数值分析02_第二章2。1、2。2。1节
数值分析原理课件第二章

第二章 非线性方程数值解法在科学计算中常需要求解非线性方程()0f x = (2.1)即求函数()f x 的零点.非线性方程求解没有通用的解析方法,常采用数值求解算法.数值解法的基本思想是从给定的一个或几个初始近似值出发,按某种规律产生一个收敛的迭代序列0{}k k x +∞=,使它逐步逼近于方程(2.1)的某个解.本章介绍非线性方程实根的数值求解算法:二分法、简单迭代法、Newton 迭代法及其变形,并讨论它们的收敛性、收敛速度等.§2.1 二分法一、实根的隔离定义 2.1 设非线性方程(2.1)中的()f x 是连续函数.如果有*x 使*()0f x =,则称*x 为方程(2.1)的根,或称为函数()f x 的零点;如果有*()()()m f x x x g x =-,且()g x 在*x 邻域内连续,*()0g x ≠,m 为正整数,则称*x 为方程(2.1)的m 重根.当1m =时,称*x 为方程的单根.非线性方程根的数值求解过程包含以下两步(1) 用某种方法确定有根区间.称仅存在一个实根的有根区间为非线性方程的隔根区间,在有根区间或隔根区间上任意值为根的初始近似值;(2) 选用某种数值方法逐步提高根的精度,使之满足给定的精度要求.对于第(1)步有时可以从问题的物理背景或其它信息判断出根的所在位置,特别是对于连续函数()f x ,也可以从两个端点函数值符号确定出有根区间.当函数()f x 连续时,区间搜索法是一种有效的确定较小有根区间的实用方法,其具体做法如下设[,]a b 是方程(2.1)的一个较大有根区间,选择合适的步长()/h b a n =-,k x a kh =+,(0,1,,)k n = .由左向右逐个计算()k f x ,如果有1()()0k k f x f x +<,则区间1[,]k k x x +就是方程的一个较小的有根区间.一般情况下,只要步长h 足够小,就能把方程的更小的有根区间分离出来;如果有根区间足够小,例如区间长度小于给定的精度要求,则区间内任意一点可视为方程(2.1)的根的一个近似.例2.1 确定出方程32()3430f x x x x =-+-=的一个有根区间. 解 由22()3643(1)10f x x x x '=-+=-+>知()f x 为(,)-∞∞上的单调递增函数,进而()f x 在(,)-∞∞内最多只有一个实根.经计算知(0)0f <,(2)0f >,所以()0f x =在区间[0,2]内有惟一实根.如果希望将有根区间再缩小,可以取步长0.5h =,在点0.5x =,1x =, 1.5x =计算出函数值的符号,最后可知区间[1.5,2]内有一个实根.二、二分法二分法是求非线性方程实根近似值的最简单的方法.其基本思想是将有根区间分半,通过判别函数值的符号,逐步缩小有根区间,直到充分逼近方程的根,从而得到满足一定精度要求的根的近似值.设()f x 在区间[,]a b 上连续,()()0f a f b <,且方程(2.1)在区间(,)a b 内有惟一实根*x .记1a a =,1b b =,中点111()/2x a b =+将区间11[,]a b 分为两个小区间11[,]a x 和11[,]x b ,计算函数值1()f x ,根据如下3种情况确定新的有根区间:(1) 如果1()0f x =,则1x 是所要求的根;(2) 如果11()()0f a f x <,取新的有根区间2211[,][,]a b a x =; (3) 如果11()()0f x f b <,取新的有根区间2211[,][,]a b x b =.新有根区间22[,]a b 的长度为原有根区间11[,]a b 长度的一半.对有根区间22[,]a b 施以同样的过程,即用中点222()/2x a b =+将区间22[,]a b 再分为两半,选取新的有根区间,并记为 33[,]a b ,其长度为22[,]a b 的一半(如图2.1所示).图2.1 二分法示意图重复上述过程,建立如下嵌套的区间序列1122[,][,][,][,]k k a b a b a b a b =⊃⊃⊃⊃其中每个区间的长度都是前一个区间长度的一半,因此[,]k k a b 的长度为11()2k k k b a b a --=-由*[,]k k x a b ∈和()/2k k k x a b =+,得*11()()22k k k k x x b a b a -≤-=-当k →∞时,显然,有*k x x →.总结得到如下收敛定理:定理 2.1 设()f x 在隔根区间[,]a b 上连续,且()()0f a f b <,则由二分法产生的序列0{}k k x +∞=收敛于方程(2.1)在[,]a b 上的根*x ,并且有误差估计*1()(1,2,)2k kx x b a k -≤-= (2.2) 设预先给定根*x 的绝对误差限为ε,要求*k x x ε-≤,只要1()2k b a ε-≤成立,这样求得对分次数ln()ln ln 2b a k ε--≥. (2.3)取k 为大于(ln()ln )/ln 2b a ε--的最小整数.此时k x 是方程(2.1)的满足精度要求的根近似值.注:由于舍入误差和截断误差存在,利用浮点运算不可能精确计算函数值,二分法中的判断()0k f x =几乎不可能满足,取而代之为判断条件0()k f x ε<,其中0ε为根近似值的函数值允许误差限.总结以上内容,给出如下算法 算法2.1 (二分法)输入 端点,a b 、根的绝对误差限ε、根近似值的函数值允许误差限0ε; 输出 近似解c 或失败信息;Step 1 用公式(2.3)计算最大迭代次数k ; Step 2 对1,,n k = 循环执行Step 3~5; Step 3 ()/2c a b =+,计算()f c ;Step 4 若0()f c ε<,则输出c ,end ; Step 5 若()()0f c f b <,则a c =,否则b c =.例 2.2 用二分法求32()4100f x x x =+-=在[1,2]上的根*x 的近似值,要求*31102k x x --<⨯.解 由于在区间[1,2]上,(1)5f =-,(2)14f =,2()38(38)0f x x x x x '=+=+>,故()0f x =在[1,2]上有惟一实根*x .确定循环次数为11k =,利用二分法计算结果见表2.1.二分法具有如下特点(1) 优点:计算简单,对函数()f x 的光滑性要求不高,只要它连续,且在两端的函数值异号,算法收敛就可以保证;(2) 缺点:只能求单实根和奇数重实根,收敛较慢,与1/2为公比的等比级数相同. 当函数()f x '连续时,方程(2.1)的实重根可转换为()0()f x f x ='的实单根. 一般在求方程根近似值时不单独使用二分法,而常用它为其它数值方法提供初值.§2.2 简单迭代法简单迭代法是求解非线性方程根的近似值的一类重要数值方法.本节将介绍简单迭代法的基本思想、收敛条件、收敛速度以及相应的加速算法.一、简单迭代法的基本思想简单迭代法采用逐步逼近的过程建立非线性方程根的近似值.首先给出方程根的初始近似值,然后用所构造出的迭代公式反复校正上一步的近似值,直到满足预先给出的精度要求为止.在给定的有根区间[,]a b 上,将方程(2.1)等价变形为()x x ϕ= (2.4)在[,]a b 上选取0x 作为初始近似值,用如下迭代公式1()k k x x ϕ+= (0,1,2,k = ) (2.5)建立序列0{}k k x +∞=.如果有*lim k k x x →∞=,并且迭代函数()x ϕ在*x 的邻域内连续,对式(2.5)两边取极限,得**()x x ϕ=因而*x 是(2.4)的根,从而也是(2.1)的根.称()x ϕ为迭代函数,所得序列0{}k k x +∞=为迭代序列.将这种求方程根近似值的方法称为简单迭代法,简称迭代法.例2.3 试用方程3()10f x x x =--=的不同形式的变形建立迭代公式,并试求其在1.5附近根的近似值.解 利用方程的变形建立如下4种迭代公式(1) 1k x + (2) 311k kx x +=-(3) 1k x += (4) 3112k k k x x x ++-=取初值0 1.5x =,迭代计算,结果见表2.2.例 2.3表明非线性方程的不同等价形式对应不同的迭代过程,从某一初值出发,有的迭代收敛快,有的收敛慢,甚至不收敛.那么迭代函数()x ϕ满足什么条件时才能保证迭代序列收敛? 迭代序列0{}k k x +∞=的误差如何估计? 怎样才能建立收敛速度快的迭代公式?定理2.2 若函数()x ϕ在区间[,]a b 上具有一阶连续导数,且满足条件 ① 对任意[,]x a b ∈,有()[,]x a b ϕ∈;② 存在常数L :01L <<,使得对任意[,]x a b ∈有()x L ϕ'≤成立. 则(1) 方程()x x ϕ=在[,]a b 上有惟一实根*x(2) 对任意0[,]x a b ∈,迭代公式(2.5)收敛,且*lim k k x x →∞=(3) 迭代公式(2.5)有误差估计式*11k k k Lx x x x L --≤-- (2.6) *101k k L x x x x L-≤-- (2.7)(4) **1*lim()k k kx x x x x ϕ+→∞-'=- (2.8) 证明 (1)构造函数()()g x x x ϕ=-,由条件①知()()0g a a a ϕ=-≤,()()0g b b b ϕ=-≥,因此()0g x =在[,]a b 上至少存在一个实根,又由条件②知当[,]x a b ∈时,()1()10g x x L ϕ''=-≥->,所以()0g x =在[,]a b 内存在惟一实根,即()x x ϕ=在[,]a b 内存在惟一实根,记为*x .(2) 由0[,]x a b ∈及条件①知,[,]k x a b ∈(1,2,)k = ,并且有1()k k x x ϕ+=,**()x x ϕ=,二者作差,并由微分中值定理得***1()()()()k k k k x x x x x x ϕϕϕξ+'-=-=- (1,2,k =(2.9) 其中,k ξ介于k x 与*x 之间.结合条件②,得**1k k x x L x x +-≤- (1,2,k =(2.10) 反复递推,有**2*1*1100k k k k x x L x x L x x L x x ++-≤-≤-≤-≤≤- , (1,2,)k =因01L <<,故*lim k k x x →∞=.(3) 由式(2.10)得***1111*1k k k k k k k k k k x x x x x x x x x x x x L x x +++++-=-+-≤-+-≤-+-从而*111k k k x x x x L+-≤-- (2.11) 又由于111()()()()k k k k k k k x x x x x x ϕϕϕη+--'-=-=-1k k L x x -≤- (1,2,)k = (2.12)其中k η介于k x 和1k x -之间.综合式(2.11)及式(2.12)得误差估计*11k k k Lx x x x L--≤--由式(2.12)反复递推,得111210k k k k k x x L x x L x x -----≤-≤≤-并代入式(2.6)得误差估计*11011kk k k L L x x x x x x L L--≤-≤--- (1,2,)k =(4) 由式(2.9)得*1*()k k k x x x x ϕξ+-'=-两端取极限,并注意到()x ϕ'的连续性和*lim k k x ξ→∞=(因为k ξ介于*x 与k x 之间),得**1*lim ()k k kx x x x x ϕ+→∞-'=-. 误差估计(2.6)称为后验误差估计,也称为误差渐进估计,误差估计(2.7)称为先验误差估计.定理2.2条件成立时,对任意0[,]x a b ∈,迭代序列均收敛,故称定理2.2为全局收敛性定理.下面讨论*x 邻近的收敛性,即局部收敛性.定理 2.3 设存在方程()x x ϕ=根*x 的闭邻域***(,)[,](0)U x x x δδδδ=-+>以及小于1的正数L ,使得()x ϕ'连续且()1x L ϕ'≤<.则对任意*0(,)x U x δ∈,迭代1()k k x x ϕ+=收敛.证明 由()x ϕ'在*(,)U x δ内连续,且有()1x L ϕ'≤<,则对任意*(,)x U x δ∈,有****()()()()x x x x x x L ϕϕϕϕηδδ'-=-=-≤<由定理2.2知迭代过程1()k k x x ϕ+=对任意初值*0(,)x U x δ∈均收敛.二、迭代法的收敛阶为刻画迭代法收敛速度的快慢,引进收敛序列的收敛阶概念.定义2.2 设迭代序列0{}k k x +∞=收敛到*x ,记*k k e x x =-,如果存在常数0c >和实数1p ≥,使得1limk pk ke c e +→∞= (2.13)则称序列0{}k k x +∞=是p 阶收敛的.当1p =时,称0{}k k x +∞=为线性收敛的,此时要求01c <<;1p >为超线性收敛.p 越大,序列0{}k k x +∞=收敛到*x 越快.c 称为渐进常数,c 越小,收敛越快.所以迭代法的收敛阶是对迭代法收敛速度的一种度量.显然,由定理2.2(4)知,当*()0x ϕ'≠时简单迭代法线性收敛,渐进常数*()c x ϕ'=.算法2.2 (简单迭代法)输入 初始值0x 、容许误差ε;输出 近似解1x 或失败信息;Step 1 对1,,n m = 循环执行Step 2~3; Step 2 10()x x ϕ=;Step 3 若10x x ε-<,则输出1x ,end ;否则01x x =,转向Step2.例 2.4 求方程()2lg 70f x x x =--=的最大实根的近似值,要求绝对误差不超过31102-⨯.解 (1)确定有根区间.方程等价形式为27lg x x -=作函数27y x =-和lg y x =的图形,如图2.2所示,知方程的最大实根在区间[3,4]内.(2)建立迭代公式,判别收敛性.将方程等价变形为1(lg 7)2x x =+迭代函数1()(lg 7)2x x ϕ=+,迭代公式11(lg 7)2k k x x +=+.由11()02ln10x xϕ'=⋅>,[3,4]x ∈,知()x ϕ在区间[3,4]内仅有一根.又(3) 3.74ϕ≈,(4) 3.80ϕ≈,所以,当[3,4]x ∈时,()[3,4]x ϕ∈.图2.2 函数27y x =-和lg y x =的图形因为 3.54max ()(3)0.07x L x ϕϕ≤≤''==≈,所以对于一切[3,4]x ∈有()(3)0.071x ϕϕ''≤≈<由定理2.2知,迭代法收敛.(3) 迭代计算.取0 4.0x =,有1=3.801030x ,2=3.789951x ,3=3.789317x ,4=3.789280x 因为343110 2x x --≤⨯,所以方程的最大根*4 3.789280x x ≈=.三、迭代法的加速对于收敛的迭代序列,理论上迭代次数足够多时,就可以使计算结果满足任意给定的精度要求.但在应用中,有的迭代过程收敛极为缓慢,计算量很大,因此研究迭代格式的加速方法是非常必要的.1. 线性收敛序列的Aitken 加速法设0{}k k x +∞=是一个线性收敛的序列,极限为*x .即有小于1的正数c 使得*1*limk k k x x c x x +→∞-=-由于它线性收敛,误差减少的速度较慢,值得采用加速技术.下面介绍Aitken 加速法.对充分大的k ,有*1*,k k x x c x x +-≈- *2*1k k x x c x x ++-≈-由上面两式得**12**1k k k k x x x x x x x x +++--≈--解得22*2112121()22k k k k k k k k k k k k x x x x x x x x x x x x x +++++++--≈=--+-+利用上式右端的值可定义另一序列0{}k k y +∞=,即得Aitken 加速公式2121()2k k k k k k kx x y x x x x +++-=--+ (2.14)它仍然收敛到*x ,但收敛速度更快.证明请参考文献[19]. 2. Steffensen 迭代法Aitken 加速方案是对任意线性收敛序列0{}k k x +∞=构建的,并不限定0{}k k x +∞=如何获得.将Aitken 加速方法用于简单迭代法产生迭代序列时,得到著名的Steffensen 迭代法,具体迭代公式如下21()()(0,1,2,)()2k k k k k s x t s k s x x x t s x ϕϕ+=⎧⎪==⎪⎨-⎪=-⎪-+⎩(2.15) 或者直接写成21(())(())2()k k k k k k k x x x x x x x ϕϕϕϕ+-=--+ (0,1,2k =可以证明Steffensen 迭代法在一定的条件下与原简单迭代法的迭代序列具有相同的极限,但Steffensen 迭代法收敛速度更快,可以达到二阶收敛.证明请参考文献[19].例2.5 对例 2.3用Steffensen 迭代法求方程根的近似值,要求811102k k x x -+-<⨯.解 (1) 简单迭代法 将原方程化成1(10/(4))x x =+,建立迭代公式121104k k x x +⎛⎫= ⎪+⎝⎭易验证该迭代公式在区间[1,2]上满足定理2.2的条件,产生的迭代序列收敛.(2) Steffensen 迭代法 加速公式为12122110410(0,1,2,)4()2k k k k k s x t k s s x x x t s x +⎧⎛⎫⎪= ⎪+⎪⎝⎭⎪⎪⎛⎫⎨==⎪⎪+⎝⎭⎪-⎪=-⎪-+⎩(1) 取初值0 1.5x =,简单迭代法和Steffensen 迭代法计算结果见表2.3.注意:Steffensen 迭代法每一迭代步的计算量大约是原简单迭代法计算量的两倍.§2.3 Newton 迭代法Newton 迭代法是求解非线性方程根的近似值的一种重要数值方法.其基本思想是将非线性函数()f x 逐步线性化,从而将非线性方程(2.1)近似地转化为一系列线性方程来求解.下面讨论其格式的构造、收敛性、收敛速度以及有关变形.一、Newton 迭代法的构造设k x 是方程(2.1)的某根的一个近似值,将函数()f x 在点k x 处作Taylor 展开2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-取前两项近似代替()f x ,即用线性方程()()()0k k k f x f x x x '+-=近似非线性方程(2.1).设()0k f x '≠,则用线性方程的根作为非线性方程根的新近似值,即定义1()()k k k k f x x x f x +=-' (2.16) 上式即是著名的Newton 迭代公式.它也是一种简单迭代法,其中迭代函数()()()f x x x f x ϕ=-' Newton 迭代法具有明显的几何意义(如图 2.3所示).方程()0f x =的根*x 即为曲线()y f x =与x 轴的交点的横坐标.设k x 是*x 的某个近似值,过曲线()y f x =上相应的点(,())k k x f x 作切线,其方程为()()()k k k x f x y f x x '+-=它与x 轴的交点横坐标就是1k x +.只要初值0x 取得充分靠近根*x ,序列0{}k k x ∞=就会很快收敛到*x .所以Newton 迭代法也称为切线法.二、收敛性定理 2.4 设*x 是方程(2.1)的单根,在*x 的邻域上()f x ''连续且*()0f x '≠.则存在0δ>,当***0(,)[,]x U x x x δδδ∈=-+时,Newton 法产生的序列0{}k k x ∞=至少二阶收敛. 证明 (1) Newton 法迭代函数的导数为2()()()[()]f x f x x f x ϕ'''='显然,()x ϕ'在*x 邻域上连续.又*()0x ϕ'=,一定存在*x 的某个δ闭邻域*(,)U x δ,当*(,)x U x δ∈时,有()1x L ϕ'≤<从而Newton 法产生的序列0{}k k x ∞=收敛.(2)将()f x 在k x 处作一阶Taylor 展开***210()()()()()()2!k k k k k f x f x f x x x f x x ξ'''==+-+- (2.17) 其中k ξ介于*x 与k x 之间.又由Newton 迭代公式有10()()()k k k k f x f x x x +'=+- (2.18)式(2.17)与式(2.18)相减**21()()2()k k k k f x x x x f x ξ+''-=--'从而**1*2*()lim 0()2()k k kx x f x x x f x +→∞''-=≠'- (2.19) 由迭代法收敛阶的定义知,Newton 迭代法至少具有二阶收敛速度.上述定理给出了Newton 法局部收敛性,它对初值要求较高,初值必须充分靠近方程根时才可能收敛,因此在实际应用Newton 法时,常常需要试着寻找合适的初值.下面的定理则给出Newton 法在有根区间上全局收敛的一个充分条件.定理2.5 设*x 是方程(2.1)在区间[,]a b 上的根且()f x ''在[,]a b 上存在,如果(1) 对于任意[,]x a b ∈有,()0f x '≠()0f x ''≠; (2) 选取初值0[,]x a b ∈,使00()()0f x f x ''>.21则Newton 法产生的迭代序列0{}k k x ∞=单调收敛于*x ,并具有二阶收敛速度.(a)(b)(c) (d)图2.4 定理2.5的几何解释证明 满足定理条件(1)共有4种情形,如图2.4所示.下面仅以图2.4(a )情况进行证明,此时满足对任意[,]x a b ∈有,()0f x '>,()0f x ''>,初值*0x x >.首先用数学归纳法证明0{}k k x ∞=有下界*x .当0k =时,*0x x >成立.假设k n =时,不等式*n x x >成立.将*()f x 在n x 处作一阶Taylor 展开,得***2*()()()()()()0,(,)2!n n n n n n n f f x f x f x x x x x x x ξξ'''=+-+-=∈于是**2()()()()2()n n n n n n f x f x x x x f x f x ξ''=---'' 又由Newton 迭代公式,有22**21()()2()n n n n f x x x x f x ξ+''=--' (2.20)式(2.20)右端的第二项大于零,因此*1n x x +>.由数学归纳法知*k x x >,(0,1,2,)k = . 其次证明0{}k k x ∞=单调递减. 由()0f x '>,*k x x >,*()0f x =知,()0k f x >,()0k f x '>,于是Newton 迭代公式(2.16)的第二项大于零,从而1k k x x +>故迭代序列0{}k k x ∞=单调减少.序列0{}k k x ∞=单调减少有下界*x ,它必有极限,记为ˆx ,它满足*0ˆx x x ≤<,进而有ˆ[,]xa b ∈.对1()()k k k k f x x x f x +=-'两端取极限,并利用()f x ,()f x '的连续性,得ˆ()f x=0.结合函数()f x 在[,]a b 上的单调性知*ˆxx =. 因此,Newton 法产生的迭代序列0{}k k x ∞=单调收敛于*x ,利用式(2.20)及式(2.19)知该Newton 迭代序列二阶收敛.算法2.3 (Newton 迭代法)输入 初始近似值0x 、 容许误差ε;输出 近似解1x 或失败信息;Step 1 对1,,n m = 循环执行Step 2~3; Step 2 1000()/()x x f x f x '=-;Step 3 若10x x ε-<,则输出1x ,end ;否则01x x =,转向step2.例 2.6 利用非线性方程230x -=的Newton 迭代公式计算的近似值,使得811102n n x x ---≤⨯,并证明对任意0(0,)x ∈+∞,该迭代法均收敛.解 (1) 建立计算公式213213(0,1,2,)(2)k k k kk kk x x x x x x +-=-=+=其中00x >.(2) 判断收敛性在区间(0,)+∞内,()20f x x '=>,()20f x ''=>,当选取初值0)x ∈+∞时,存在足够大的M,使得0]x M ∈.由定理 2.5知,该迭代公式产生的迭代序列0{}k k x ∞=都收敛于当选取初值0x ∈时,100013()2x x x x =+> 这样,从1x 起,以后的(2)k x k ≥.故该迭代公式对任何初值00x >都收敛. (3) 取初值02x =,迭代计算,结果见表2.4.23从表2.4可见,迭代4 1.73205080756888= .三、Newton 迭代法的变形Newton 迭代格式构造容易,迭代收敛速度快,但对初值的选取比较敏感,要求初值充分接近真解,另外对重根收敛速度较慢(仅有线性收敛速度),而且当函数复杂时,导数计算工作量大.下面从不同的角度对Newton 法进行改进. 1 Newton 下山算法Newton 迭代法的收敛性依赖于初值0x 的选取,如果0x 偏离*x 较远,则Newton 迭代法有可能发散,从而在实际应用中选出较好的初值有一定难度,而Newton 下山法则是一种降低对初值要求的修正Newton 迭代法.方程(2.1)的根*x 也是()f x 的最小值点,若把()f x 看成()f x 在x 处的高度,则*x 是山谷的最低点.若序列0{}k k x ∞=满足单调性条件1()()k k f x f x +< (2.21)则称0{}k k x ∞=为称为()f x 的下山序列.在Newton 迭代法中引入下山因子(0,1]λ∈,将Newton 迭代公式(2.16)修正为1()(0,1,2,)()k k k k f x x x k f x λ+=-=' (2.22)适当选取下山因子λ,使得单调性条件(2.21)成立,即称为Newton 下山法.对下山因子的选取是逐步探索进行的.一般地,从1λ=开始反复将因子λ的值减半进行试算,一旦单调性条件(2.21)成立,则称“下山成功”;反之,如果在上述过程中找不到使条件(2.21)成立的下山因子λ,则称“下山失败”,这时可对k x 进行扰动或另选初值0x ,重新计算.2 针对重根情形的加速算法假设*x 是方程的(2)m ≥重根,并且存在函数()g x ,使得有**()()(),()0m f x x x g x g x =-≠ (2.23)式中()g x 在*x 的某邻域内可导,则Newton 迭代函数***1**()()()()()()()()()()()()()()m m m f x x x g x x x g x x x x x f x m x x g x x x g x mg x x x g x ϕ---=-=-=-'''-+-+-,其导数在*x 处的值***********()()()()()()()()lim lim()1lim11()()()x x x x x x x x g x x x x x mg x x x g x x x x x x g x m mg x x x g x ϕϕϕ→→→---'-+-'==--=-=-'+- 所以*0()1x ϕ'<<,由定理2.2知Newton 迭代法此时只有线性收敛速度.为了加速收24敛,可以采用如下两种方法方法一 令()()()f x x f x μ=',则*x 是方程()0x μ=的单根,将Newton 迭代函数修改为 2()()()()()[()]()()x f x f x x x x x f x f x f x μψμ'=-=-''''- 因此有重根加速迭代公式12()()(0,1,2,)[()]()()k k k k k k k f x f x x x k f x f x f x +'=-='''- (2.24)它至少二阶收敛.方法二 将Newton 迭代函数改为()()()f x x x mf x ϕ=-' 这时*()0x ϕ'=,由此得到加速迭代公式1()(0,1,2,)()k k k k f x x x mk f x +=-=' (2.25)3 割线法Newton 法每步需要计算导数值()k f x '.如果函数()f x 比较复杂时,导数的计算量比较大,此时使用Newton 法不方便.为了避免计算导数,可以改用平均变化率11()()k k k k f x f x x x ----替换Newton 迭代公式中的导数()k f x ',即使用如下公式111()()()()k k k k k k k f x x x x x f x f x +--=--- (2.26)上式即是割线法的迭代公式.割线法也具有明显的几何意义,如图2.5所示,依次用割线方程11()()()()k k k k k k f x f x y f x x x x x ---=+--的零点逐步近似曲线方程()0f x =的零点.割线法的收敛速度比Newton 法稍慢一点,可以证明其收敛阶约为1.618,证明请参考文献[4].此外在每一步计算时需要前两步的信息1,k k x x -,即这种迭代法也是两步法.两步法在计算前需要提供两个初始值0x 与1x .25图2.5 割线法的几何意义例2.7 已知方程42()440f x x x =-+=有一个二重根*x =Newton 法(2.16)和重根Newton 法(2.24)和(2.25)求其近似值,要求611102n n x x ---≤⨯解 32()48,()128f x x x f x x '''=-=-,2()2()()4f x x x f x xμ-==',2m =. 由Newton 法(2.16)得221232(0,1,2,)44k k k k k kx x x x k x x +-+=-==由Newton 法(2.24) 得2122(2)4(0,1,2,)22k k kk k k k x x x x x k x x +-=-==++由Newton 法(2.25) 得22122(0,1,2,)22k k k k k kx x x x k x x +-+=-==利用上述三种迭代格式,取初值0 1.4x =,分别计算,结果见表2.5.26知识结构图习 题1 用二分法求方程2sin 0x e x --=在区间[0,1]内根的近似值,精确到3位有效数字.2 方程340x x +-=在区间[1,2]内有一根,试用二分法求根的近似值,使其具有5位有效数字,至少应二分多少次.3已知方程3210x x --=在0 1.5x =附近有根,试判断下列迭代格式的收敛性,并用收敛的迭代公式求方程根的近似值,比较迭代次数,要求311102n n x x ---≤⨯(1) 1211n nx x +=+;(2) 1n x +=;(3) 1n x +.4设有方程(1) cos 0x x -=; (2) 230x x e -=确定区间[,]a b 及迭代函数()x ϕ,使1()k k x x ϕ+=对任意初值0[,]x a b ∈均收敛,并求各方程根的近似值,要求411102n n x x ---≤⨯.5 用迭代法求50.20x x --=的正根,要求准确到小数点后5位.6 用Steffensen 迭代法求方程31x x =-在区间[1,1.5]内的根,要求准确到小数点后4位.7 用Newton 法和割线法分别求方程3310x x --=在02x =附近根的近似值,并比较迭代次数(根的准确值为* 1.87938524x = ,要求准确到小数点后4位).8Halley 法是加速Newton 法收敛的一个途径,Halley 法在()f x 的单根情况下可达到三阶收敛.Halley 迭代函数是12()()()()1()2(())f x f x f x g x x f x f x -''⎛⎫=-- ⎪''⎝⎭其中括号中的项是对Newton 迭代公式的改进.(1) 设函数2()f x x a =-,试给出Halley 迭代公式,取初值02x =求5的近似值,要求准确到小数点后10位.(2) 设函数3()32f x x x =-+,试给出Halley 迭代公式,取初值0 2.4x =计算其根的近基本概念 (单根、重根、收敛阶)27似值.要求准确到小数点后10位.9试建立计算x =Newton 迭代公式,并取初值01x =,要求611102n n x x ---≤⨯.10 (数值试验)用二分法和Newton 法求下列方程的惟一正根的近似值)0.50x x x =11 (数值试验)设投射体的运动方程为/15/15()9600(1)480()2400(1)t t y g t et x h t e --⎧==--⎪⎨==-⎪⎩1)求当撞击地面时的时间,精确到小数点后10位. 2)求水平飞行行程,精确到小数点后10位.12 (数值试验)试用Newton 法分别求解方程(1)0m x -=,(3,6,12m =),观察迭代序列的收敛情形,分析所发生的现象.能否改造Newton 法使得它收敛更快.。
计算方法各习题及参考答案

计算⽅法各习题及参考答案第⼆章数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造⼀多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到⼆次多项式2()p x 的值:表中2()p x 的某⼀个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利⽤差分的性质证明22212(1)(21)/6n n n n +++=++ .2.4 当⽤等距节点的分段⼆次插值多项式在区间[1,1]-近似函数xe 时,使⽤多少个节点能够保证误差不超过61102-?.答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<= 的分段三次艾尔⽶特插值多项式,步长b a h n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平⽅逼近多项式,并给出平⽅误差.答案:()sin f x x =的⼆次最佳平⽅逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-,⼆次最佳平⽅逼近的平⽅误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=??.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-?取最⼩值.答案:810, 0, 33a b c ππ=-== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳⼀致逼近多项式()p x .答案:()f x 的最佳⼀致逼近多项式为323()74p x x x =++. 3.4 ⽤幂级数缩合⽅法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平⽅逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章数值积分与数值微分4.1 ⽤梯形公式、⾟浦⽣公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =?,并与精确值⽐较.答案:计算结果如下表所⽰4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量⾼,并指明所确定的求积公式具有的代数精度.(1)101()()(0)()hh f x dx A f h A f A f h --≈-++?(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++? (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-?答案:(1)具有三次代数精确度(2)具有⼆次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++?中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量⾼,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的⼆次插值多项式,⽤2()P x 导出计算积分30()hI f x dx =?的数值积分公式h I ,并⽤台劳展开法证明:453(0)()8h I I h f O h '''-=+.答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+?.4.5 给定积分10sin xI dx x =(1)运⽤复化梯形公式计算上述积分值,使其截断误差不超过31102-?.(2)取同样的求积节点,改⽤复化⾟浦⽣公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若⽤复化⾟浦⽣公式,应取多少个节点处的函数值?答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=? (3)取7个节点处的函数值.4.6 ⽤变步长的复化梯形公式和变步长的复化⾟浦⽣公式计算积分10sin xI dx x =?.要求⽤事后误差估计法时,截断误不超过31102-?和61102-?.答案:使⽤复化梯形公式时,80.946I T ≈=满⾜精度要求;使⽤复化⾟浦⽣公式时,40.946 083I s ≈=满⾜精度要求.4.7(1)利⽤埃尔⽶特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+?,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈.(2)利⽤上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--?,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++ ,⽽ 00, (0,1,2,,), i N x x ih i N Nh x x =+==- .4.8 ⽤龙贝格⽅法计算椭圆2214x y +=的周长,使结果具有五位有效数字.答案:49.6884l I =≈.4.9确定⾼斯型求积公式0011()()()x dx A f x A f x ≈+?的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证⾼斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+?的系数及节点分别为0001 2 2A A x x ===-=+第五章解线性⽅程组的直接法5.1 ⽤按列选主元的⾼斯-若当消去法求矩阵A 的逆矩阵,其中11121 0110A -?? ?= ? ?-??.答案: 1110331203321133A -?? ? ?=---5.2 ⽤矩阵的直接三⾓分解法解⽅程组1234102050101312431701037x x x x= ? ? ? ? ? ? ? ? ??答案: 42x =,32x =,21x =,11x =.5.3 ⽤平⽅根法(Cholesky 分解法)求解⽅程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -?????? ??? ?-=- ??? ? ??? ???????答案: 12x =,21x =,31x =-.5.4 ⽤追赶法求解三对⾓⽅程组123421113121112210x x x x ?????? ? ? ? ? ? ?= ? ? ? ? ? ? ? ? ?????答案:42x =,31x =-,21x =,10x =.第六章解线性代数⽅程组的迭代法6.1对⽅程1212123879897x x x x x x x -+=??-+=??--=?作简单调整,使得⽤⾼斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,⽤该⽅法求近似解(1)k x+,使(1)()3||||10k k x x +-∞-≤.答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2讨论松弛因⼦ 1.25ω=时,⽤SOR ⽅法求解⽅程组121232343163420412x x x x x x x +=??+-=??-+=-? 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<.答案:⽅程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3给定线性⽅程组Ax b =,其中111221112211122A ?? ? ?=,证明⽤雅可⽐迭代法解此⽅程组发散,⽽⾼斯-赛得尔迭代法收敛.6.4设有⽅程组112233302021212x b x b x b -?????? ??? ?= ??? ? ??? ?-??????,讨论⽤雅可⽐⽅法和⾼斯-赛得尔⽅法解此⽅程组的收敛性.如果收敛,⽐较哪种⽅法收敛较快.答案:雅可⽐⽅法收敛,⾼斯-赛得尔⽅法收敛,且较快.6.5设矩阵A ⾮奇异.求证:⽅程组Ax b =的解总能通过⾼斯-赛得尔⽅法得到.6.6设()ij n nA a ?=为对称正定矩阵,对⾓阵1122(,,,)nn D diag a a a = .求证:⾼斯-赛得尔⽅法求解⽅程组1122D AD x b --=时对任意初始向量都收敛.第七章⾮线性⽅程求根例7.4对⽅程230xx e -=确定迭代函数()x ?及区间[,]a b ,使对0[,]x a b ?∈,迭代过程1(), 0,1,2,k x x k ?+== 均收敛,并求解.要求51||10k k x x -+-<.答案:若取2()x x ?=,则在[1,0]-中满⾜收敛性条件,因此迭代法121, 0,1,2,k x k x k +== 在(1,0)-中有惟⼀解.取00.5x =-,*70.458960903x x ≈=-.取2()x x ?=,在[0,1上满⾜收敛性条件,迭代序列121, 0,1,2,k x k x k +== 在[0,1]中有惟⼀解.取00.5x =,*140.910001967x x ≈=- 在[3,4]上,将原⽅程改写为23xe x =,取对数得2ln(3)()x x x ?==.满⾜收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +== 在[3,4]中有惟⼀解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6对于迭代函数2()(3)x x c x ?=+-,试讨论:(1)当c 为何值时,1()k k x x ?+=产⽣的序列{}k x(2)c 取何值时收敛最快?(3)取1,2c =-()x ?51||10k k x x -+-<.答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所⽰表7.7例7.13 设不动点迭代1()k x x ?+=的迭代函数()x ?具有⼆阶连续导数,*x 是()x ?的不动点,且*()1x ?'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y x+===-?=-?-+?⼆阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ?=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ?为迭代函数的迭代法⾄少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有⾼阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且⽜顿法收敛,证明⽜顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第⼋章矩阵特征值8.1 ⽤乘幂法求矩阵A 的按模最⼤的特征值与对应的特征向量,已知5500 5.51031A -?? ?=- ? ?-??,要求(1)()611||10k k λλ+--<,这⾥()1k λ表⽰1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --. 8.2 ⽤反幂法求矩阵110242012A -??=-- -的按模最⼩的特征值.知A 的按模较⼤的特征值的近似值为15λ=,⽤5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最⼩的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设⽅阵A 的特征值都是实数,且满⾜121, ||||n n λλλλλ>≥≥> ,为求1λ⽽作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 ⽤⼆分法求三对⾓对称⽅阵1221221221A ?? ? ?= ? ? ???的最⼩特征值,使它⾄少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 ⽤平⾯旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]Te =平⾏的向量.答案:203/2/00001010/0T ??- ?=--?0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --??--= ? ?--8.6 若532644445A -??=- -,试把A 化为相似的上Hessenberg 阵,然后⽤QR ⽅法求A 的全部特征值.第九章微分⽅程初值问题的数值解法9.1 ⽤反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤??=?,要求取步长0.1h =,每步迭代误差不超过510-.答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==9.2 ⽤⼆阶中点格式和⼆阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ?=+≤=?的数值解(取步长0.2h =,运算过程中保留五位⼩数).答案:⽤⼆阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈⽤⼆阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 ⽤如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,⼩数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使⼆阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y aλλ'=-??=?为实常数绝对稳定,试求步长h 的⼤⼩应受到的限制条件.答案:2h λ≤.9.5 ⽤如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++?=+??=++??==,求解初值问题sin(), 01(0)1x y e xy x y '?=<≤?=?时,如何选择步长h ,使上述格式关于k 的迭代收敛.答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式⼆步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能⾼,并指出其阶数.答案:系数为142,,33a b d c ====,此时⽅法的局部截断误差阶最⾼,为五阶5()O h .9.7 试⽤欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx=-≤=+=,取步长0.1h =,⼩数点后⾄少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =??=? , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=??≈=? 220.604 820z 2.090 992y =??=? , 22 (0.2)0.604 659(0.2) 2.088 216y y z z ≈=??≈=?。
《数值分析第二章》PPT课件

定理2.1
顺序高斯消去法的前 n1 个主元
a (k ) kk
均不
为零的充要条件是 Ax b 的系数矩阵 A 的前 n 1个
顺序主子式
a a (1) (1) 11 12
Dk
a(1) 21
a(1) 22
a(1) 1k
a(1) 2k
0
(k1,2,...,n1).
a a (1) (1) k1 k2
a(1) kk
(1)
4 x2 x3 5
(2)
2
x1
2
x2
x3
1
(3)
解 <1> 化上三角方程组
x1 x2 x3 6
①
4 x2 x3 5
②
③+(-2)×①
2
x1
2 x2
x3
1
③
x1 x2 x3 6
①
4 x2 x3 5
②
④+ ②
4 x2 x3 11
④
x1 x2 x3 6
检验
原方程组:
0.012x1 0.010x20.167x3 0.6781
x10.8334x25.910x3 12.1
3200x1 1200x2 4.2x3 981
近似解: x 3 5 .5 4 6 ,x 2 1 0 0 .0 ,x 1 1 0 4 .0
把上近似解代入第 3 个方程后,得
3200×(-104)+1200×100 +4.2×5.546 = -2.1278e+005
列主元素消去法求解方程组时,各个列主元素
a (k ) ik k
均不为零。
证
设有一个列主元素
a
(r ) ir r
数值分析-第二章-距离空间

a
b g(x) q dx 1/ q
a
其中 f (x) p , g(x) q在[a,b]上可积分。
特别的 p=q=2 时,称为 Cauchy 不等式
特别的,当 n=1 时, (x, y) x y , 当 n=2 时, (x, y) (x1 y1)2 (x2 y2 )2
如果在 R2 中,定义 d(x, y) x1 y1 x2 y2 ,
例2 有理数空间 Q 按欧氏距离是不完备的距离空间。
例 3 距离空间l2 和 L2[a,b]按通常意义下的距离是完备的。
例 4 C[a,b]按 (x, y) max x(t) y(t) 是完备的距离空间; t[ a ,b ]
C[a,b]按
1(x,
y)
b
a
x(t)
y(t ) dt
是不完备的距离空间
间 Q 是等距同构的,所以实数空间 R1 是有理数空间 Q
的完备化空间。
例2
C[a,b]按距离
(x,
y)
b
a
x(t)
y(t)
dt
是不完备的,
但C[a,b] L1[a,b],且C[a,b]在L1[a,b]中稠密,故 L1[a,b]是
C[a,b]的完备化距离空间。
同理,C[a,b]按距离
( x,
y)
则l p 是距离空间,常称为 p 方可和的空间。
特别的,当 p=2,l 2 称为平方可和距离空间。
§2.2 收敛概念
1) 定义(收敛点列) 设 X 是一个距离空间,{x n}是
X 中点列, x X 。若 n 时, (xn, x) 0 (即 0, N, 当n N时, (xn, x) )
补充不等式
1)Minkowski 不等式
数值分析_第2章

证:由1。 f '( x) C[a, b],由2。 f '( x)不变号,故f ( x) 知 知 单调,再由3。 唯一的 [a, b],使f ( ) 0. 知
由1 3 知f ( x)在[a, b]上必属于下列四种情形之一:
。 。
f ''( x) 0 f (a) 0, f (b) 0, f '( x) 0(增) f ''( x) 0
二.收敛性:
mn . n .
◆判定二分次数:
1 lim n 1 b0 a0 0 n 2
1 对 0,若要求 mn n 1 b0 a0 2
b0 a0 则2 n log 2 1与取整的 1抵消 .
定理1.(单点法收敛的充分条件) 设f ( x)在[a, b]上二阶 可导,且满足:
。 1. f ''( x)在[a, b]上不变号(凹凸不变性);
2。 f '( x)在[a, b]上不为0(单调性); . 3。 f (a) f (b) 0; . 4。取x0 [a, b], 使f ( x0 ) f ''( x0 ) 0.x1 [a, b], f ( x1 ) f ( x0 ) 0. . 则由(6)所得 xn 单调收敛于f ( x) 0在[a, b]上的唯一根。
列表计算:
n
0 1 2 3 4 5
xn
2 1 1.33333 1.40000 1.41176 1.40378
2
f ( xn )
2 -1 -0.22223 -0.04000 -0.00692
hn
《数值分析》李庆杨,第五版第2章课件PDF

1 第1节引言第2节拉格朗日插值第3节均差与牛顿插值多项式第4节埃尔米特插值第5节分段低次插值第6节三次样条插值2 2.1 引言10niyxPii1.1 设函数在区间上有定义且已知在点上的值若存在一简单函数使xfybabxxxan10nyyy10xP成立就称为的插值函数点称为插值节点包含节点的区间称为插值区间求插值函数的方法称为插值法. xPxfnxxx10baxP 2.1.1 插值问题的提出 3 nnxaxaaxP101.2 若是次数不超过的代数多项式xPn其中为实数就称为插值多项式相应的插值法称为多项式插值. iaxP本章只讨论多项式插值与分段插值.若为分段的多项式就称为分段插值. xP 若为三角多项式就称为三角插值. xP即4 从几何上看插值法就是确定曲线使其通过给定的个点并用它近似已知曲线. xPy1nniyxii10xfy图2-1 见图2-1. 5 由此可以得到关于系数的元线性方程组上的函数值求次数不超过的多项式使 2.1.2 多项式插值10niyxPii1.3 设在区间上给定个点10nixfyiibabxxxan10naaa101n1nnxP6101111000010nnnnnnnnnyxaxaayxaxaayxaxaa1.4 此方程组的系数矩阵为1111100nnnnnxxxxxxA称为范德蒙德Vandermonde矩阵由于互异故10nixi1.5 7 因此线性方程组1.4的解存在且唯一. .0det1njiojijixxAnaaa10 定理1 满足条件1.3的插值多项式是存在唯一的. xP8 2.2.1 线性插值与抛物插值对给定的插值点可以用多种不同的方法求得形如1.2的插值多项式. 先讨论的简单情形. 1n问题给定区间及端点函数值1kkxx11kkkkxfyxfy要求线性插值多项式1xL.1111kkkkyxLyxL2.2 拉格朗日插值使它满足nnxaxaaxP101.2 9 其几何意义就是通过两点的直线.11kkkkyxyx图2-2 如图2-2. 10 由的几何意义可得到表达式1xL111kkkkkkxxxxyyyxL点斜式11111kkkkkkkkyxxxxyxxxxxL两点式2.1 由两点式看出是由两个线性函数1xL11kkkkxxxxxl11kkkkxxxxxl2.2 的线性组合得到其系数分别为及即ky1ky111xlyxlyxLkkkk2.3 11 称及为线性插值基函数xlk1xlk1kkxl01kkxl01kkxl111kkxl显然及也是线性插值多项式在节点及xlk1xlkkx1kx上满足条件图形见图2-3. 12 图2-3 13 下面讨论的情形. 2n 假定插值节点为要求二次插值多项式1kxkx1kx2xL112kkkjyxLjj 几何上是通过三点的抛物线. 2xL1111kkkkkkyxyxyx 可以用基函数的方法求的表达式此时基函数是二次函数且在节点上满足条件2xL101111kkjxlxljkkk1101kkjxlxljkkk2.4 .101111kkjxlxljkkk使它满足1xlkxlk1xlk14 接下来讨论满足2.4的插值基函数的求法以求为例1xlk由插值条件它应有两个零点及kx1kx11kkkxxxxAxl可由插值条件定出111kkxl其中为待定系数A1111kkkkxxxxA于是.11111kkkkkkkxxxxxxxxxl可表示为101111kkjxlxljkkk1101kkjxlxljkkk2.4 .101111kkjxlxljkkk101111kkjxlxljkkk15 同理.1111kkkkkkkxxxxxxxxxl.11111kkkkkkkxxxxxxxxxl 二次插值基函数在区间上的图形见图2-4. 1xlkxlk1xlk11kkxx16 图2-4 17 利用1xlkxlk1xlk11112xlyxlyxlyxLkkkkkk2.5 显然将代入2.51xlkxlk1xlk111112kkkkkkkxxxxxxxxyxL1111kkkkkkkxxxxxxxxy.11111kkkkkkkxxxxx xxxy立即得到二次插值多项式.112kkkjyxLjj它满足条件得18 2.2.2 拉格朗日插值多项式将前面的方法推广到一般情形讨论如何构造通过个节点的次插值多项式. 1nnxxx10nxLn.10njyxLjjn2.6 根据插值的定义应满足xLn先定义次插值基函数. n 为构造xLn19 定义1 若次多项式在个节点上满足条件10.01nkjjkjkxlkj2.7 就称这个次多项式为节点1nn10xlxlxln上的次插值基函数. nxxx10nn10njxlj1nnxxx1020 显然它满足条件2.7. 于是满足条件2.6的插值多项式可表示为xLn.0nkkknxlyxL2.9 110110nkkkkkknkkkxxxxxxxxxxxxxxxxxl.10nk2.8 与前面的推导类似次插值基函数为n10.01nkjjkjkxlkj2.7 .10njyxLjjn2.6 21 由的定义知xlk.100njyxlyxLjnkjkkjn形如2.9的插值多项式称为拉格朗日插值多项式xLn而2.3与2.5是和的特殊情形. 1n2n容易求得1101nkkkkkkknxxxxxxxxx101nnxxxxxxx2.10 若引入记号.0nkkknxlyxL2.9111xlyxlyxLkkkk2.3 11112xlyxlyxlyxLkkkkkk2.5 22 于是公式2.9可改写成.011nkknknknxxxxyxL2.11 注意: 次插值多项式通常是次数为的多项式nxLnn 特殊情况下次数可能小于. n.0nkkknxlyxL2.9 例如通过三点的二次插值多项式如果三点共线则就是一条直线而不是抛物线这时是一次多项式.221100yxyxyx2xL2xLy2xL23 定理2 设在上连续在内存在节点是满足条件2.6 的插值多项式则对任何插值余项2.2.3 插值余项与误差估计xfnba1xfnba10xLbxxxannbax这里且依赖于是2.10所定义的. bax1xn 若在上用近似baxLnxfxLxfxRnn则其截断误差为也称为插值多项式的余项.101nnxxxxxxx2.10 111xnfxLxfxRnnnn2.14 .10njyxLjjn2.6 24 证明由给定条件知在节点上为零即于是xRn10nkxk100nkxRkn其中是与有关的待定函数.xKx110xxKxxxxxxxKxRnnn2.13 现把看成上的一个固定点作函数xba10nnxtxtxtxKtLtft根据的假设可知在上连续在内存在. ftnba1tnba25 根据罗尔定理在的两个零点间至少有一个零点故在内至少有个零点. tttba1n 对再应用罗尔定理可知在内至少有个零点. ttban 依此类推在内至少有一个零点记为使1tnbaba0111xKnfnn根据插值条件及余项定义可知在点及tnxxx10处均为零故在上有个零点tba2nx26 于是将它代入2.13 余项表达式只有在的高阶导数存在时才能应用. xf 但在内的具体位置通常不可能给出ba如果可以求出那么插值多项式逼近的截断误差限是max11nnbxaMxfxLnxf.111xnMxRnnn2.1411banfxKnx且依赖于110xxKxxxxxxxKxRnnn2.13 就得到余项表达式2.12. 27 当时线性插值余项为1n21211021xxxxfxfxR10xx2.15 当时抛物插值余项为2n612102xxxxxxfxR20xx2.16 28 利用余项表达式2.12当时由于于是有nkxxfk01xfn00xlxxxRniikikn由此得.100nkxxlxkniiki2.17 特别当时有0k.10xlnii2.18 29 利用余项表达式2.12还可知若被插函数由于故即它的插值多项式nHxf01xfn0xLxfxRnn.xfxLn30 例1 证明其中是关于点的插值基函数.0502xlxxiiixli510xxx证明利用公式2.17可得.0222222502505025022502xxxxlxxlxxxlxxlxxxxxlxxiiiiiiiiiiiiiii31314567.032.000yx.352274.036.022yx 用线性插值计算取由公式2.1333487.034.0sin314567.032.0sin352274.036.0sin333487.034.011yx例2 已知的值并估计截断误差. 3367.0sin用线性插值及抛物插值计算解由题意取34.032.010xx111kkkkkkxxxxyyyxL点斜式323367.03367.0sin1L0167.002.001892.0314567.03367.000101xxxyyy.330365.033 由2.15其截断误差21021xxxxMxR其中max102xfMxxx于是3367.03367.0sin3367.011LR0033.00167.03335.021xxxxsinmax103335.0sin1x.1092.052 1211021xxxxfxfxR34 用抛物插值计算由公式2.5得3367.0sin21012012010210xxxxxxxxyxxxxxxxxy1202102xxxxxxxxy3367.02L333487.0 0008.0107689.0314567.040008.0105511.0352274.00004.01089.344330374.011112xlyxl yxlyxLkkkkkk2.5 35 由2.14 621032xxxxxxMxR其中max203xfMxxx于是这个结果与6位有效数字的正弦函数表完全一样0cosx9493.0这说明查表时用二次插值精度已相当高了. 截断误差限363367.03367.0sin3367.022LR0233.0033.00167.09493.061.100132.2637 例2 设试证2baCf81max22Mabaxabafbfafxfbxa.max2xfMbxa其中证明通过两点及的线性插值为afabfb1axabafbfafxL于是.81max22maxmaxmax2221MabbxaxMbxaxfxLxfaxabafbfafxfbxabxabxabxa38 2.3 均差与牛顿插值公式2.3.1 插值多项式的逐次生成利用插值基函数很容易得到拉格朗日插值多项式公式结构紧凑在理论分析中甚为方便但当插值节点增减时全部插值基函数均要随之变化整个公式也将发生变化甚为不便.为了计算方便可重新设计一种逐次生成插值多项式的方法. 10nkxlk39 当时记线性插值多项式为插值条件为1n1xP111001xfxPxfxP由点斜式01xxabafbfafxP将看成是零次插值的修正即1xP01xfxP0101xxaxPxP其中是函数的差商. 01011xxxfxfaxf 对于三个节点的二次插值插值条件为2xP222112002xfxPxfxPxfxP40 .10202xxxxaxPxP插值多项式显然112002xfxPxfxP由得222xfxP.1201010202120221222xxxxxfxfxxxfxfxxxxxPxPa 系数是函数的“差商的差商”. 2af41 一般情况已知在插值点上的值为要求次插值多项式满足条件f10nixi10nixfinxPn10nixfxPiin则可表示为xPn10010nnnxxxxaxxaaxP其中为待定系数可由插值条件确定. naaa10 这里的是由基函数逐次递推得到的这一点与拉格朗日插值不同. xPn1100nxxxxxx3.1 3.2 42 称为函数关于点的一阶均差. 000xxxfxfxxfkkkxfkxx0定义2 2.3.2 均差及其性质110010xxxxfxxfxxxfkkk称为的二阶均差. xf43 11102010kkkkkkxxxxxfxxxfxxxf3.3 一般地称为的阶均差kxf均差也称为差商. 44 均差有如下的基本性质.011010kjkjjjjjjjkxxxxxxxxxfxxxf3.4 这个性质可用归纳法证明. 1 阶均差可表为函数值的线性组合10kxfxfxfk 这性质也表明均差与节点的排列次序无关称为均差的对称性. 即45 3 若在上存在阶导数且节点xfban10baxxxn.10banfxxxfnk3.5 这公式可直接用罗尔定理证明. 2 由性质1及3.3可得0120110xxxfxxxxfxxxfkkk即则阶均差与导数关系如下n.010110xxxxfxxfxxxfkkkk3.3’ 11102010kkkkkkxxxxxfxxxfxxxf3.3 46 4321043214324344321032132332102122101100xxxxxfxxxxfxxxfxxfxfxxxxxfxxxfxxfxf xxxxfxxfxfxxxfxfxxfxxfxkk四阶均差三阶均差二阶均差一阶均差1表2 均差计算可列均差表如下表2-1. 47 2.3.3 牛顿插值公式根据均差定义一次插值多项式为010001001xxxxfxfxxxxfxPxP二次插值多项式为.1021001001021012xxxxxxxfxxxxfxfxxxxxxxfxPxP48 根据均差定义把看成上一点xba000xxxxfxfxf110100xxxxxfxxfxxf.101010nnnnxxxxxxfxxxfxxxf可得49 只要把后一式依次代入前一式就得到0100xxxxfxfxf10210xxxxxxxfxRxPnn0100xxxxfxfxPn10210xxxxxxxf其中1010nnxxxxxxxf10xxxxfnn3.6 1010nnxxxxxxxf50 10xxxxfxPxfxRnnnn3.7 是由2.10定义的. 1xn 显然由3.6确定的多项式满足插值条件xPn且次数不超过n.100nkxxfakk称为牛顿Newton均差插值多项式. xPn 系数就是均差表2-1中加横线的各阶均差它比拉格朗日插值计算量省且便于程序设计. ka其系数为它就是形如3.1的多项式101nnxxxxxxx2.10 0100xxxxfxfxPn3.61010nnxxxxxxxf10210xxxxxxxf10nnxxxxa3.1 102010xxxxaxxaaxPn。
《数值分析》第二讲插值法PPT课件
1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1
且
P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)
尚晓清数值分析第二章投影与逼近
(1)
(x) 1
b
a
f (x) S(x) dx min ,称为最佳一次逼近;
1
(2)
(x)
2
b
[
a
f
(x)
S
(
2
x)] dx
2
min
,称为最佳平方逼近或均
方逼近;
(3)
(x)
max x[ a ,b ]
f (x) S(x)
min ,称为最佳一致逼近或均
匀逼近。
2.数据拟合(曲线拟合)——离散函数的最佳逼近
x x0 , x0 0
故 2 x x0 , x x, x x0 , x
x, x
n
* i
xi
,
x
i1
x,
x
1*
x1
,
x
* 2
x2
,
x
* n
xn
,
x
由此可以具体估算出 x0 与 x 的误差。
§3.3 函数空间中的最正确逼近
——最佳平方逼近和最佳多项式逼近。
1.最佳平方逼近
在 L2[a,b]空间中定义带权函数的内积:
函数误差 (x) f (x) S(x)
或离散点的误差 (xi ) f (xi ) S(xi )(i 1, 2, , n) 在某种度量标准(如范数)下最小。
由此求出的函数 S(x)称为目标函数 f (x)的最佳逼近函数, 求 f (x)近似表达式 S(x) 的问题称为最佳逼近问题。
本章主要讨论两种类型的最佳逼近问题。
基本思想:对于给定的数据表 (xi , f (xi )) (i 1, , n) ,在
已知函数类 (x) C[a,b]或L2[a,b]中寻找函数 f (x)的
数值分析--第2章 插值法
数值分析--第2章插值法第2章 插值法在科学研究与工程技术中,常常遇到这样的问题:由实验或测量得到一批离散样点,要求作出一条通过这些点的光滑曲线,以便满足设计要求或进行加工。
反映在数学上,即已知函数在一些点上的值,寻求它的分析表达式。
此外,一些函数虽有表达式,但因式子复杂,不易计算其值和进行理论分析,也需要构造一个简单函数来近似它。
解决这种问题的方法有两类:一类是给出函数)(x f 的一些样点,选定一个便于计算的函数)(x ϕ形式,如多项式、分式线性函数及三角多项式等,要求它通过已知样点,由此确定函数)(x ϕ作为)(x f 的近似,这就是插值法;另一类方法在选定近似函数的形式后,不要求近似函数过已知样点,只要求在某种意义下在这些样点上的总偏差最小。
这类方法称为曲线(数据)拟合法。
设已知函数f 在区间],[b a 上的1+n 个相异点ix 处的函数值(),0,,iif f x i n ==,要求构造一个简单函数()x ϕ作为函数()f x 的近似表达式()()f x x ϕ≈,使得()(),0,1,,iiix f x f i n ϕ=== (2-1) 这类问题称为插值问题。
称f 为被插值函数;()x ϕ为插值函数;nx x ,,0 为插值节点;(2-1)为插值条件。
若插值函数类{()}x ϕ是代数多项式,则相应的插值问题为代数插值。
若{()}x ϕ是三角多项式,则相应的插值问题称为三角插值。
若{()}x ϕ是有理分式,则相应的插值问题称为有理插值。
§1 Lagrange 插值1.1 Lagrange 插值多项式设函数f 在1+n 个相异点01,,,nx x x 上的值n i x f f ii ,,1,0),( ==是已知的,在次数不超过n 的多项式集合n P 中,求()nL x 使得(),0,1,,n i iL x f n n == (2-2) 定理2.1 存在惟一的多项式nn P L ∈满足插值条件(2-2)。
数值分析_第二章
方程求根问题 简单迭代法 牛顿迭代法 非线性方程组的数值解法
课程安排
第八章 矩阵特征值问题的数值解法 (6 学时) 幂法 雅可比方法 QR方法
课程安排
第九章 常微分方程初值问题 (4学时)
欧拉方法 龙格-库塔方法 单步法和多步法
课程安排
上机实验
(16学时)
课程基本要求
E An n E An 1 1
8
n 1
n! E A 1
7
E A9 1 9! 4.41210 0.1601
由于误差在计算过程中放大很严重, 所以这是一种 数值不稳定的算法。
寻找一种数值稳定的相反的算法, 把乘法改为除法。用相向的递推关系
n 1 x exp( x 1) n x exp( x 1) dx 0 0
An 1 n An1 ,
n 2,3,
0 A 1 x 1 exp(x 1) dx 0
1
1 d exp x 1
1 0
1 1 e
数值计算问题的适定性
1. “良态”问题和“病态”问题
在适定的情况下,若对于原始数据很小的变化δ X, 对应的参数误差δ y也很小,则称该数学问题是良 态问题;若δ y很大,则称为病态问题 病态问题中解对于数据的变化率都很大,因此数 据微小变化必将导致参数模型精确解的很大变化 数学问题的性态完全取决于该数学问题本身的属 性,在采用数值方法求解之前就存在,与数值方 法无关
4.7
取n=5,设计算每项数值的舍入误差为Δ ,
令4Δ ≤Є=0.0005 Δ ≤0.0001,取 Δ =0.00005=0.5*10-4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a12 函数插值 a第二章 a1 n 11 a21 a22 a2 n i 1 A bi lij x j j 1 an 1 an 2 ann xi lii
i 2 ,3 , , n
第二章 插值与逼近
• 余项表达式仅当 f ( n1) ( x ) 存在时才能应用,且是唯一的。 • 在( a , b ) 内的具体位置通常不能给出。 • 若有max a xb
M f ( n 1) ( x ) Mn 1,则截断误差限是 Rn( x) n n 1 n 1( x ) . ( 1)!
n1 ( x) ( x x0 )( x x1 )( x xn )
K (x)为待定函数
Rn ( x) f ( x) Pn ( x) K ( x) n1 ( x)
11
f ( x) Pn ( x) K ( x) n1 ( x) 0 若引入辅助函数 (t ) f (t ) Pn (t ) K ( x) n1 (t ) 则有 (x ) f ( x) Pn ( x) K ( x) n1 ( x) 0
从而 | Rn ( x ) | 的大小与 Mn 1和 | n 1 ( x ) | 有关,因此在 n 和 x [a , b]
| 给定的情况下, 1个插值节点的选择应使 n1 ( x ) | 尽可能小。 n
• n次插值多项式对次数不高于n次的多项式完全精确。 若f(x)为次数不高于n次的多项式,
用通过两点P0 , P 的直线 L1 ( x) 来代替 f ( x), 即 1 x [ xk , xk 1 ]
f ( x)
P1
L1( x )
xk+1 x
17
P0
0
华长生制作
xk
② 抛物线插值: 余项为
R2 ( x) f ( x) L2 ( x) f ( ) ( x xk 1 ) ( x xk ) ( x xk 1 ) 3! (a, b)
f ( n 1) ( ) K ( x) (n 1)! 0
华长生制作 13
f ( n 1) ( ) K ( x) (n 1)!
所以
f ( n 1) ( ) Rn ( x) K ( x) n 1 ( x) n 1 ( x) (n 1)!
称Rn ( x)为插值多项式Pn ( x)的余项(截断误差)
2 n a0 a1 x0 a2 x0 an x0 y0
--------(4)
上述方程组的系数行列式为n+1阶Vandermond行列式
1 x0 V 1 x1
2 n x0 x0 2 1 n 1
x
x
2 n xn xn
( x j xi ) 0
Ax b
§ 2.1 插值问题 § a 2.2 插值多项式的构造方法 a
xi
a11 12 1n a2 n 2.3 a21 § a22 分段插值法 A an 1 an 2 ann
华长生制作
bi lij x j
j 1
( n1) ( ) 0
(t ) f (t ) Pn (t ) K ( x) n1 (t )
由于 因此
( ( n1) (t ) f ( n1) (t ) Pn( n1) (t ) K ( x) nn1) (t ) 1 ( ( n1) ( ) f ( n1) ( ) Pn( n1) ( ) K ( x) nn1) ( ) 1
1
yy
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
00.5Biblioteka 11.5 1.52 2
2.5 2.5
3 3
3.5 3.5
x x x
对于被插函数f ( x)和插值函数P( x)
在节点xi处的函数值必然相等
但在节点外P( x)的值可能就会偏离f ( x) 因此P( x)近似代替f ( x)必然存在着误差 华长生制作
则f(n+1)(ξ) =0, 华长生制作
从而Rn(x)=0.
16
• n = 1, 2 时的插值余项 :
① 线性插值:
余项为 R1( x) f ( x) L1( x) f ( ) ( x xk ) ( x xk 1) 2!
f ( x) L1( x)
y
(a, b)
( x) 0 , ( xi ) 0 , i 0,1,2,, n
由于Pn ( x)和 n1 ( x)为多项式,因此若f ( x)可微, 则 (t )也可微
华长生制作 12
重复使用Rolle定理知
在区间(a, b)内至少有一个点 , 使得 (t )的n 1阶导数为零
n n i i 0 i i 0
当用三角函数的多项式插值时称为三角插值;当用 有理分式插值时称为有理插值;当用多项式插值时 称为代数插值。
华长生制作
5
P( xi ) yi
i 0,1,2 ,, n
------(1)
并且用P( x)近似代替f ( x )
这就是插值问题, (1)式为插值条件,
n
Lagrange型余项
其中 n 1 ( x ) ( x xi ) , (a , b) , 且依赖于x.
i 0
华长生制作 14
设
M n 1 max| f ( n 1 ) ( x )|
a x b
N n 1 n 1 ( x )| | ( x xi )| |
对函数f (x), 其函数形式可能很复杂, 且不利于在计算机上
运算, 假如可以通过实验或测量, 可以获得f ( x )在区间[ a , b ] 上的一组n 1个不同的点
a x0 x1 x2 xn b
上的函数值 yi f ( xi ),
i 0 ,1,2 ,, n
i 0
n
则
f ( n 1 ) ( ) n 1 ( x) | Rn ( x )| ( n 1)!
1 M n1 Nn1 ( n 1)!
华长生制作
15
注意
f ( n 1) ( ) Rn ( x ) f ( x ) Ln ( x ) ( x ), ( n 1) ! n 1
能否存在一个性能优良、便于计算的函数
比如多项式函数 P(x)
华长生制作 4
引入符号 M max x , m min x , 当用插值函数P(x)计 算被插函数f(x)在点 x m, M 处近似值的方法称之 为内插法,若用来计算 x [a, b]但x [m, M ] 处近似 值的方法称之为外插法。
-------(6)
其中 xi , i 0 ,1,2 ,, n为插值节点
华长生制作
yi f ( xi )
i 0,1,2 ,, n
20
如果a x0 x1 x2 xn b为区间[ a , b]上的一组节点
称函数P( x)为函数f ( x)的插值函数 如果P(x)为多项式函数, 则称之为插值多项式
称点 xi , i 0 ,1,2 , , n为插值节点
称区间 a , b]为插值区间 [ 如函数y sin x , 若给定[0, ]上5个等分点
华长生制作
其插值函数的图象如图
6
sinxµ å IJ Öµ
注意t与x 的区分
且 ( xi ) f ( xi ) Pn ( xi ) K ( x) n1 ( xi )
Rn ( xi ) K ( x) n 1 ( xi ) 0
i 0,1,, n
因此, 若令x xi , (t )在区间[a, b]上至少有n 2个零点,即
7
整体误差的大小反映了插值函数的好坏
为了使插值函数更方便在计算机上运算,一般插值函 数都使用代数多项式和有理函数 本章讨论的就是代数插值多项式
二、代数插值多项式的存在唯一性
设函数 y f ( x) 在区间[ a , b]上的代数插值多项式为
Pn ( x ) a0 a1 x a2 x 2 an x n
定理1. 设f ( x )在区间[ a , b]上n 1阶可微, Pn ( x )为f ( x )在[ a , b]上的
n次插值多项式, 插值节点为{ xi } in 0 [ a , b ], 则x [ a , b ], 有
f ( n 1) ( ) Rn (x ) n 1 ( x) (n 1)!
的插值多项式 Pn ( x ) a0 a1 x a2 x 2 an x n 存在且唯一.
虽然线性方程组(4)推出的插值多项式存在且唯一
但通过解线性方程组(4)求插值多项式却不是好方法
华长生制作 10
插值多项式中的误差
假设在区间[a, b]上f ( x)的插值多项式为 Pn ( x)
用通过三点P0 , P , P2抛物线近似代替f ( x), 即 1 f ( x) L2 ( x)
y
x [ xk 1 , xk 1 ]
P1
P2 f ( x )
L2 ( x )
P0
0
华长生制作
xk-1
xk
xk+1
x
18
2.2 插值多项式的构造方法
根据线性空间的理论
所有次数不超过n的多项式构成的线性空间是 n 1 维的
i 1
lii
2
本章要点 用简单的函数(如多项式函数)作为一个 复杂函数的近似,最简单实用的方法就是 插值. 本章主要介绍有关插值法的一些基本概念, 及多项式插值的基础理论和几个常用的插 值方法:Lagrange插值、分段线性插值、 Newton插值、Hermite插值和三次样条插值