专训2 求二次函数解析式的常见类型
专题2.4 求二次函数解析式常考类型(六大题型)(解析版)

专题2.4 求二次函数解析式常考类型(六大题型)【题型1 开放型】【题型2 一般式】【题型3 顶点式】【题型4两根式】【题型5平移变换型】【题型6 对称变换型】【题型1 开放型】【典例1】(2023•上海)一个二次函数y=ax2+bx+c的顶点在y轴正半轴上,且其对称轴左侧的部分是上升的,那么这个二次函数的解析式可以是 y=﹣x2+1(答案不唯一) .【答案】y=﹣x2+1(答案不唯一).【解答】解:由题意得:b=0,a<0,c>0,∴这个二次函数的解析式可以是:y=﹣x2+1,故答案为:y=﹣x2+1(答案不唯一).【变式1-1】(2023•锡山区校级模拟)写出一个顶点坐标是(1,2)且开口向下的抛物线的解析式 y=﹣(x﹣1)2+2(答案不唯一) .【答案】y=﹣(x﹣1)2+2(答案不唯一).【解答】解:∵抛物线开口向下,顶点坐标为(1,2),∴a<0,设函数解析式为y=a(x﹣1)2+2,只要a<0取值即可;故答案为:y=﹣(x﹣1)2+2(答案不唯一).【变式1-2】(2023•静安区校级一模)请写出一个以直线x=3为对称轴,且在对称轴左侧部分是下降的抛物线,这条抛物线的表达式可以是 y=(x﹣3)2+2(答案不唯一) .(只要写出一个符合条件的抛物线表达式)【答案】y=(x﹣3)2+2(答案不唯一).【解答】解:满足题意的抛物线解析式为:y=(x﹣3)2+2.本题答案不唯一.故答案为:y=(x﹣3)2+2(答案不唯一).【题型2 一般式】【方法点拨】当题目给出函数图像上的三个点时,设为一般式2y ax bx c=++(a,b,c为常数,0a¹),转化成一个三元一次方程组,以求得a,b,c的值;【典例2】已知在平面直角坐标系xOy中,二次函数y=a x2+bx+c的图像经过点A(1,0)、B(0,-5)、C(2,3).求这个二次函数的解析式,并求出其图像的顶点坐标和对称轴.【答案】解:由这个函数的图象经过点A(1,0)、B(0,-5)、C(2,3),得a+b+c=0c=−54a+2b+c=3解得a=−1 b=6 c=−5所以,所求函数的解析式为y=−x2+6x−5.y=−x2+6x−5=−(x−3)2+4.所以,这个函数图象的顶点坐标为(3,4),对称轴为直线x = 3.【变式2-1】已知二次雨数:y=x2+bx+c过点(1,0),(0,-3)。
求二次函数解析式的方法

求二次函数解析式的方法
求解二次函数的解析式一般有以下几种方法:
1. 完全平方公式
二次函数一般的标准形式为:f(x) = ax^2 + bx + c(a≠0)。
如果a=1,那么直接使用完全平方公式:f(x) = (x + p)^2 + q,其中p和q可通过对b和c进行变形求得。
2. 因式分解法
当二次函数可分解为两个一次项相乘时,可以使用因式分解法求解。
首先将二次函数进行因式分解,然后将因式设置为0,求解出x的值。
3. 配方法
当二次函数无法使用完全平方公式和因式分解法求解时,可以使用配方法。
配方方法通常是将二次函数写成一个完全平方的形式,然后进行变量的替换或重新归一化,从而得到一个容易求解的形式。
4. 公式法
当二次函数无法通过上述方法求解时,可以使用根的公式求解。
根的公式为:x = (-b±√(b^2-4ac))/(2a),其中a、b和c为二次函数的系数。
这个公式可以给出二次函数的两个根。
需要注意的是,以上是一般情况下求解二次函数的方法。
在特殊的情况下,可能需要采用其他的求解方法或利用特殊性质进行求解。
二次函数三种解析式的求法

二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。
本文将分别介绍这三种求法,并且给出相应的例题加以说明。
第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。
二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。
假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。
将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。
然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。
第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。
对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。
假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。
我们可以代入上述方程进行求解。
将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。
然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。
求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。
下面将详细介绍这四种方法。
方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。
对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。
1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。
其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。
所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。
方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。
1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。
专题训练(五) 求二次函数解析式的四种常见类型

专题训练(五)求二次函数解析式的四种常见类型►类型一已知三点求解析式1.已知:如图5-ZT-1,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的解析式.图5-ZT-12.如图5-ZT-2①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).图5-ZT-2►类型二已知顶点或对称轴求解析式3.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:则该二次函数的解析式为____________________.4.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.5.已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.6.如图5-ZT-3,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.图5-ZT-3►类型三已知抛物线与x轴的交点求解析式7.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的解析式为()A.y=x2+2x+3 B.y=x2-2x-3C.y=x2-2x+3 D.y=x2+2x-3图5-ZT-48.如图5-ZT-4,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,则此抛物线的解析式为__________________.9.已知抛物线的顶点坐标为(1,9),它与x轴有两个交点(交点的横坐标均为整数),两交点间的距离为6,求此抛物线的解析式.►类型四根据图形平移求解析式10.2017·义乌矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为() A.y=x2+8x+14 B.y=x2-8x+14C.y=x2+4x+3 D.y=x2-4x+311.2017·天津已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B的左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线的解析式为()A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-112.把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT-5所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.图5-ZT-5 13.2018·苏州如图5-ZT-6,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数解析式.图5-ZT-6详解详析1.解:把(-1,0),(0,-3),(4,5)代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =0,c =-3,16a +4b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.所以此抛物线的解析式为y =x 2-2x -3.2.解:(1)把(0,3),(3,0),(4,3)代入y =ax 2+bx +c ,得 ⎩⎪⎨⎪⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3. 所以抛物线的解析式为y =x 2-4x +3. (2)因为y =x 2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2. 3.[答案] y =x 2-4x +5[解析] 从表格中的数据可以看出,当x =1和x =3时,函数值y =2,可见,抛物线的顶点坐标为(2,1),故可设二次函数解析式为y =a (x -2)2+1,再由二次函数图象过点(1,2),得2=a (1-2)2+1,解得a =1,故二次函数的解析式为y =(x -2)2+1,即y =x 2-4x +5.4.解:∵二次函数图象的顶点为A (1,-4),∴设该二次函数的解析式为y =a (x -1)2-4.将(3,0)代入解析式,得a =1, 故y =(x -1)2-4,即该二次函数的解析式为y =x 2-2x -3. 5.解:∵抛物线的对称轴是直线x =2且经过点A (1,0), ∴由抛物线的对称性可知,抛物线还经过点(3,0). 设抛物线的解析式为y =a (x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3), 即该抛物线的解析式为y =x 2-4x +3. 6.解:(1)∵抛物线的顶点坐标为(1,4), ∴设此抛物线的解析式为y =a (x -1)2+4. ∵抛物线过点B (0,3),∴3=a (0-1)2+4,解得a =-1,∴y =-(x -1)2+4,即此抛物线的解析式为y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P ,此时P A +PB 的值最小.设直线AE 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3, ∴直线AE 的解析式为y =7x -3.当y =0时,x =37,∴当P A +PB 的值最小时,点P 的坐标为(37,0).7.B [解析] 由抛物线与x 轴交于点(-1,0)和(3,0),设此抛物线的解析式为y =a (x +1)(x -3).又因为抛物线与y 轴交于点(0,-3),把x =0,y =-3代入y =a (x +1)(x -3),得-3=a (0+1)(0-3),即-3a =-3,解得a =1,故此抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3.故选B.8.[答案] y =-x 2+2x +39.解:由抛物线的对称性可知抛物线与x 轴的两个交点分别为(-2,0)和(4,0), 所以设其解析式为y =a (x +2)(x -4). 将(1,9)代入解析式,得9=a (1+2)(1-4), 解得a =-1,所以y =-(x +2)(x -4),即此抛物线的解析式为y=-x2+2x+8.10.A[解析] 因为矩形ABCD的两条对称轴为坐标轴,所以矩形ABCD关于坐标原点对称.因为A,C是矩形对角线上的两个点,所以点A,C关于原点对称,所以点C的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y=(x+4)2-2=x2+8x+14.故选A.11.A[解析] 令y=0可得x2-4x+3=0,解得x1=1,x2=3,可得A(1,0),B(3,0),根据抛物线顶点坐标公式可得M(2,-1),由点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,可知抛物线向左平移了3个单位长度,向上平移了1个单位长度,根据抛物线平移规律,可知平移后的抛物线的解析式为y=(x+1)2=x2+2x+1,故选A.12.解:(1)此二次函数的解析式为y=(x+1)2-4,即y=x2+2x-3.(2)∵当y=0时,x2+2x-3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB=4.设点M的坐标为(m,n).∵△ABM的面积为20,∴12AB·|n|=20,解得n=±10.当n=10时,m2+2m-3=10,解得m=-1+14或m=-1-14,∴点M的坐标为(-1+14,10)或(-1-14,10);当n=-10时,m2+2m-3=-10,此方程无解.故点M的坐标为(-1+14,10)或(-1-14,10).13.解:(1)由x2-4=0解得x1=2,x2=-2.∵点A位于点B的左侧,∴A(-2,0).∵直线y=x+m经过点A,∴-2+m=0,m=2.∴D(0,2).∴AD=OA2+OD2=2 2.(2)∵直线CC′平行于直线AD,并且经过点C(0,-4),∴直线CC′的函数解析式为y=x-4.∵新抛物线的顶点C′在直线y=x-4上,∴设顶点C′的坐标为(n,n-4),∴新抛物线对应的函数解析式为y=(x-n)2+n-4.∵新抛物线经过点D(0,2),∴n2+n-4=2.解得n1=-3,n2=2.∴新抛物线对应的函数解析式为y=(x+3)2-7或y=(x-2)2-2,即y=x2+6x+2或y=x2-4x+2.。
二次函数解析式的几种求法

二、求二次函数解析式的思想方法
1、 求二次函数解析式的常用方法:
待定系数法、配方法、数形结合等.
2、求二次函数解析式的 常用思想:
转化思想
解方程或方程组
3、二次函数解析式的最终形式:
无论采用哪一种解析式求解,最后结 果都化为一般式.
例1.已知二次函数的图象经过点A0,-1、 B1,0、C-1,2;求它的关系式.
例2.已知抛物线的顶点为1,-3,且与y轴交 于点0,1,求这个二次函数的解析式
解:因为抛物线的顶点为1,-3,所以设二此函数的关系
式为y=ax-12-3,又由于抛物线与y轴交于点0,1,可
以得到
1=a0-12-3
解得
a=4
所以,所求二次函数的关系式是y=4x-12-3.
即
y=4x2-8x+1
例3.已知抛物线的顶点为3,-2,且与x轴两 交点间的距离为4,求它的解析式.
分析:
方法1:因为已知抛物线上三个点,所以可设函数关系 式为一般式y=ax2+bx+c,把三个点的坐标代入后 求出a、b、c,就可得抛物线的解析式. 方法2:根据抛物线与x轴的两个交点的坐标,可设函数 关系式为 y=ax+3x-5,再根据抛物线与y轴的交点 可求出a的值;ቤተ መጻሕፍቲ ባይዱ
课堂练习:
1.根据下列条件,分别求出对应的二次函数的关系式. 1已知二次函数的图象经过点0,2、1,1、 3,5; 2已知抛物线的顶点为-1,2,且过点2,1; 3已知抛物线与x轴交于点-1,0、2,0,且经过点 1,2.
分析:根据二次函数的图象经过三个已知点, 可设函数关系式为y=ax2+bx+c的形式
例1.已知二次函数的图象经过点A0,-1、 B1,0、C-1,2;求它的关系式.
二次函数解析式的8种求法

二次函数解析式的求法一、定义型:此类题目是根据二次函数的定义来解题,必须满足二个条件:1、a ≠0; 2、x 的最高次数为2次. 例1、若 y =( m 2+ m )x m 2 – 2m-1是二次函数,则m = . 二、开放型例2、(1)经过点A (0,3)的抛物线的解析式是 .三、平移型:将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2 + k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变.例3、二次函数 253212++=χχy 的图像是由221χ=y 的图像先向 平移 个 单位,再向 平移 个单位得到的.四、一般式当题目给出函数图像上的三个点时,设为一般式c b a y ++=χχ2,转化成一个三元一次方程组,以求得a ,b ,c 的值;五、顶点式若已知抛物线的顶点或对称轴、极值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴方程x = h ,极值为当x = h 时,y 极值=k 来求出相应的系数;六、两根式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值.例4、根据下面的条件,求二次函数的解析式:1.图像经过(1,-4),(-1,0),(-2,5)2.图象顶点是(-2,3),且过(-1,5)3.图像与x 轴交于(-2,0),(4,0)两点,且过(1,-29) 七、翻折型(对称性):已知一个二次函数c b a ++=χχγ2,要求其图象关于x 轴对称(也可以说沿x 轴翻折);y 轴对称及经过其顶点且平行于x 轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y = a ( x – h )2 + k 的形式.(1)关于x 轴对称的两个图象的顶点关于x 轴对称,两个图象的开口方向相反,即a 互为相反数.(2)关于y 轴对称的两个图象的顶点关于y 轴对称,两个图象的形状大小不变,即a 相同.(3)关于经过其顶点且平行于x 轴的直线对称的两个函数的图象的顶点坐标不变,开口方向相反,即a 互为相反数.例6 已知二次函数5632+-=x x y ,求满足下列条件的二次函数的解析式:(1)图象关于x 轴对称;(2)图象关于y 轴对称;(3)图象关于经过其顶点且平行于x 轴的直线对称.八、数形结合例7、如图,已知抛物线c b y ++-=χχ271和x 轴正半轴交与A 、B 两点,AB =4,P 为抛物线上的一点,他的横坐标为-1,∠PAO =45 ,BM7PM 3=.()1求P 点的坐标;()2求抛物线的解析式.。
二次函数的解析式三种方法

二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。
本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。
每种方法的步骤和注意事项都将被详细介绍。
一、公式法公式法是一种求解二次函数解析式的基本方法。
二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。
一个常见的二次函数的例子为y = x²。
1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。
通常情况下,这些值可以从已知的条件中直接得到。
如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。
可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。
可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。
具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。
如果二次函数的解析式没有实数根,则说明这个二次函数不存在。
在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.已知某个二次函数的最大值是 2,图象顶点在直线 y=x+1 上,并且图象经过点(3, -6).求这个二次函数的解析式.
1
方法 3 利用交点式求二次函数解析式 4.已知抛物线与 x 轴交于 A(1,0),B(-4,0)两点,与 y 轴交于点 C,且 AB=BC, 求此抛物线对应的函数解析式.
方法 4 利用平移式求二次函数解析式 5.【2015·绥化】把二次函数 y=2x2 的图象向左平移 1 个单位长度,再向下平移 2 个单 位长度,平移后抛物线的解析式是______________. 6.已知 y=x2+bx+c 的图象向右平移 2 个单位长度,再向下平移 3 个单位长度,得到 的图象的解析式为 y=x2-2x-3. (1)b=________,c=________; (2)求原函数图象的顶点坐标; (3)求两个图象顶点之间的距离.
专训 2 求二次函数解析式的常见类型
名师点金:求二次函数的解析式是解决二次函数问题的重要保证,在求解二次函数的解 析式的解析式,往往可 以使解题过程简便.
由函数的基本形式求解析式 方法 1 利用一般式求二次函数解析式 1.【2016·黔南州】已知二次函数 y=x2+bx+c 的图象与 y 轴交于点 C(0,-6),与 x 轴的一个交点坐标是 A(-2,0). (1)求二次函数的解析式,并写出顶点 D 的坐标; (2)将二次函数的图象沿 x 轴向左平移5个单位长度,当 y<0 时,求 x 的取值范围.
得 a=-2.所以该函数的解析式为 y=-2(x-1)2+2,即 y=-2x2+4x.
4.解:由 A(1,0),B(-4,0)可知 AB=5,OB=4.
+2)2-25. 4
令 y=0,得(x+2)2-25=0, 4
解得 x1=12,x2=-92.
∵a>0,
∴当 y<0 时,x 的取值范围是-9<x<1. 22
2.D
3.解:设二次函数图象的顶点坐标为(x,2),则 2=x+1,所以 x=1,所以图象的顶
点坐标为(1,2).设二次函数的解析式为 y=a(x-1)2+2,将点(3,-6)的坐标代入上式,可
(第 14 题) 4
实际问题中求二次函数解析式 15.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两墙足够长),用 28 m 长的篱笆围成一个矩形花园 ABCD(篱笆只围 AB,BC 两边),设 AB=x m,花园的面积为 S m2. (1)求 S 与 x 之间的函数解析式; (2)若在 P 处有一棵树与墙 CD,AD 的距离分别是 15 m 和 6 m,要将这棵树围在花园内 (含边界,不考虑树的粗细),求花园面积的最大值.
几何应用中求二次函数的解析式
14.【2016·安顺】某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为 3 米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形 ABCD 如图乙 所示,DG=1 米,AE=AF=x 米,在五边形 EFBCG 区域上种植花卉,则大正方形花坛种 植花卉的面积 y 与 x 的函数图象大致是( )
(第 10 题) A.y=x2-x-2 B.y=-1x2-1x+2
22 C.y=-1x2-1x+1
22 D.y=-x2+x+2 11.【2015·南京】某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线 ABD、线段 CD 分别表示该产品每千克生产成本 y1(单位:元)、销售价 y2(单位:元)与产量 x(单位:kg)之间的函数关系. (1)请解释图中点 D 的横坐标、纵坐标的实际意义;
(第 15 题)
5
答案
1.解:(1)∵把 C 点坐标(0,-6)代入二次函数的解析式得 c=-6,把 A 点坐标(-2, 0)代入 y=x2+bx-6 得 b=-1,
∴二次函数的解析式为 y=x2-x-6.
即
y=
x-1 2
2-25.
4
1,-25 ∴顶点 D 的坐标为 2 4 .
(2)将二次函数的图象沿 x 轴向左平移5个单位长度所得图象对应的函数解析式为 y=(x 2
2
(第 1 题)
方法 2 利用顶点式求二次函数解析式
2.已知二次函数 y=ax2+bx+c,当 x=1 时,有最大值 8,其图象的形状、开口方向
与抛物线 y=-2x2 相同,则这个二次函数的解析式是( )
A.y=-2x2-x+3
B.y=-2x2+4
C.y=-2x2+4x+8 D.y=-2x2+4x+6
2 (1)求抛物线的解析式;
2
(2)M 是线段 AB 上的任意一点,当△MBC 为等腰三角形时,求点 M 的坐标.
(第 8 题)
方法 6 灵活运用方法求二次函数的解析式 9.已知抛物线的顶点坐标为(-2,4),且与 x 轴的一个交点坐标为(1,0),求抛物线对 应的函数解析式.
由函数图象中的信息求解析式 10.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是( )
方法 5 利用对称轴法求二次函数解析式
(第 7 题) 7.如图,已知抛物线 y=-x2+bx+c 的对称轴为直线 x=1,且与 x 轴的一个交点为(3, 0),那么它对应的函数解析式是________________. 8.如图所示,抛物线与 x 轴交于 A,B 两点,与 y 轴交于 C 点,点 A 的坐标为(2,0), 点 C 的坐标为(0,3),抛物线的对称轴是直线 x=-1.
3
(2)求线段 AB 所表示的 y1 与 x 之间的函数解析式; (3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
(第 11 题)
由表格信息求解析式 12.若 y=ax2+bx+c,则由表格中信息可知 y 与 x 之间的函数关系式是( )
A.y=x2-4x+3 C.y=x2-3x+3
x
-1 0 1
ax2
1
ax2+bx+c
83
B.y=x2-3x+4
D.y=x2-4x+8
13.已知二次函数 y=ax2+bx+c(a≠0)自变量 x 和函数值 y 的部分对应值如下表:
x
…
-3 2
-1
-1 2
0
1 2
1
3 2
…
y
…
-5 4
-2
-9 4
-2
-5 4
0
7 4
…
则该二次函数的解析式为______________.