据显 示:
模型的缺点
缺点:当t→∞时,I(t) → n,这表示所有的人最
终都将成为病人,这一点与实际情况不 符合
原因:这是由假设〔1)所导致,没有考虑病人可
以治愈及病人病发身亡的情况。 思考题:考虑有病人病发身亡的情况,再对模型 进行修改。
模型三 有些传染病(如痢疾)愈后免疫力很低,还有可能再
次被传染而成为病人。 模型假设: (1)健康者和病人在总人数中所占的比例分别为s(t)、i(t), 则: s(t)+i(t)=1 (2)一个病人在单位时间内传染的人数与当时健康人数成 正比,比例系数为k (3)病人每天治愈的人数与病人总数成正比,比例系数为 μ(称日治愈率),病人治愈后成为仍可被感染的健康者, 称1/ μ为传染病的平均传染期(如病人数保持10人,每 天治愈2人, μ =1/5,则每位病人平均生病时间为 1/ μ =5天)。

数学建模竞赛课件---微分方程模型

数学建模竞赛课件---微分方程模型
微分方程在生物学、物理学、化学和经济学等领域都有广泛的应用。它们可以用于模拟生物生长、物体 运动、热传导和经济增长等现象。
案例分析
通过几个具体案例,展示微分方程在建模竞赛中的应用。包括鱼的增长模型、自由落体问题、热传导问 题和稳定的经济增长模型。
结语
微分方程是数学建模竞赛中必不可少的工具,对于解决复杂问题具有重要作 用。通过系统学习和实践,可以掌握微分方程的解法和应用。
一阶微分方程
一阶微分方程是最基本的微分方程类型之一,包括可分离变量、齐次线性、 一阶线性和变量分离法等。掌握这些求解方法可以解决许多实际问题。
高阶微分方程
高阶微分方程是一阶微分方程的延伸,包括齐次线性、非齐次线性、常系数 和变系数等类型。熟练掌握这些求解方法可以应对更加复杂的建模问题。
微分方程在建模中的应用
数学建模竞赛课件---微分 方程模型
本课件介绍微分方程模型在数学建模竞赛中的重要性和应用。内容包括微分 方程的定义、分类、解法,以及在生物学、物理学、是数学中的重要工具,可用于描述自然现象和科学问题。它们分为 常微分方程和偏微分方程,并可以按类型进行分类。了解微分方程的解法对 于建模竞赛至关重要。

数学建模作业实验2微分方程实验

数学建模作业实验2微分方程实验

数学建模作业(实验2微分方程实验)基本实验1.微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随t 增加的运动方向,确定平衡点,并按稳定的、渐近稳定的、或不稳定的进行分类:,,,+1,(1)(2)(3)(4);2;2;2.dx dx dx dxx x y x dt dt dt dt dy dy dy dy y y x y dt dt dt dt ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎪⎪⎪⎪⎩⎩⎩⎩解答解:(1)由平衡点的定义可得,f (x )=x=0,f (y )=y=0,因此平衡点为(0,0),微分方程组的系数矩阵为1001A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=1=1λλ,;由根与系数的关系可得:1212()2010p q λλλλ=-+=-<==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(2)由平衡点的定义可得,f (x)=-x=0,f (y )=2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-1002A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=-1=2λλ,;由根与系数的关系可得:121210-(2<0)p q λλλλ=-+=-<==,,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(3)由平衡点的定义可得,f (x )=y=0,f (y )=-2x=0,因此平衡点为(0,0),微分方程组的系数矩阵为0120A ⎡⎤=⎢⎥-⎣⎦,显然其特征值为121.4142=4142=-1.i i λλ,;由根与系数的关系可得:12120 1.41420()p q λλλλ=-+===>,,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(4)由平衡点的定义可得,f (x )=-x=0,f (y )=-2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-100-2A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12==-12-λλ,;由根与系数的关系可得:1212()3020p q λλλλ=-+=>==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是稳定的。

数学建模之微分方程建模与平衡点理论

数学建模之微分方程建模与平衡点理论

微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。

(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。

(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。

一、模型的建立与求解 1.1传染病模型 (1)基础模型假设:t 时刻病人人数()x t 连续可微。

每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。

建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。

(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。

人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。

2.每位病人每天平均有效接触λ人,λ为日接触率。

有效接触后健康者变为病人。

依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:di N Nsi dtλ= (4)由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2 ~di i dt图形如下,结论:在不考虑治愈情况下①当12i =时didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。

数学建模 微分方程模型讲解

数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程列微分方程常用的方法: (1)根据规律列方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。

(2)微元分析法利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。

(3)模拟近似法在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。

一、模型的建立与求解传染病模型(1)基础模型假设:t 时刻病人人数()x t 连续可微。

每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。

建模:t 到t t +∆病人人数增加()()()x t t x t x t t λ+∆-=∆ (1)0,(0)dxx x x dtλ== (2) 解得:0()t x t x e λ= (3)所以,病人人数会随着t 的增加而无限增长,结论不符合实际。

(2)SI 模型假设:1.疾病传播时期,总人数N 保持不变。

人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。

2.每位病人每天平均有效接触λ人,λ为日接触率。

有效接触后健康者变为病人。

依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模:diNNsi dtλ= (4) 由于()()1s t i t += (5)设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型0(1),(0)dii i i i dtλ=-= (6) 解得:01()111kti t e i -=⎛⎫+- ⎪⎝⎭(7)用Matlab 绘制图1()~i t t ,图2~dii dt图形如下,结论:在不考虑治愈情况下 ①当12i =时didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时101ln 1m t i λ-⎛⎫=- ⎪⎝⎭②t →∞时人类全被感染。

未考虑治愈情况。

(3)SIS 模型假设:1.疾病传播时期,总人数N 保持不变。

人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。

2.每位病人每天平均有效接触λ人,λ为日接触率。

有效接触后健康者变为病人。

3.在所有病人中,每天有比例μ的人能被治愈,治愈后看作可被感染的健康者,传染病的平均传染期为1μ。

依据:患病人数的变化率= Nsi λ(患病人数的变化率)-Ni μ(治愈率) 建模:diNNsi Ni dtλμ=- (8)0(1),(0)dii i i i i dtλμ=-- = (9) 令σ为整个传染期内每位病人有效接触的平均人数,σλμ=。

则有11dii i dt λσ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦(10) 用Matlab 绘制出~dii dt(图3,图5)和 i~t (图4,图6)。

结论:1σ=为一个阈值。

①1σ>,()i t 极限值1()1i σ∞=-为增函数,()i t 的增减性由0i 的大小确定。

②1σ≤,病人比例()i t 越来越小,最终趋于0。

(4)SIR 模型(某些疾病患者治愈后获得了很强的免疫力,不会再次被感染) 假设:①总人数N 不变,将人群分为健康者,病人,和病愈免疫的移除者,他们在总人数中所占的比例依次为()s t ,()i t ,()r t 。

②λ为病人的日接触率,μ为日治愈率,σλμ=为传染期接触数。

建模:由假设1得()()()1s t i t r t ++= (11)drNNi dtμ= (12) 令t=0时健康者与病人所占比例分别为0000(0),(0)s s i i >>,则有00,(0),(0)disi i i i dt ds si s s dtλμλ⎧=-=⎪⎪⎨⎪=-=⎪⎩ (13)利用Matlab 绘制出()i t ,()s t (图7),~i s (图8)图形,~i s 图形称为相轨线。

相轨线分析:利用相轨线讨论解()i t ,()s t 的性质。

~s i 平面称为相平面,相轨线在其上的定义域为(,)s i D ∈为(){},0,0,1D s i s i s i =≥≥+≤ (14)消去方程中的dt ,并由σ得到011,s s di ii ds sσ==-= (15)解得:()0001ln si s i s s σ=+-+(16) 在定义域D 内,相轨线是上式所表示的曲线,如图9所示,其中箭头表示随着时间t 的增加()s t 和()i t 的变化趋势。

下面分析()s t 、()i t 和()r t 的变化情况(t →∞时它们的极限值分别记做,s i ∞∞和r ∞)①不论初始条件00,s i 如何,病人最终会消失,0i ∞= ,证明:首先,由式(13),0ds dt ≤,而()0s t ≥,所以s ∞存在;由式(11),0dr dt≥,而()1r t ≤,所以r ∞存在;由式(11)得i ∞存在。

其次,若0i ε∞=>,则由式(11),对于充分大的t 有2drdtεμ>,导致r ∞=∞,与r ∞存在相矛盾。

从图形来看,无论相轨线从何点出发,最终都将与s 轴相交。

②令式(16)中0i =,则最终未被感染的健康者的比例是s ∞,s ∞为方程0001ln 0s s i s s σ∞∞+-+= (17) 在(0,1/)σ内的根,在图形上表示为相轨线与s 轴在(0,1/)σ内交点的横坐标。

③若01/s σ>,则()i t 先增加,当1/s σ=时,()i t 达到最大值0001(1ln )i s i s σσ∞=+-+ (18)然后()i t 减小且趋于0,()s t 单调减小至s ∞,如图中由1P 出发的相轨线。

④若01/s σ≤,则()i t 单调减小至0,()s t 单调减小至s ∞,如图中由2P 出发的相轨线。

结论:①若病人比例有一段时间增长即认为传染病在蔓延,则1/σ为一个阈值,01/s σ>时蔓延。

可以通过减小σ 使01/s σ≤,使传染病不蔓延。

②01/s σ>,σ减小时,s ∞增加,也能控制蔓延程度。

捕鱼模型考察一个渔场,其中鱼量在天然环境下按一定规律增长、如果捕捞量恰好等于增长量,那么渔场鱼量将保持不变,这个捕捞量就可以持续. ①产量模型假设:()x t 为渔场中鱼量。

1.无捕捞时,鱼的的增长服从logistic 规律,即 ()()1x x t f x rx N ⎛⎫==-⎪⎝⎭(19)其中:r 表示固有增长率,N 表示环境容许的最大鱼量,()f x 表示单位时间的增长量。

2. 用E 表示单位时间捕捞率,单位时间捕捞量和渔场鱼量()x t 成正比,则有单位时间捕捞量为()h x Ex = (20)建模:捕捞情况下渔场鱼量满足()()1x x t F x rx Ex N ⎛⎫==-- ⎪⎝⎭(21)其中:()()()F x f x h x =-。

判断()x t 的稳定条件,求式(21)的平衡点,分析其稳定性。

令式(21)为0,得两个平衡点:01(1),0E x N x r=-= (22)稳定性判断01(),()F x E r F x r E ''=-=-当E r <时01()0,()0F x F x ''<>,则0x 点稳定,1x 点不稳定。

当E r >时01()0,()0F x F x ''><,则1x 点稳定,0x 点不稳定。

分析:用E 表示捕捞率,r 表示固有增长率。

①当E r <时,可使鱼量稳定在0x ,获得稳定产量。

②当E r >时,1x 稳定,渔场干枯。

根据(19),(20)式分别绘制曲线()y f x =及()()y h x E x ==,使用Matlab 绘制图形如下所示,得两曲线交点为P ,则P 横坐标为稳定平衡点0x ,纵坐标为稳定条件下单位时间的产量,当交点位于抛物线顶点时获得最大的持续产量,此时的稳定平衡点为*02N x =, 单位时间的最大持续产量为4m rN h =,捕捞率*2rE =。

结论:将捕捞率控制在固有增长率r 的一半,即使渔场鱼量保持在最大鱼量的一半时,能够获得最大的持续产量。

②效益模型(经济效益=总收入收入-成本)假设:鱼销售单价p ,单位捕捞率费用是c ,单位时间收入为T ,成本为S ,单位利润为R ,则有()T ph x pExS cER T S pEx cE ====-=- (23)建模:在稳定条件0x x =下,将式(22)代入式(23)得()()()(1)ER E T E S E pNE cE r=-=-- (24) 求出使利润最大的捕捞强度为12R r c E pN ⎛⎫=- ⎪⎝⎭(25)最大利润下的渔场稳定鱼量R x 和单位时间的持续产量R h 22R N cx p=+ (26) 222(1)14R R R x rN c h rx N p N⎛⎫=-=- ⎪⎝⎭(27) 结论:当有最大效益时,捕捞率和持续产量都减小,渔场应保持的稳定鱼量增加,捕捞成本越大或销售价格越低所需减少增大的部分越大。

③捕捞过度:封闭式捕捞追求利益最大,开放式捕捞只追求利润。

令式(24)中()0R E =,解S E ,则1S c E r pN ⎛⎫=- ⎪⎝⎭(28)当S E E <时,利润()0R E >经营者加大捕捞强度,当S E E >,()0R E <经营者减小捕捞强度,S E 为盲目捕捞下的临界强度。

或利用Matlab 绘制~(),()E T E S E 曲线如图(12),则(),()T E S E 交点横坐标即为S E 。

二、微分方程与平衡点理论一阶微分方程设一阶微分方程为()()x t f x = (1)求解方程()=0f x 即可出平衡点0x x =。

再判断平衡点0x 是否稳定。

判断平衡点的常用方法有以下两种 (1)直接法将()f x 在0x 点作泰勒展开,仅取一次项,则得方程(1)的近似线性方程为()()()'0x t f x x x =- (2)所以,0x 也是方程(2)的平衡点。

令()'0=f x a ,则方程(2)的一般解为()0at x t ce x c =+为常数对于0x 点的稳定性有如下结论:如果()'00f x <,则0x 对于方程(2)和(1)都是稳定的; 如果()'00f x >,则0x 对于方程(2)和(1)都是不稳定的; (2)间接法如果存在0x 某个邻域内的任意值,使方程(1)的解()x t 满足()0lim t x t x →∞= (3)那么0x 是稳定的,否则0x 是不稳定的。

相关文档
最新文档