数学实验1

合集下载

大学数学实验报告----迭代(一)——方程求解

大学数学实验报告----迭代(一)——方程求解

Do M n , n, 2, 100
运行结果:
M n_Integer : Module y, k , m 2; k m ^ n 1 ;
x Mod k, n ;
Print n, " ", PrimeQ n , " ", x, "
", GCD m, n
Do M n , n, 2, 100
2 True 0 2 3 True 1 1 4 False 0 2 5 True 1 1 6 False 2 2 7 True 1 1 8 False 0 2 9 False 4 1 10 False 2 2 11 True 1 1 12 False 8 2 13 True 1 1 14 False 2 2 15 False 4 1 16 False 0 2 17 True 1 1 18 False 14 2 19 True 1 1 20 False 8 2 21 False 4 1 22 False 2 2 23 True 1 1 24 False 8 2 25 False 16 1 26 False 2 2 27 False 13 1 28 False 8 2 29 True 1 1 30 False 2 2 31 True 1 1 32 False 0 2 33 False 4 1 34 False 2 2 35 False 9 1 36 False 32 2 37 True 1 1 38 False 2 2 39 False 4 1 40 False 8 2
99 False 3 27 100 False 1 67 Null2
m=4 时
输入程序:
M n_Integer : Module y, k , m 4; k m ^ n 1 ; x Mod k, n ; Print n, " ", PrimeQ n , " ", GCD m, n , " ", x Do M n , n, 2, 100

【精选】数学实验一矩阵运算与Matlab命令24

【精选】数学实验一矩阵运算与Matlab命令24
B1=[b11 b12 b13 b14 ;b21 b22 b23 b24; b31 b32 b33 b34]
运行
17
矩阵的运算(矩阵的加减、数乘、乘积)
C=A1+B1 D=A1-B1 syms c, cA=c*A1 A2=A1(:,1:3), B1 G=A2*B1
18
矩阵的运算(矩阵的加减、数乘、乘积)
求解方程组Ax=b x=A\b 若A为可逆方阵, 输出原方程的解x; 若A为nxm(n>m)阵, 且A’A可逆,输出
原方程的最小二乘解x.
21
矩阵的运算(求解线性方程组)
求矩阵方程:
设A、B满足关系式:AB=2B+A,求B。 其中A=[3 0 1; 1 1 0; 0 1 4]。
取出A的1、3行和1、3列的交叉处元素 构成新矩阵A1
程序
A=[1 0 1 1 2;0 1 -1 2 3;

3 0 5 1 0;2 3 1 2 1],
vr=[1, 3];vc=[1, 3];
A1=A(vr, vc)
观察结果
26
分块矩阵(矩阵的标识)
将A分为四块,并把它们赋值到矩阵B 中,观察运行后的结果。
3
2
2

35 20 60 45
, B 10
15
50
40

20 12 45 20
将 表 格 写 成 矩 阵 形 式
6
计算
输入下面Matlab指令 A=[4 2 3;1 3 2;1 3 3;3 2 2], B=[35 20 60 45;10 15 50 40;20

3 0 5 1 0;2 3 1 2 1]

MATLAB数学实验报告1

MATLAB数学实验报告1

MATLAB数学实验报告1Matlab数学实验报告⼀、实验⽬的通过以下四组实验,熟悉MATLAB的编程技巧,学会运⽤MATLAB的⼀些主要功能、命令,通过建⽴数学模型解决理论或实际问题。

了解诸如分岔、混沌等概念、学会建⽴Malthu模型和Logistic 模型、懂得最⼩⼆乘法、线性规划等基本思想。

⼆、实验内容2.1实验题⽬⼀2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为⾮负实数)进⾏了分岔与混沌的研究,试进⾏迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运⾏后得到Feigenbaum图2.2实验题⽬⼆2.2.1实验问题某农夫有⼀个半径10⽶的圆形⽜栏,长满了草。

他要将⼀头⽜拴在⽜栏边界的桩栏上,但只让⽜吃到⼀半草,问拴⽜⿐⼦的绳⼦应为多长?2.2.2问题分析如图所⽰,E为圆ABD的圆⼼,AB为拴⽜的绳⼦,圆ABD为草场,区域ABCD为⽜能到达的区域。

问题要求区域ABCD等于圆ABC的⼀半,可以设BC等于x,只要求出∠a和∠b就能求出所求⾯积。

数学实验报告 (1)

数学实验报告 (1)

(1)参数方程:z=2^2^/2^2^sin y x y x ++(-8<=x<=8,-8<=y<=8) (2)程序:[X,Y]=meshgrid(-8::8);r=sqrt(x.^2+y.^2)+eps;Z=sin(r)./r;Mesh(x,y,z)Axis square(3)程序的输出结果:3:球面,椭球面,双叶双曲面,单叶双曲面1球面: (4):参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *R z R y R x 0π<=θ<2* 0<=ϕ<π (5)程序:u=[0:pi/60:2*pi];v=[0:pi/60:pi];[U,V]=meshgrid(u,v);R=3;X=R*sin(v).*cos(u);Y=R*sin(v).*sin(u);Z=R*cos(v);Surf(x,y,z);axis equal;(3)程序输出结果:2椭球面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *c z b y a x 0<=θ<2*π 0<=ϕ<=π (2)程序:ezsurf(‘3*sin(u)*cos(v) ,’3*sin(u)*sin(v)’,’1*cos(u)’,[0,pi,0,2*pi]);(3)程序的输出结果:3单叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕtan sin *sec *cos *sec *z a y a x 0<=θ<2*π -π/2<ϕ<π/2 (2)程序:ezsurf(‘3*sec(u)*cos(v),’3*sec(u)*sin(v)’,’5*tan(u)’,[-pi/2,pi/2,0,2*pi]);axis auto(3)输出程序结果:4双叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕsec *sin *tan *cos *tan *c z b y a x 0<=θ<2*π -π<ϕ<3*π/2,ϕ≠π/2(2)程序:ezsurf(‘3*tan(u)*cos(v)’,’3*tan(u)*sin(v)’,’5*sec(u)’,[-pi/2,3*pi/2,0,2*pi]);axis auto(4) (3)输出程序结果:抛物螺线: (1)参数方程:⎪⎩⎪⎨⎧===2^*sin **cos **t c z t t b y t t a x 0<T<+∞ (2)程序:ezplot3(‘2*t*cos(t)’,’2*t*sin(t)’,’t.^2/3’,[0,50]);(3)输出程序结果:(5)马鞍面: (1)参数方程:z=x^2/9-y^2/4 (-25<=x<=25,-25<=y<=25)(2)程序:[X,Y]=meshgrid(-25:1:25);Z=X.^2/9-Y.^2/4;Surf(X,Y,Z)Title(‘马鞍面’)grid off(3)输出程序结果:(6)黎曼函数:(1)程序:n=100;x=[];y=[];k=1;for q=2:nfor p=1:q-1if gcd(q,p)==1 %利用函数gcd(m,n)可求m和n的最大公约数x(k)=p/q;y(k)=1/q;k=k+1;endendendplot(x,y,’.b’); axis([0,1,0,1])(2)程序输出结果:。

北京工业大学工程数学-实验1-数学建模入门

北京工业大学工程数学-实验1-数学建模入门
(4)评判结束后,求出各选手的平均分,按平均分从低到高排序,依次确定本次评比的名次,即平均分最低者获得资助最高,依次类推。
d1100101010011000过河的方式有两种过河次数为奇数时船从此岸划向彼岸过河次数为偶数时船从彼岸划向此岸所以则状态ks随决策kd变化的规律为??kdkksks11????因此设计安全过河方案归结为求决策序列21ddddn??使状态ssk?按状态转移律由初始状态??11111?s经n步达到??00001??ns
我们将人,猫,鸡,米在岸上的情况,依次用四维向量S表示,即S(人,猫,鸡,米),并将这些向量称为状态,则第k次渡河前的状态记为 。
当一物在此岸时,相应分量记为1,在彼岸时记为0。例如(1,1,1,1)表示它们都在此岸,(0,1,1,0)表示猫和鸡在此岸,人和米在彼岸。由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。安全渡河条件下的状态称为允许状态。对本问题而言,允许状态集合为:
(1,0,0,0)
(1,0,0,1)
(1,0,1,0)
(1,1,0,0)
(1,0,0,0)
(1,0,1,0)
1
2
3
4
5
6
7
8
(1,1,1,1)
(0,1,0,1)
(1,1,0,1)
(0,0,0,1)
(1,1,0,1)
(0,0,1,0)
(1,0,1,0)
(0,0,0,0)
(1,0,1,0)
(1,0,0,0)
(2)甲乙两站之间有汽车想通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。甲乙两站之间有一中间站丙,某人每天在随机时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,大约10天到达乙站。问开往甲乙两站的汽车经过两站的时刻表是如何安排的?

数学实验1-3章习题答案

数学实验1-3章习题答案
>> x=1.5951;eval(yxx)
ans =
18.3287
函数的单调区间为:
(1)单调递增区间:-2<x<-1.5326 -0.7315<x<0以及1.5951<x<2;
(2)单调递减区间:-1.5326<x<-0.7315以及0<x<1.5951.
(2)
函数的图形为:
clear
>> fplot('3*x^5-20*x^3+10',[-3,3])
ans =
-3
最值2:
x=1:0.1:3;
>> y=3.*x.^5-20.*x.^3+10;
>> [m k]=max(y)
m =
199
k =
21
>> x(k)
ans =
3
驻点1及相应的二阶导数值:
clear
>> syms x y
>> y=3*x^5-20*x^3+10;
>> yxx=diff(y,x,2);
>> grid on
f=inline('100*acos(1-1/200*(r^2))+r^2*acos(1/20*r)-10*sqrt(r^2-1/400*r^4)-50*pi','r');
>> y=fzero(f,12)
y =
11.5873
3.求解下列非线性方程组在远点附近的根:
clear
>> syms x y z
>> [x y z]=solve('9*x^2+36*y^2+4*z^2-36','x^2-2*y^2-20*z','16*x-x^3-2*y^2-16*z^2',x,y,z)

数学实验1 MATLAB操作基础


1.1.2 MATLAB命令形式 命令形式
在工作空间或MATLAB命令窗口中输入 命令窗口中输入MATLAB 在工作空间或 命令窗口中输入 认可的任何命令,按回车键都可执行其操作. 认可的任何命令,按回车键都可执行其操作 如“4+7”、“4-7”、“4*7”、“4/7”、 “4^5”, 、 、 、 、 , 等按回车键后可显示其结果. “sqrt(5)”等按回车键后可显示其结果 等按回车键后可显示其结果
随机抽取10 名学生的高等数学课程成绩, 例1.2.2 随机抽取 名学生的高等数学课程成绩, 并统计他们中的最高分、 并统计他们中的最高分、最低分以及他们的平均 成绩。 成绩。
math=[88,90,77,69,92,80,74,66,95,85]; %产生 维向量 产生10维向量 产生 mathaver=sum(math)/10 %计算平均成绩 计算平均成绩 h=max(math) l=min(math) %求出最高分 求出最高分 %求出最低分 求出最低分
第一章 MATLAB使用说明 1.1 MATLAB窗口环境与命令形式
1.1.1 Matlab 的窗口环境
当前工 作目录 当前工 作空间 命令 提示符 命令窗口 输入命令的 历史记录
运行MATLAB创建一个或多个窗口
a) 命令区 命令区(Command Window)是用户使用的主 是用户使用的主 要场所,此时,可以输入变量、 要场所,此时,可以输入变量、数组及运算命 进行一些简单的运算; 键搜索、 令,进行一些简单的运算;用↑↓←→键搜索、 键搜索 修改以前使用过的命令操作, 清除窗口; 修改以前使用过的命令操作 用 clc清除窗口 清除窗口 寻求有关帮助; 用help sqrt ( help input …)寻求有关帮助 寻求有关帮助 b) 编辑区 编辑区(Editor\Debugger Window)编制各种 编制各种 M-文件,存盘 文件, 文件 存盘(Save)、运行(Run)等. 、运行( )

数学实验讲义1

1.9.1 求极限
表 1.9.1 limit 函数的用法
表达式
函数格式
备注
lim x→a f (x) lim x→a− f (x) lim x→a+ f (x) lim x→a f (x)
limit(f, x, a) limit(f, x, a, ’left’) limit(f, x, a, ’right’) limit(f, a)
format long
15 位数字表示
3.14159265358979
format short e 5 位科学记数表示
3.1416e+00
format long e 15 位科学记数表示
3.14159265358979e+00
format short g 从 format short 和 format short e 中自动选最佳记述方式 3.1416
ans =
-1/12
(2) lim x→2
x−2 x2x-2)/(x^2-4),x,2)
ans =
1/4
(3) lim x→+∞
(1 +
t )4x 2x
>> syms x t
>> limit((1+t/(2*x))^(4*x),x,inf)
-1-
《数学实验》
第一讲 MATLAB 软件基本操作
1.1 MATLAB 软件简介
MATLAB 的名称源自 Matrix Laboratory,是一门计算语言,它专门以矩阵的 形式处理数据。MATLAB 将计算与可视化集成到一个灵活的计算机环境中,并提供 了大量的内置函数。可以在广泛的工程问题中直接利用这些函数获得数值解。

重庆大学-数学实验-1MATLAB软件入门

x=-10:0.6:10; y=x; [X,Y]=meshgrid(x,y); Z=sin(pi.*sqrt(X.^2+Y.^2)); surf(X,Y,Z) xlabel('x') ylabel('y') zlabel('z') title('z=sin(pi*sqrt(x.^2+y.^2)') shading flat
其各位数字的立方和等于该数本身。例如,153是一个水仙花数,因为153=1 计算程序
for a=1:1:9 for b=0:1:9 for c=0:1:9 A=a*100+b*10+c; if A==a^3+b^3+c^3 disp(A)
end end end end 最终结果: 153 370 371 407 分析:此题使我进一步熟悉了循环语句for、while等的基本格式和应用方法, 得注意的是每一个循环语句或条件语句的出现,必定要对应的出现一个end,这 点很容易忽视。 6.编写函数M-文件sq.m:用迭代法求的值。求平方根的迭代公式为 程序: function f=sq(a) a>=0 x=eps; y=1/2*(x+a/x); while (abs(x-y)>=10^(-5)) x=y y=1/2*(x+a/x) end f=x else disp('their exist errors') end 运行结果 调用sq(16),输出结果是4.0000 分析:此题要求掌握利用循环语句进行迭代,实现开方方程的求解,另外x的取
分析在表达乘方的时候要用“y1=x.^2”的形式,在表达x分量的时候可以用 linspace和直接用 生成数组的形式。主要函数:plot:生成图片;hold on和old off用来在同一幅图 描图;text:用程序对图片加标注;gtext:用鼠标在图中加字符;title:用于对 加标题。

数学建模与数学实验1沙鱼讲1.2 视频的ppt

数学建模与数学实验微分方程模型问题 :地中海鲨鱼问题年代 1914 1915 1916 1917 1918 百分比 11.9 21.4 22.1 21.2 36.4 年代 1919 1920 1921 1922 1923 百分比 27.3 16.0 15.9 14.8 19.7第一次世界大战期间,从地中海各港口捕获的几种鱼类捕获量百分比的资料中,发现鲨鱼等的比例有明显增加(见上表),而供其捕食的食用鱼的百分比却明显下降.显然战争应该是捕鱼量下降,食用鱼增加,鲨鱼等也随之增加,但为何出现上述情况呢?符号表示意大利生物学家Ancona发现了这个问题, 但是他无法解释这个现象,于是求助于著 名的意大利数学家V.Volterra,希望建立一 个食饵—捕食系统的数学模型,定量地回 答这个问题.返回1.符号说明:x1(t) ——食饵在t时刻的数量; x2(t) ——捕食者在t时刻的数量; r1 ——食饵独立生存时的增长率; r2 ——捕食者独自存在时的死亡率;  1 ——捕食者掠取食饵的能力;2 ——食饵对捕食者的供养能力.e ——捕获能力系数解释2.基本假设:(1)食饵由于捕食者的存在使增长率降 低,假设降低的程度与捕食者数量成 正比;(2)捕食者由于食饵为它提供食物的作用 使其死亡率降低或使之增长,假定增 的程度与食饵数量成正比。

3.模型建立与求解模型(一) 不考虑人工捕获 dx1 dtx1 (r1 1x2 ) dx2  dtx2 (r2 2 x1)该模型反映了在没有人工捕获的自然境 中食饵与捕食者之间的制约关系,没有考虑食 饵和捕食者自身的阻滞作用, Volterra提出的最 简单的模型.4.模型求解 针对一组具体的数据用Matlab软件进行计 算. 设食饵和捕食者的初始数量分别为,x1 (0)  x10 x2 (0)  x20 r1  1, 1  0.1, r2  0.5, 2  0.02, x10  25, x20  2t的终值经试验后确定为15,求解结果如下图:x1(t)为实线,x2 (t)为“*”线.10090807060可以猜测:504030x1(t) 与x2(t)2010 0都是周期函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学实验实验报告Mathematical Experiment Report
学生所在学院:理学院
学生所在班级:11级数理统计(1)班学生姓名:姜景耀
指导教师:李建东
教务处
2013年 9月
1.实验内容
① 函数图形的描绘;② 函数的多项式逼近——Taylor 级数; ③ Fourier 级数; ④ 无穷乘积;⑤ 调和级数
2.实验目的
学习使用Mathematica 的一些基本功能来验证或观察微积分学的几个结论。

3.实验要求
在熟悉相关命令的使用方法后,解决下列问题:(函数自选) ① 绘制函数的图形,观察分析函数、导函数之间的联系,寻求函数的零点。

x x x f 43
1
)(3+-= 4)(2+-='x x f
Plot[{(-1/3)x^3+4x,-x^2+4},{x,-4,4}]
1,当0)(>'x f 时,图像上升。

当0)(<'x f 时,图像下降。

当0)(='x f 时有极值。

2,当)(x f '上升时,图像凹。

当)(x f '下降时,图像凸。

当0)(='x f 时,)
(x f 图像出现拐点。

3,观察得出方程0)(=x f 的根,近似为5.31-=x ,02=x ,5.33=x 精确值:
一、 FindRoot[{4x-x 3/3},{x,-2,-4}] {x -3.4641}
二、 FindRoot[{4x-x 3/3},{x,-2,2}]
{x 0.}
三、 FindRoot[{4x-x 3/3},{x,4,2}] {x 3.4641}
② 计算函数的Taylor 级数,并观察函数对应级数的收敛情况,试给出收敛和不收敛的例子(图形)。

x x f sin )(=
Taylor 级数:∑∞
=++-0
1
2)!12()1(k k k
k x
Series[Sin[x],{x,0,9}] x-x 3/6+x 5/120-x 7/5040+x 9/362880+O[x]10
Plot[{x-x 3/6+x 5/120,x-x 3/6+x 5/120-x 7/5040+x 9/362880,x-x 3/6+x 5/120-x 7/5040+x 9/362880-x 11/39916800,Sin[x]},{x,-pi,pi}]
有图可知,当k 逐渐增大时,级数∑∞
=++-01
2)!12()1(k k k
k x 的图像越接近于x sin ,
我们猜测当∞→k 时,∑∞
=++-0
1
2)!12()1(k k k
k x 收敛于x sin 。

11
)(+=
x x f ,经计算可知其泰勒级数为n n n x ∑∞
=-0
)1(,有图形可知其泰勒级数在][∞,1上不收敛于其本身,在[-1,1]收敛其本身。

③ 计算函数的Fourier 级数,并观察其收敛性。

⎩⎨⎧=≤≤--≤≤0,4
0,4)(x x x f ππ
ππ
Fourier 级数为:∑

=--=1
12)
2s in (),(n n x nx n x f ,下面俩图分别为10=n 和
1000=n 时,∑

=--=1
12)
2sin(),(n n x
nx n x f 的图像。

定义函数: f[x_,n_]:=Sum[Sin[2k*x-x]/(2k-1),{k,1,n}];
Plot[f[x,10],{x,-6,4}] Plot[f[x,1000],{x,-6,4}]
④观察无穷乘积
222
22222
111
2
x x x
x
n
πππ
⎛⎫⎛⎫⎛⎫
⋅-⋅--
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
的敛散性,并与函数
sin
y x
=的图形作比较,观察、分析二者之间的联系。

定义函数: g[x_,n_]:=x*Product[1-(x^2/(k* )^2),{k,1,n}]; Plot[{g[x,5],g[x,10],g[x,50]},{x,-15,15}]
Plot[{Sin[x],g[x,5],g[x,50],g[x,500]},{x,-15,15}]
第一图可以看出无穷乘积收敛于某函数,第二图可以看出其收敛于sin[x];。

相关文档
最新文档