磁场对电流的作用力

合集下载

11-5磁场对电流的作用

11-5磁场对电流的作用

dFx
θ
Idl
所以:2 F2 y dF2 sin BIdl sin F
BIr
π
0

sin d BI 2r cos 0 BI AB
在均匀磁场中,闭合载流回路受到的合磁力为零。 11
例5:求作用在圆电流上的磁力。
解:由 I1 产生的磁场为
a
y
f


a
0 I1 I 2
2 πx
dx
I1
f
a
L
I2
0 I1 I 2
aL ln 2π a
方向:垂直电流I2平行电流I1
6
例3 求半圆形载流导线在均匀磁场中受力
解:建坐标如图 在电流线上取电流元 Idl
安培力大小为 df ( Idl ) B
方向:与横坐标夹角为(如图) 分量:
2 r
r I1
I2
电流元受力为dF=I1dlB=I1dlBsink,k是
x
沿z轴方向的单位矢量。
21
力对轴线的力矩的大小为
y
2 R I1dl
dM r sin dF

0 I1 I 2
2
sin d l ,
2
r I1
I2
力矩方向沿-j方向,其中dl=Rd(2)=2Rd。
x
由于整个线圈所受力矩方向都相同,总力矩为
0 I1 I 2 R 2 1 M dM sin d 0 I1 I 2 R 2
线圈在该力矩的作用下将发生转动,转动方 向为对着y轴看去沿顺时针方向,最后停止在与 长直电流共面的平衡位置上。 22
例4:半径0.2m,电流20A的N 圈圆形线圈放在 均匀磁场中,磁感应强度为0.08T,沿x方向,分 析其受力情况。 解:在均匀磁场中的闭合载流

磁场对电流的作用力解析

磁场对电流的作用力解析

磁场对电流的作用力解析磁场和电流是物理学中的两个重要概念,它们之间存在着密切的关系。

磁场对电流的作用力是磁学中的基本原理之一,它对于理解电磁现象和应用于电磁设备的设计具有重要意义。

本文将对磁场对电流的作用力进行解析,探讨其原理和应用。

磁场是由带电粒子运动产生的,也可以通过电流在导体中产生。

当电流通过导体时,周围会形成一个磁场,这个磁场会对电流产生作用力。

磁场对电流的作用力遵循右手定则,即当右手的四指顺着电流方向弯曲,大拇指所指的方向就是磁场对电流的作用力方向。

磁场对电流的作用力可以通过安培力来描述。

安培力的大小与电流、磁场强度和导体长度有关。

当电流方向与磁场方向垂直时,安培力的大小可以通过以下公式计算:F = BIL,其中F表示安培力,B表示磁场强度,I表示电流,L表示导体长度。

这个公式表明,当电流通过导体时,磁场对电流产生的作用力与电流的大小成正比,与磁场强度和导体长度成正比。

磁场对电流的作用力在实际应用中有着广泛的应用。

例如,电动机的工作原理就是利用磁场对电流的作用力。

电动机中的电流通过线圈产生磁场,这个磁场与外部磁场相互作用,产生安培力,从而使电动机转动。

另外,磁场对电流的作用力还可以应用于电磁铁、电磁炉等设备的工作原理中。

除了电流在磁场中受到作用力外,磁场也可以被电流所感应。

这就是电磁感应现象。

当磁场发生变化时,会在导体中产生感应电流。

这个现象被广泛应用于发电机、变压器等设备中。

发电机通过旋转导体产生变化的磁场,从而感应出电流。

变压器则利用电流在导线中产生的磁场感应出电压。

磁场对电流的作用力不仅仅局限于导体中的电流,还可以作用于电荷运动。

当电荷在磁场中运动时,也会受到磁场的作用力。

这个作用力被称为洛伦兹力,它与电荷的速度、电荷的量以及磁场的强度有关。

洛伦兹力的方向垂直于电荷的速度和磁场的方向,根据右手定则可以确定其方向。

总结起来,磁场对电流的作用力是磁学中的基本原理之一。

它通过安培力的作用,可以对电流产生作用力,从而实现电磁设备的工作。

第1节探究磁场对电流的作用

第1节探究磁场对电流的作用

思考:通电导线与磁感线平行,受安培力么?
B
当电流与磁场方向平行时:无安培力
思考:当电流与磁场有夹角,安培力又是如何? B1=B cosθ
B2=Bsin,如何判断安培力的方向?
Lsinθ
F = BILsinθ 方向:垂直纸面向里
安培力的方向判定——左手定则
F
B
B
B
I
I
I
37˚
37˚
37˚
F只 F1===垂39要0BN直TI×BL1于与A×BI0不.和3m平I所行在方F,2的向==BB5:平与I.L4sN面iIn就3,7会˚ 则形F成⊥F方一3B==向,B个7:.I2L平NsiFn面5⊥3˚I
垂直纸面向里 垂直纸面向外
【练习6】
关于磁场安培力及电流方向,下列说法正确的是( ABC)
探究过程:
用控制变量法完成三个探究任务:
任务一:保持其他条件不变,研究 安培力大小与电流强度间的关系。
任务二:保持其他条件不变,研究 安培力大小与导线长度间的关系。
任务三:保持其他条件不变,研究 安培力大小与磁场强弱间的关系。
探究安培力大小
增大电流,观察到导体受力摆起的角度变大, 说明受力变大。 结论:其他因素不变时,电流增大,安培力增大
磁场方向? 电流方向?
探究安培力方向
F
F
F IB
I F
B
F
BI F
第一节 探究安培力 一.安培力的方向
F
I F
B
左手定则: ——伸开左手,使拇指与四指在同一个平面内并跟四指垂 直,让磁感线垂直穿入手心,使四指指向电流的方向,这 时拇指所指的就是通电导体所受安培力的方向。
小实验:验证左手定则

磁场与电流的作用

磁场与电流的作用

磁场与电流的作用
磁场和电流之间有着紧密的关系。

磁场是由电流产生的,并且电流
在存在磁场的情况下也会受到磁场的影响。

1. 电流产生磁场:当电流通过导线时,会形成一个有方向的磁场环
绕着导线。

这个磁场的方向与电流的方向有关,在导线周围形成一个
闭合的磁场线圈。

这个现象被称为“安培环路定理”。

2. 磁场对电流的作用:磁场可以对通过其的电流施加力。

根据洛伦
兹力定律,当电流通过一个磁场时,会受到与电流方向垂直的力,即
洛伦兹力。

这个力的大小与电流强度和磁场强度有关。

3. 磁场对电流的方向有影响:根据右手定则,当电流通过一个磁场时,磁场会对电流的方向施加一个力矩,使得电流在磁场中发生偏转。

这个定则可以用来确定电流受到磁场力的方向。

4. 电流产生磁场并产生相互作用:当多个导线中有电流通过时,它
们各自产生的磁场会相互作用。

这种相互作用可以导致导线之间的吸
引或排斥,这是基于电磁感应原理的基础。

总的来说,磁场和电流之间的作用是相互的。

电流可以产生磁场并
受到磁场力的作用,而磁场则可以对电流施加力并改变电流的方向。

这些相互作用是电磁学和电动力学的基础,并在电磁装置和电路中得
到广泛应用。

【高中物理】磁场基本性质磁场对电流的作用

【高中物理】磁场基本性质磁场对电流的作用

【高中物理】磁场基本性质磁场对电流的作用【高中物理】磁场基本性质、磁场对电流的作用一.教学内容:1.磁场基本性质2.磁场对电流的作用【要点读取】磁场基本性质(一)磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可以归咎于运动电荷之间通过磁场而出现的相互作用.(二)磁感线为了叙述磁场的高低与方向,人们在磁场中画出来的一组存有方向的曲线.1、疏密表示磁场的强弱.2、每一点切线方向则表示该点磁场的方向,也就是磁感应强度的方向.3、是闭合的曲线,在磁体外部由n极至s极,在磁体的内部由s极至n极.磁线不相切不相交。

4、坯强磁场的磁感线平行且距离成正比.没图画出来磁感线的地方不一定没磁场.5、安培定则:拇指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点的切线方向。

*记诵常用的几种磁场的磁感线:(三)磁感应强度1、磁场的最为基本的性质就是对放进其中的电流或磁极有力的促进作用,电流旋转轴磁场时受到磁场力最小,电流与磁场方向平行时,磁场力为零。

2、在磁场中垂直于磁场方向的通电导线受到的磁场力f跟电流强度i和导线长度l 的乘积il的比值,叫做通电导线所在处的磁感应强度.①则表示磁场高低的量.就是矢量.②大小:(电流方向与磁感线垂直时的公式).③方向:左手定则:就是磁感线的切线方向;就是大磁针n极受力方向;就是大磁针恒定时n极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,国际单位制单位符号t.⑤点定b定:就是说磁场中某一点的定了,则该处磁感应强度的大小与方向都就是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的共振:空间某点如果同时存有两个以上电流或磁体唤起的磁场,则该点的磁感应强度就是各电流或磁体在该点唤起的磁场的磁感应强度的矢量和,满足用户矢量运算法则。

安培力

安培力

安培力一、基础知识清单1.安培力:磁场对电流的作用力2.安培力的大小:当B、I、L两两相互垂直时,F=BIL;当B与I平行时F=0;当B与I成θ角时,则F=BILsinθ。

注意:①适用于任何磁场;但只有匀强磁场才能直接相乘;其中L为有效长度。

3.安培力方向:安培力的方向用左手定则判定:伸开左手,使拇指与其余四指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使四指指向电流方向,那么,大拇指所指的方向就是通电导线在磁场中所受的安培力的方向,安培力的方向与B和I所决。

如右图如果磁场或电流的方向变为与现在相反安培力的方向将如何变化?如果磁场方向和电流方向同时变为和现在相反安培力的方向将如何变化?可以得出什么规律?4.磁电式电表的原理(1)电流表的构造主要包括:蹄形磁铁、圆柱形铁芯、线圈、螺旋弹簧和指针。

蹄形磁铁和铁芯之间的磁场是均匀的辐向分布的,如图8-2-2所示。

无论通电导线处于什么位置,线圈平面均与磁感线平行。

给线圈通电,线圈在安培力的力矩的作用下发生转动,螺旋弹簧变形,产生一个阻碍线圈转动的力矩,当二者平衡时,线圈停止转动。

电流越大,线圈和指针的偏转角度也就越大,所以根据线圈偏转的角度就可以判断通过电流的大小。

线圈的电流方向改变时,安培力的方向也就随着改变,指针偏转的方向也就改变,所以根据指针的偏转方向,就可以判断被测电流的方向。

(2)磁电式仪表的优点是灵敏度高,可以测出很弱的电流;缺点是绕制线圈的导线很细,允许通过的电流很小二、考点分类剖析1、考点一:定性判断通电导线或线圈在安培力作用下的运动方向典型例题:【例1】如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可以自由移动,当导线中通过如图所示方向的电流时,从上往下看试判断导线的运动情况。

( C ) A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升2.长直电流I2与圆形电流I1共面,并与其一直径相重合(但两者绝缘),如图所示。

磁场对电流元的作用力

磁场对电流元的作用力

磁场对电流元的作用力要理解磁场对电流元的作用力,首先需要了解磁场的本质。

磁场是一种无源的力场,由电流元或磁体产生。

它的作用是施加力或扭矩于其他电流元或磁体。

根据安培定律,电流元所受的作用力与电流元本身的长度、所受磁场强度和所受磁场方向有关。

具体而言,安培定律可以表示为以下公式:F = BILsinθ其中,F是磁场对电流元作用力的大小,B是磁场的磁感应强度,I是电流元的电流大小,L是电流元的长度,θ是磁场和电流元之间的夹角。

上述公式可以解释为:当电流元和磁场方向相互垂直时,即θ=90°,磁场对电流元的作用力最大;当电流元和磁场方向平行时,即θ=0°或180°,磁场对电流元的作用力最小。

根据这个公式,我们可以得出以下几个结论:1.磁场对电流元的作用力与电流大小正相关。

电流元的电流越大,作用力也越大;电流趋近于零时,作用力也趋近于零。

2.磁场对电流元的作用力与电流元的长度正相关。

电流元的长度越长,作用力也越大;长度趋近于零时,作用力也趋近于零。

3.磁场对电流元的作用力与磁场强度正相关。

磁场强度越大,作用力也越大;磁场强度趋近于零时,作用力也趋近于零。

4.磁场对电流元的作用力与磁场和电流元之间的夹角的正弦值有关。

夹角越大,作用力也越大;夹角趋近于零或180度时,作用力也趋近于零。

此外,还有两个特殊情况需要注意:1.当磁场和电流元平行时,即θ=0度或180度,磁场对电流元的作用力为零。

这是因为在这种情况下,电流元和磁场方向相同或相反,不会产生力。

2.当电流元所在导线与磁场方向平行时,即电流元嵌套在磁场中,磁场对电流元的作用力的大小为零。

这是因为磁场的磁感应线是闭合曲线,所以在导线内部的磁感应线方向和外部一致,导致作用力相互抵消。

总结起来,磁场对电流元的作用力由磁感应强度、电流大小、电流元的长度和磁场与电流元的夹角共同决定。

通过改变这些因素,可以控制磁场对电流元的作用力的大小和方向。

磁场对电流的作用力分解知识讲解

磁场对电流的作用力分解知识讲解

在磁场中,通电 线圈受到磁场力的作 用,发生扭转,如果 给线圈通以方向合适 的电流,就可以使线 圈转动起来。我们使 用的电动机就是利用 磁场力来工作的。现 在,电动机广泛应用 在工厂、办公室、家 庭里。
科学足迹 安培的平行导线实验
总结
两条平行的通电直导线之间会通过磁场 发生相互作用。
电流方向相同时,将会吸引; 电流方向相反时,将会排斥。
通电线圈会转动起来
通电线圈在磁 场中如何运动?
磁场对通电线圈的作用力矩
将一矩形线圈 abcd 放在匀强磁场中,如图 5-4 所示
线圈的顶边 ad 和底边 bc 所 受的磁场力 Fad、Fbc 大小相等, 方向相反,在一条直线上,彼此 平衡;而作用在线圈两个侧边 ab 和 cd 上的磁场力 Fab、Fcd 虽然大 小相等,方向相反,但不在一条 直线上,产生了力矩,称为磁力 矩。
例题1
1.下列关于磁场力的说法中,正确的是(C )
A.磁场中某处的磁感应强度的大小,就是通以 电流I,长为L的一段很短的导线放在该处时所受磁 场力F与I、L的乘积的比值。
B.一段很短的通电导线放在某处不受磁场力 作用,则该处一定没有磁场。
C.一段很短的通电导线放在磁场中A处时受磁 场力比放在B处大,则A处磁感应强度可能比B处磁 感应强度大
图 5-4 磁场对通电矩形线圈的作用力矩
这个力矩使线圈绕 OO 转动,转动过程中,随着线圈平面与磁 感线之间夹角的改变,力臂在改变,磁力矩也在改变。
当线圈平面与磁感线平行时, 力臂最大,线圈受磁力矩最大;
当线圈平面与磁感线垂直时, 力臂为零,线圈受磁力矩也为零。
电流表就是根据上述原理工 作的。
通电线圈在磁场中受到磁 场力会扭转,电动机就是 根据这个原理设计的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场对电流的作用力
(一)教学目的
1.知道磁场对通电导体有作用力。

2.知道通电导体在磁场中受力的方向与电流方向和磁感线方向有关,改变电流方向或改变磁感线方向,导体的受力方向随着改变。

3.知道通电线圈在磁场中转动的道理。

4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。

5.培养学生观察能力和推理、归纳、概括物理知识的能力。

(二)教具
小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架(吊铝箔筒用),图01所示的挂图,图02所示的线圈,抄有题目的小黑板一块(也可用投影片代替)。

(三)教学过程
1.引入新课
本章主要研究电能;第三节和第四节我们研究了获得电能的原理和方法,前面的学习中我们研究了电能的输送。

电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器--电动机。

出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。

提问:电动机是根据什么原理工作的呢?
讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现--电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。

根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。

下面我们通过实验来研究这个推断。

2.进行新课
(1)通电导体在磁场里受到力的作用
板书课题:〈第六节磁场对电流的作用〉
介绍实验装置,将铝箔筒两端的铝箔条吊挂在支架上,使铝箔筒静止在磁铁的磁场中(如图03所示)。

用铝箔筒作通电导体是因为铝箔筒轻,受力后容易运动,以便我们观察。

演示实验1:用一节干电池给铝箔筒通电(瞬时短路),让学生观察铝箔筒的运动情况,并回答小黑板上的题1:给静止在磁场中的铝箔筒通电时,铝箔筒会_____,这说明_____。

板书: <1.通电导体在磁场中受到力的作用。


(2)通电导体在磁场里受力的方向,跟电流方向和磁感线方向有关
教师说明:下面我们进一步研究通电导体在磁场里的受力方向与哪些因素有关。

演示实验2:先使电流方向相反,再使磁感线方向相反,让学生观察铝箔筒运动后回答小黑板上的题2:保持磁感线方向不变,交换电池两极以改变铝箔筒中电流方向,铝箔筒运动方向会______,这说明______。

保持铝箔筒中电流方向不变,交换磁极以改变磁感线方向,铝箔筒运动方向会______,这说明______。

归纳实验2的结论并板书:〈2.通电导体在磁场里受力的方向,跟电流方向和磁感线方向有关。


(3)磁场对通电线圈的作用
提问:应用上面的实验结论,我们来分析一个问题:如果把直导线弯成线圈,放入磁场中并通电,它的受力情况是怎样的呢?
出示方框线圈在磁场中的直观模型(磁极用两堆书代替),并出示如课本上图12-10的挂图(此时,图中还没有标出受力方向)。

引导学生分析:通电时,图甲中ab边和cd边都在磁场中,都要受力,因为电流方向相反,所以受力方向也肯定相反。

提问:你们想想看,线圈会怎样运动呢?
演示实验3:将电动机上的电刷、换向器拆下(实质是线圈)后通过,让学生观察线圈的运动情况。

教师指明:线圈转动正是因为两条边受力方向相反,边说边在挂图上标明ab和cd边的受力方向。

提问:线圈为什么会停下来呢?
利用模型和挂图分析:在甲图位置时,两边受力方向相反,但不在一条直线上,所以线圈会转动。

当转动到乙图位置时,两边受力方向相反,且在同一直线上,线圈在平衡力作用下保持平衡而静止。

板书结论:〈3.通电线圈在磁场中受力转动,到平衡位置时静止。


(4)讨论
①教材中的"想想议议"。

②小黑板上的题3:通电导体在磁场中受力而运动是消耗了______能,得到了______能。

3.小结:板书的四条结论。

4.作业(思考题):电动机就是根据通电线圈在磁场中受力而转动的道理工作的。

但实际制成电动机时,还有些问题需要我们解决,比如:通电线圈不能连续转动,而实际电动机要能连续转动,这个问题同学们先思考,下节我们研究。

(四)说明
1.受力方向与电流方向和磁感线方向垂直,这一点不能从实验直接得到(因为运动方向并不一定是受力方向),且与后面学习联系不大,本教案没讲这一点。

2.教案最后的思考题是为下面的学习作准备。

相关文档
最新文档