【公开课教案】《三角函数图像》教学设计
《三角函数的图像和性质》教学设计与反思

《三角函数的图像和性质》教学设计与反
思
一、教学设计
1. 教学目标
- 理解正弦函数、余弦函数和正切函数的图像和性质
- 掌握三角函数的周期性和对称性
- 能够利用图像和性质解决三角函数相关问题
2. 教学步骤
步骤一:引入概念
- 通过示意图介绍正弦函数、余弦函数和正切函数的定义
- 强调函数的周期性和对称性
步骤二:讲解图像和性质
- 展示正弦函数、余弦函数和正切函数的图像
- 分析图像特征,如振幅、周期、对称轴等
- 阐述三角函数的性质,如奇偶性、界值等
步骤三:解决问题
- 提供一些典型问题,引导学生运用图像和性质求解
- 示范解题方法,包括利用性质、缩放变换等
3. 教学资源
- 投影仪和电脑
- 教学PPT
- 相关练题和答案
4. 教学评估
- 设计小组练题,测试学生对三角函数图像和性质的理解程度
- 实时观察学生解题过程,评估其解题方法和思维能力
- 结合学生回答问题和总结教学效果
二、教学反思
本次教学设计在引入概念、讲解图像和性质以及解决问题等环
节上都能够使学生参与,从而提高学生的主动研究能力。
通过图像
的展示和性质的阐述,学生可以直观地理解三角函数的规律和特点。
而解决问题的训练则有助于学生运用所学知识解决实际问题。
值得改进的地方是在评估方面,可以加入更多的互动环节和个别评价,以更准确地评估学生的掌握情况。
此外,教学资源可以进一步扩充,包括实物展示和多媒体辅助工具,以提升教学效果。
总体而言,本次教学设计能够满足教学目标并促进学生的参与和思维能力培养,但仍需在实施过程中加以优化和改进。
三角函数图像教学设计

4、板书设计工整,善于运用多媒体辅助教学;普通话标准,教态自然大方,有较好的教学基本功。
2,在重点知识的强调上稍快,给学生的思考和发挥的空间不足。比如开头讲函数的图象时,给学生寻找关键点的时间不够长;应当多让他们去领悟“五点法作图法”的思维过程,而且可以用小组讨论的方法调动他们去想问题,这样才能使他们对知识的理解更为深刻。
3,板书需要提高。教师的魅力不仅仅是借助口头语言展示出来,摆在学生面前的板书也是重要的一环。优秀的教师,粉笔字潇洒大方,作图时一气呵成,让学生赏心悦目。而我虽然板书设计上工整了许多,但字体不够美观,因此这方面还需多下功夫去练习。
2、数学总是要在游戏中学习的,本课开场白我通过简单的学生活动,巧借学生的好胜心理和爱表现天性,激发他们的学习热情,吸引学生的眼球,并采用计算机绘图来增加学生的新鲜感,充分调动起学生的学习兴趣。在这四十分钟里,我先后采用让学生在电子白版上作图、利用计算机技术绘图、上台板演及用投影仪展示学生的典型错误等丰富多彩的手段,使学生积极而充分地参与到课堂活动中来,符合新课改的理念。
③再把所得各点的纵坐标伸长(当 时)或缩短(当 时)到原来的 倍(横坐标不变)。
即先作相位变换,再作周期变换,再作振幅变换。
方法2:按先伸缩后平移的顺序变换
引导,观察启发函数y=Asin(ωx+φ)与y=sinx的图象作比较,结论:
一般地,函数y=Asin(ωx+ ),x∈R(其中A>0,ω>0)的图象,可以看作用下面的方法得到:
人教版高一年级数学必修二《三角函数的图像》优质教案

《三角函数图像》教学设计一、学习目标:①了解正弦线、余弦线、正切线;②理解和掌握正弦、余弦、正切曲线,用“五点法”画它们的图像;③会用“五点法”作()ϕω+=x A y sin ()0,0>>ωA 在一个周期内的简图,并理解()ϕω+=x A y sin ()0,0>>ωA 的图像与x y sin =的图像的相互联系;④提高数形结合的数学方法与能力;二、学习重点:函数x y sin =与()ϕω+=x A y sin ()0,0>>ωA 的图像之间的相互变换。
三、学习难点:“五点法”中五点的确定;并且能够根据x y sin =的图像的对称轴、对称中心确定函数()ϕω+=x A y sin ()0,0>>ωA 的图像的对称轴、对称中心。
四、教学环境:多媒体教学,学生对象:高三(3)班全体学生五、教学过程: (一)知识导学:1、三角函数线——在下图中,规定了方向的线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线:2、正弦曲线、余弦曲线、正切曲线:分别是指基本三角函数)(cos ),(sin R x x y R x x y ∈=∈=),2,(tan Z k k x R x x y ∈+≠∈=ππ的图像。
3、正弦曲线的特征:关于直线)(2Z k k x ∈+=ππ对称,又关于点))(0,(Z k k ∈π对称,作其在]2,0[π的简图的五个关键点为),1,2(),0,0(π).0,2(),1,23(),0,(πππ- 4、“五点法”作)0,0)(sin(>>+=ωϕωA x A y 在一个周期内的简图时,五点的取法是:设ϕω+=x X ,由X 取ππππ2,23,,2,0来求相应的x 值及对应的y 值,再描点作图。
5、)0,0)(sin(>>+=ωϕωA x A y 的图像可由x y sin =的图像经以下变换得到:①相位变换:)sin(||0)(0)(sin ϕϕϕϕ+=−−−−−−−−−−→−<>=x y x y 个单位长度平移或向右向左;②周期变换:)sin()(1sin x y xy ωω==纵坐标不变横坐标变为原来的;③振幅变换:x A y A xy sin )(sin ==横坐标不变倍纵坐标变为原来的。
《三角函数的图像与性质》教学设计案例

专题三:正切函数的图像和性质,学生分组探究正切函数的性质,利用性质作出函数的图像,更进一步体验数形结合的思想。这三个专题是对教材的相关内容的有效结合,专题之间层层递进,体现本学段课标要求,不拘泥于教材,合理的进行了拓展实践,提高学生学习兴趣与知识的完整性。
1.单元(或主题)学习目标与重点难点
学习目标:
1、会用正弦线画正弦函数的图像,会利用平移变换作余弦函数的图像,会用“五点法”正弦、余弦函数的简图。
2、认识三角函数的周期性,理解周期函数与最小正周期的意义,会求最小正周期。
3、理解并掌握正弦函数、余弦函数的性质,会判断三角函数的奇偶性,会求三角函数的单调区间、最值等。
5、 如何画正余弦函数的简图?
1.学习评价设计
可评价的学习要素
1、 正余弦函数图象的画法
评价方法:现场评价,学生自评、互评,教师评价
评价指标: 1)尺规作图 2)作图规范,描点准确
2、五点法作图
评价方法:现场评价
评价指标: 1)准确确定五个关键点 2)作图规范
6.学习活动设计
教师活动
学生活动
环节一:指导学生做单摆简谐振动的实验
讲述用集合对应的语言给出了正弦函数和余弦函数的定义利用正弦线画出正弦曲线让学生体验几何法作图与描点法作图的不同及优点通过平移变换作余弦弦曲线让学生初步体验用图像变换的话函数图像通过画出的图形观察得出五个关键点得到五点法画正弦函数余弦函数的简图
《三角函数的图像与性质》教学设计案例
《《三角函数的图像与性质》教学设计案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
单元(或主题)名称
高中数学必修四《三角函数的图象》优秀教学设计

1.5函数)sin(ϕω+=x A y 的图象1教学目标了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图象,了解参数A,ω,ϕ对函数图象变化的影响。
正确找出由函数x y sin =到)sin(ϕω+=x A y 的图象变换规律.通过对函数x y sin =到)sin(ϕω+=x A y 的图象变换规律的探索,体会由简单到复杂,特殊到一般的化归思想.通过对问题的自主探究,培养独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养解决问题抓主要矛盾的思想.2 学情分析本节课是在学习了三角函数的性质和图象的基础上来学习)sin(ϕω+=x A y 的图像,应用三角函数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。
在教师的引导下,积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.教学的目的是以知识为平台,全面提升学生的综合能力.本节课突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索以发现问题、分析问题和解决问题的能力,注重利用非智力因素促进学生的学习,实现数学知识价值、思维价值和人文价值的高度统一。
本节内容从一个物理问题引入,根据从具体到抽象的原则,通过参数的赋值,从具体函数的讨论开始,把从函数x y sin =的图象到函数)sin(ϕω+=x A y 的图象的变换过程,分解为先分别考察参数A 、ϕ、ω对函数的影响,然后整合为对)sin(ϕω+=x A y 的整体考察。
鉴于作函数)sin(ϕω+=x A y 的图象有一定的复杂性,因此我制作了一张坐标纸,让学生通过作图直观的感受,并结合计算机动态地演示参数A 、ϕ、ω对函数)sin(ϕω+=x A y 图象变化的影响。
三角函数图像与性质教案

三角函数图像与性质教案教案标题:三角函数图像与性质教学目标:1. 理解正弦、余弦和正切函数的图像特征及其性质。
2. 掌握正弦、余弦和正切函数的周期、幅值、相位差等重要概念。
3. 通过观察和比较,能够分析并绘制三角函数的图像。
4. 能够应用三角函数的图像及其性质解决与实际问题相关的数学计算。
教学准备:1. 投影仪/白板/黑板2. 教学课件或绘图工具3. 学生练习册、作业册等教辅材料4. 相关练习题、实例和应用题教学过程:一、引入活动1. 导入:通过展示一个周期性的波动图像,引导学生思考这些图像有何特点,有何规律,并讨论这些波动图像与数学中的三角函数的关系。
二、知识讲解和图像分析1. 介绍正弦函数的定义和基本性质,包括周期、对称轴、最大值、最小值等。
2. 展示正弦函数的图像,解读图像上各个要素与函数的关系,并解释这些要素的具体含义。
3. 引导学生分析正弦函数图像上的特征及其性质,包括振幅、相位差等概念的引入和解释。
4. 教授余弦函数和正切函数的定义和性质,并展示它们的图像,让学生观察和比较三种函数图像的异同。
三、示例演练1. 给予学生一定数量的练习题,要求他们根据所学知识分析和绘制三角函数的图像。
2. 引导学生通过比较不同函数的图像,发现它们之间的关系和规律,并总结出三角函数图像的一般特点。
四、应用拓展1. 给予学生一些实际问题和应用题,要求他们能够利用所学的三角函数图像及其性质解决这些问题。
2. 引导学生通过数学模型的建立和函数图像的分析,将实际问题转化为数学计算,并得出正确的答案。
五、总结和评价1. 对所学知识进行小结和归纳,强调三角函数图像与性质在数学中的重要性和应用价值。
2. 提出问题和讨论,让学生根据所学知识回答和解决,以检验他们的学习效果。
六、作业布置1. 布置适量的课后作业,包括练习题和思考题,以巩固和拓展所学知识。
2. 鼓励学生自主学习,寻找更多与三角函数图像及其性质相关的应用领域。
三角函数的图像与性质教案

三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制和分析三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学重点:1. 三角函数的定义和图像。
2. 三角函数的性质。
三、教学难点:1. 三角函数图像的绘制和分析。
2. 理解和应用三角函数的性质。
四、教学准备:1. 教学课件或黑板。
2. 三角函数图像的示例。
3. 练习题和解答。
五、教学过程:1. 引入:通过生活中的实例,如温度、声音等,引入三角函数的概念,激发学生的兴趣。
2. 讲解:讲解三角函数的定义和基本概念,引导学生理解三角函数的周期性和奇偶性。
3. 演示:使用课件或黑板,展示三角函数的图像,让学生观察和分析图像的形状和特点。
4. 练习:让学生绘制一些简单的三角函数图像,并分析其性质。
5. 讲解:讲解三角函数的性质,如单调性、奇偶性、周期性等,引导学生理解和应用。
6. 练习:让学生解决一些实际问题,运用三角函数的性质进行计算和分析。
7. 总结:对本节课的内容进行总结,强调三角函数的图像和性质的重要性。
8. 作业:布置一些练习题,让学生巩固所学内容。
六、教学反思:本节课通过实例引入三角函数的概念,激发学生的兴趣。
通过讲解和演示,让学生理解和掌握三角函数的图像和性质。
通过练习和实际问题解决,让学生应用所学知识。
整个教学过程中,注意引导学生主动参与,培养学生的动手能力和思维能力。
作业的布置有助于巩固所学内容。
总体来说,本节课达到了预期的教学目标。
六、教学目标:1. 能够运用三角函数的性质解决简单的三角方程和不等式问题。
2. 理解正弦、余弦和正切函数的图像是如何由基础函数通过平移、伸缩等变换得到的。
3. 能够分析实际问题,选择合适的三角函数模型进行求解。
七、教学重点:1. 三角函数图像的变换规律。
2. 三角方程和不等式的求解方法。
八、教学难点:1. 理解三角函数图像的变换规律及其对函数性质的影响。
2. 解决实际问题中三角函数的应用。
高中数学教案《三角函数的图像与性质》

教学计划:《三角函数的图像与性质》一、教学目标1.知识与技能:学生能够掌握正弦、余弦、正切函数的基本图像及其关键特征(如周期、振幅、相位等);理解并应用三角函数的奇偶性、单调性、最值等性质。
2.过程与方法:通过绘制函数图像、观察分析、归纳总结等过程,培养学生直观感知、逻辑推理和数学抽象能力;学会运用数形结合的方法解决三角函数问题。
3.情感态度与价值观:激发学生对数学的兴趣,培养探索精神和严谨的科学态度;通过团队合作和交流分享,增强学生的集体意识和协作能力。
二、教学重点和难点●教学重点:正弦、余弦、正切函数的基本图像及性质;数形结合思想在三角函数中的应用。
●教学难点:理解并掌握三角函数图像的变换规律(如平移、伸缩、对称等);运用三角函数的性质解决实际问题。
三、教学过程1. 引入新课(约5分钟)●生活实例:通过展示海浪波动、音乐波形等自然现象或人工制品中的周期性变化,引导学生思考这些现象与三角函数的关系,引出三角函数图像的重要性。
●复习旧知:简要回顾三角函数(正弦、余弦、正切)的定义和基础性质,为后续学习做好铺垫。
●提出问题:提出探究性问题,如“正弦函数的图像是什么样的?它有哪些基本性质?”激发学生的好奇心和探索欲。
2. 讲授新知(约15分钟)●图像绘制:利用多媒体演示或指导学生动手绘制正弦、余弦、正切函数的图像,强调图像的连续性、周期性等特点。
●性质讲解:结合图像,详细讲解三角函数的振幅、周期、相位等关键特征,以及奇偶性、单调性、最值等性质。
●对比分析:引导学生对比正弦、余弦、正切函数图像的差异,理解它们各自的特点和相互之间的关系。
3. 图像变换(约10分钟)●理论讲解:介绍三角函数图像的平移、伸缩、对称等变换规律,结合具体例子说明变换后的图像特征。
●实践操作:组织学生分组进行实践操作,尝试通过改变参数来绘制变换后的三角函数图像,并观察分析变化规律。
●总结归纳:引导学生总结归纳三角函数图像变换的一般规律和方法,形成系统的知识体系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数)0,0)(sin(>>+=ωϕωA x A y 的图象教学设计
(一) 教学重点:)0,0)(sin(>>+=ωϕωA x A y 的图象;
(二) 教学难点:)0,0)(sin(>>+=ωϕωA x A y 图象的作法及其变换方法; (三) 教学方法:启发诱导式; (四) 教学过程: 一、引入
播放小动画,引起学生兴趣,并提出问题:
已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y=f(t),下面是某日各时的海浪数据:
怎样根据以上数据,建立y 与t 之间的函数关系? 二、)0,0)(sin(>>+=ωϕωA x A y 图象画法。
问题一:怎样画出)3
2sin(2π
+=x y 的函数图象?
[分析]主要方法:五点法。
(1)列表
(2)描点 (3)连线
注意:(1)五点法作图中x 的取值方法; (2)x 轴单位的确定。
三、图象变换
问题二:)3
2sin(2π
+=x y 由x y sin =图象怎样变换得到?
[分析](法一)
x y sin = )3
sin(π
+
=x y
)32sin(π
+
=x y )32sin(2π
+=x y (法二)
x y sin = x y 2sin =
)6(2sin π
+
=x y )3
2sin(2π
+=x y (此过程讲解配合动画演示) 四、例题
向左平移
3
π
个单位 横坐标缩小为原来
2
1
倍,纵坐标不变 2倍,横坐标不变
纵坐标伸长为原来
横坐标缩小为原来
2
1
倍,纵坐标不变 向左平移
6
π
个单位 2倍,横坐标不变 纵坐标伸长为原来
例1 (1)要得到sin(2)3
y x π
=-(x R ∈) 的图象,只需将sin 2y x = (x R ∈)的
图象( D )
Α、向左平移
3π个单位 Β、向右平移3π
个单位 С、向左平移6π个单位 D 、向右平移6
π
个单位
(2)要得到sin()33x y π=-(x R ∈)的图象,只需将sin 3x
y =(x R ∈)的图象( D )
Α、向左平移3π个单位 Β、向右平移3
π
个单位
С、向左平移π个单位 D 、向右平移π个单位
例2 已知函数)(x f y =图象沿x 轴向右平移3
π
个单位,再保持图象纵坐标不变,而横坐
标变为原来2倍,得到曲线与x y sin =图象相同,则)(x f y =是( ) A.)32sin(π+
=x y B.)32sin(π
-=x y C.)322sin(π+=x y D.)3
22sin(π
-=x y
[分析]可采用“逆向思维”。
先由x y sin =横坐标缩小为原来
2
1
,变为 x y 2sin =,然后向左平移
3
π
个单位,得到)322sin(π+=x y ,故选C 。
例3 如图是函数)sin(ϕω+=x A y 图象,确定A 、ω、ϕ的值,确定其一函数解析式。
[分析]法一(逐一定参法)
3=A ,又ππ
π=--=)6(65T ,
22=⇒=∴ωπω
π, 由点)0,6(π-,令06=+-ϕπx ,得 ,3πϕ=)3
2sin(3π
+=∴x y 。
法二(待定系数法)3=A ,图象过点)0,3
(π
和)0,65(π,
⎪⎪⎩⎪⎪⎨
⎧=+⋅=+⋅π
ϕωππϕωπ
26
53
2=⇒ω,3πϕ=,)32sin(3π+=∴x y 。
[小结]主要方法:逆用五点法。
例4 解决引言的问题。
根据表格数据作图如下:
由图象可判断出2125.05.1=-=
A ,1262=⨯=T ,所以122=ω
π
,得 6πω=,因此函数解析式为16
sin 21+=t
y π。
[说明]若规定海浪高度高于1米时才对冲浪爱好者开放,则可根据所求函数解析式列出三角不等式进行求解。
引导学生课后思考并求解。
五、课堂练习
(1)要得到)3
2sin(π
-=x y 的图象,只要将x y 2sin =的图象( )
A.向左平移
3π个单位 B.向右平移3π
个单位 C.向左平移6π个单位 D.向右平移6
π
个单位
(2)把函数)8sin(π+=x y 图象向左平移4
π
个单位,再把图象上各点的横坐标压缩为原
来2
1
,则解析式为______________;
(3)把函数)6
sin(π
+=x y 的图象横坐标伸长到原来的3倍,所得解析式为
______________。
六、总结
(1) 三角函数的图象是三角函数关系的直观表现形式,三角函数的性质可直接从图象
上显示出来。
)sin(ϕω+=x A y 的图象的作法是“五点法”。
正确理解两种图象的变换方法,并借助图象“数形结合”分析三角函数的性质;
(2) 根据)sin(ϕω+=x A y 的一段图象,求此函数的表达式。
在这类问题中,A 、ω比
较容易求解,关键是ϕ的求法,若能求出“第一点”的坐标,则令00=+ϕωx (或
πϕω=+0x )即可求出。
有时还可以利用一些已知点确定ϕ。
七、作业
1.复习总结本节课的内容; 2.配套练习习题。