向量的直角坐标运算
7.3.2平面向量的直角坐标运算

Page 6
6
问题: (1)已知 a ( x1 , y1 ), b ( x2 , y2 ), 求 a b, a b的坐标. (2)已知a ( x, y )和实数 , 求 a 的坐标.
新课:平面向量的直角坐标运算:
(1)a b x1 i y1 j x2 i y2 j x1 x2 i y1 y2 j
Page 10
例2:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐标.
10
例4、 1已知A(2,3), B ( 3,5), 求BA 的坐标. 3,5 5, 2 . 解: BA 2,3 2), A (2,1), 求 B 的坐标. 2已知AB (1,
(2) a b ( x1 x2 , y1 y2 )
(3) a ( x1, y2 )
结论:两个向量差的横坐标等于这两个向量横坐标的差 两个向量差的纵坐标等于这两个向量纵坐标的和
结论:实数与向量乘积的横坐标等于实数乘原来向量的横坐标; 实数与向量乘积的纵坐标等于实数乘原来向量的纵坐标。
解:设B x,y ,
AB 1, 2 x, y 2,1 ,
1 x 2 即 2 y 1
x3 y 1
即B 3,-1 .
Page 11
11
3、已知 A( x1 , 巩固练习
AB ( x2 -x1 , y2 -y1 )
3、已知点A(X,5)关于点M (1,1)的中心对称点是 (-2,Y),则X和Y的值分别是?
Page 14
空间向量运算的坐标表示

F1
0
,
1 4
,1 .
B
BE1
1 ,
3 4
, 1
(1 , 1 ,
0)
0
,
1 4
, 1
,
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
D1
F1
C1
DF1
0
,
1 4
,1 (0
,
0
,
0)
0
,
1 4
,1 .
A1
E1 B1
一、向量的直角坐标运算
设a (a1, a2, a3),b (b1,b2,b3)则 a b (a1b1,a2 b2,a3 b3) ; a b (a 1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R);
a b a1b1 a2b2 a3b3
;
a // b a1 b1,a2 b2 ,a3 b3( R) ; a1 / b1 a2 / b2 a2 / b2 .
注意:
a1b1 a2b2 a3b3
;
a12 a22 a32 b12 b22 b32
(1)当 cos a , b 1 时,a 与 b 同向; (2)当 cos a , b 1 时,a 与 b 反向;
(3)当cos a , b 0 时,a b 。
思考:当 0 cos a , b 1及 1 cos a , b 0时,
2)求点A到直线EF的距离。 D1
(用向量方法)
F A1
C1 B1
E
D A
C B
向量的正交分解与向量的直角坐标运算

3.设A(2, 3),B(5, 4),C(7, 10) 满足 设 , ,
AP = AB + λ AC
(1) λ为何值时 点P在直线 为何值时,点 在直线 在直线y=x上? 为何值时 上 (2)设点 在第三象限, 求λ的范围 设点P在第三象限 的范围. 设点 在第三象限 的范围 解: (1) 设P(x, y),则 , (2) 由已知
(x-2, y-3)=(3, 1)+λ(5, 7), 5λ+5<0,7λ+4<0 , - - 所以x=5λ+5,y=7λ+4. , 所以
1 解得λ 解得 = 2
所以λ<- 所以 -1.
2.设点 在平面上做匀速直线运动 速度向量 设点P在平面上做匀速直线运动 设点 在平面上做匀速直线运动,速度向量 设起始P(- 秒钟后点P 设起始 秒钟后点 v = (4, −3) ,设起始 -10,10), 则5秒钟后点 的坐标为( 的坐标为( ).
秒种后, 点坐标为 解:5秒种后,P点坐标为 秒种后 (-10, 10)+5(4, -3)=(10, -5). -
| OC |= 1 + 36 = 37
tan α = 6 α=arctan 6
例5.已知□ABCD的三个顶点 -2, 1)、B(-1, 已知 的三个顶点A(- 、 - 的三个顶点 3)、C(3, 4),求顶点 的坐标。 、 的坐标。 ,求顶点D的坐标 解:OD = OA + AD = OA + BC
说明: 说明: 两个向量的和与差的坐标等于两个向量的 相应坐标的和与差; 相应坐标的和与差; 数乘向量的积的坐标等与数乘以向量相应 坐标的积。 坐标的积。
已知A(x 的坐标. 例2.已知 1,y1),B(x2,y2),求向量 AB 的坐标 已知 求向量 解: AB = OB − OA =(x2,y2)-(x1,y1) - =(x2-x1,y2-y1)。 。 说明:一个向量的坐标等于向量终点的坐 说明:一个向量的坐标等于向量终点的坐 向量终点 始点的坐标 标减去始点的坐标。 标减去始点的坐标。
空间向量的直角坐标及其运算

∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD
,
H
是
C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平
原创2:3.1.4 空间向量的直角坐标运算

(1)依题意得B(0,1,0),N(1,0,1).∴||= 3,
∴BN的长为 3.
(2)依题意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2),
变式训练
∴ BA1=(1,-1,2), CB1=(0,1,2),
∴ BA1 ·CB1=3.
原点O重合,得到向量OP=p,由空间向量基本定理可知,存在有
序实数组{x,y,z},使得p=
xԦi+yԦj+zkԦ
.把 x,y,z 称作向
量p在单位正交基底Ԧi,Ԧj,k 下的坐标,记作 p=(x,y,z) .
走进教材
2.空间向量运算的坐标表示
若a=(a1,a2,a3),b=(b1,b2,b3).
Ԧ ∙
cos<a,b>
Ԧ ||
走进教材
3.空间中向量的坐标及两点间的距离公式
在空间直角坐标系中,设A(a1,b1,c1),B(a2,b2,c2),则
(1)= (a2-a1,b2-b1,c2-c1) ;
(2)d AB=||=
(a2−a1)2 +(b2−b1)2 +(c2−c1)2
.
(1)设|Ԧc|=3,Ԧc∥BC,求Ԧc;(2)若ka+b与ka-2b互相垂直,求k.
【解析】
(1)∵BC=(-2,-1,2),且Ԧc∥BC,∴设Ԧc=λBC=(-2λ,-λ,2λ).
∴|Ԧc|= (-2λ)2 +(-λ)2 +(2λ)2 =3|λ|=3.解得λ=±1.
∴Ԧc=(-2,-1,2)或Ԧc=(2,1,-2).
=1×(-1)+1×0+0×2=-1
∴(-1,0,2)=(x-2y,x-y,2y)
空间向量的坐标和运算

空间向量的坐标和运算一、空间向量的坐标和运算1.空间直角坐标系在单位正方体$oabc$-$d$′$a$′$b$′$c$′中,以$o$点为原点,分别以射线$oa$,$oc$,$od$′的方向为正方向,以线段$oa$,$oc$,$od$′的长为单位长,建立三条数轴:$x$轴、$y$轴、$z$轴。
这时我们说建立了一个空间直角坐标系$oxyz$,其中点$o$叫做坐标原点,$x$轴、$y$轴、$z$轴叫做坐标轴。
通过每两个坐标轴的平面叫做坐标平面,分别称为$xoy$平面、$yoz$平面、$xoz$平面。
2.空间矢量的坐标一个向量在空间直角坐标系中的坐标等于表示向量的有向线段的终点坐标减去起点坐标。
如果$a(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,那么$\overrightarrow{AB}=\overrightarrow{ob}-\overrightarrow{OA}$=$(x_2-x_1$,$y_2-y_1$,$z_2-z_1)$。
3、空间向量的坐标运算设置$\boldsymbol(x_1,y_1,z_1)$,$\boldsymbol B(x_2,y_2,z_2)$,然后(1)$\boldsymbola+\boldsymbolb$=$(x_1+x_2,y_1+y_2,z_1+z_2)$。
(2) $\boldsymbola-\boldsymbolb$=$(x_1-x_2,y_1-y_2,z_1-z_2)$(3)$\boldsymbola·\boldsymbolb$=$x_1x_2+y_1y_2+z_1z_2$。
(4) $|\boldsymbola |=\sqrt{x^2_1+y^2_1+z^2_1}$(5)$λ\boldsymbola=(λx_1,λy_1,λz_1)$。
4.平行(共线)和垂直空间向量的充要条件设非零向量$\boldsymbola(x_1,y_1,z_1)$,$\boldsymbolb(x_2,y_2,z_2)$,则$\boldsymbola∥\boldsymbolb\leftrightarrow\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}=λ(λ∈\mathbf{r})$$\boldsymbola⊥\boldsymbolb\leftrightarrow\boldsymbola·\boldsymbolb=0\leftrig htarrow$$x_1x_2+y_1y_2+z_1z_2=0$。
向量的直角坐标运算(教材分析)

《平面向量的直角坐标运算》教材分析《向量的直角坐标运算》,主要研究两类问题:(一)、向量的直角坐标和向量的直角坐标运算(二)、培养学生的创新精神和实践水平,履行“以学生发展为本”的教育思想。
下面对这节课的内容实行分析:本节的授课内容为《向量的直角坐标》,选自中等职业教育国家规划教材《数学》(提升版)第一册第六章第六节,我从四个方面实行教材分析。
1、教材的地位和作用向量的直角坐标将平面向量和一对有序实数建立了一一对应关系;向量的直角坐标运算,则使向量的运算完全数量化,将数与形紧密地结合起来,为用“数”的运算处理“形”的问题搭起了桥梁。
这样,用向量的方法解决几何问题更加方便,从而极大地提升了学生利用向量知识解决实际问题的水平。
同时,这节课的教学内容和教学过程对进一步培养学生观察、分析和归纳问题的水平具有重要意义。
2、教材的处理结合教参和学生的学习水平,《向量的直角坐标》安排能够2课时。
本节为第一课时。
根据当前学生的状况和以往的经验,我发现,虽然这节课的内容比较简单,但由于老师讲解的过多,导致学生丢失了很多重要的知识。
为了激发学生的学习热情,在平面向量分解定理为背景下,能够以复习提问的形式,引出向量的直角坐标的定义;以讨论的形式得出向量直角坐标运算的规律,直接切入本节课的知识点。
之后,由浅入深,由低到高地设计了三个层次的问题,逐步加深学生对向量直角坐标的记忆和理解。
由此,可对教材的引入、例题和练习做了适当的补充和修改。
3、教学重点与难点根据学生现状、教学要求以及教材内容,确立本节课的教学重点为:明确平面向量的坐标和点的坐标的关系并熟练地掌握向量的直角坐标运算。
由学生的实际情况——使用所学知识分析和解决实际问题的水平较差,把本节课的难点定为:向量直角坐标运算的使用。
要突破这个难点,关键在于紧扣向量直角坐标运算的相关知识,去发现解决问题的方法。
4、教学目标的分析根据教学要求,教材的地位和作用,以及学生现有的知识水平和数学水平,本节课的教学目标可确定为三个方面:(1)知识教学目标:理解向量的坐标表示法与平面向量和一对有序实数的一一对应关系;会用坐标表示平面向量的加法、减法与数乘运算;(2)水平目标:利用向量的坐标能够使向量运算完全代数化,实现了形向数的转化;(3)情感、态度与价值观:理解向量与其他知识之间的紧密关系,培养学生的学习兴趣及探索精神.。
空间向量的直角坐标运算律

.空间向量的直角坐标运算律:(1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)若,,则,,,,,;,.夹角公式:.(3)两点间的距离公式:若,,则或。
对于垂直问题,一般是利用进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.2.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。
3.用向量法求距离的公式设n是平面的法向量,AB是平面的一条斜线,则点B到平面的距离为(如图)。
向量法在求空间角上的应用平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。
线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为。
(注意:线线角的范围[00,900])线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(如图)。
二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)利用法向量求空间距离⑴点A到平面的距离:,其中,是平面的法向量。
⑵直线与平面之间的距离:,其中,是平面的法向量。
⑶两平行平面之间的距离:,其中,是平面的法向量。
①线线平行的判定:判定定理性质定理判定定理判定定理性质定理判定定理总结:从中可以看出,一般情况下,往往借助一些“性质定理”来构造满足“判定定理”的条件。
(2)还会考查到的位置关系:异面直线的判定。
判定方法:定义(排除法与反证法)、判定定理。
二、基本例题例1已知:分析:利用线面平行的性质与平行公理。
注意严格的公理化体系的推理演绎。
说明:过l分别作平面∴l∥m同理l∥n∴m∥n又又例2. 已知:AB是异面直线a、b的公垂线段,P是AB的中点,平面经过点P且与AB垂直,设M是a上任意一点,N是b 上任意一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量的直角坐标运算
【教学目标】
1. 理解平面向量的坐标表示,掌握平面向量的坐标运算.
2. 能够根据平面向量的坐标,判断向量是否平行.
3. 通过学习,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.
【教学重点】
平面向量的坐标表示,平面向量的坐标运算,根据平面向量的坐标判断向量是否平行.【教学难点】
理解平面向量的坐标表示.
【教学方法】
本节课采用启发式教学和讲练结合的教学方法,教师可以充分发挥学生的主体作用,开展自学活动,通过类比、联想,发现问题,解决问题.引导学生分析归纳,形成概念.【教学过程】。