运筹学实验报告lingo
运筹学上机实践报告LINGO软件

Southwest university of science and technology实验报告LINGO软件在线性规划中的运用学院名称环境与资源学院专业名称采矿工程学生姓名学号____________________________________ 指导教师陈星明教授二◦一五年十一月实验LINGO软件在线性规划中的运用实验目的掌握LINGO软件求解线性规划问题的基本步骤,了解LINGO软件解决线性规划问题的基本原理,熟悉常用的线性规划计算代码,理解线性规划问题的迭代关系。
实验仪器、设备或软件电脑,LINGO软件实验内容1. LINGO软件求解线性规划问题的基本原理;2•编写并调试LINGO软件求解线性规划问题的计算代码;实验步骤1•使用LINGO计算并求解线性规划问题;2 •写出实验报告,并浅谈学习心得体会(线性规划的基本求解思路与方法及求解过程中出现的问题及解决方法)。
实验过程有一艘货轮,分为前、中、后三个舱位,它们的容积与允许载重量如下表所示。
现有三种商品待运,已知有关数据列于下表中。
又为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系。
具体要求前、后舱分别与中舱之间的载重量比例偏差不超过15%,前、后舱之间不超过10%。
问货轮首先分析问题,建立数学模型:确定决策变量假设i=1,2,3分别代表商品A、B C, 8用j=1,2,3分别代表前、中、后舱,设决策变量X ij为装于j舱位的第i种商品的数量(件)。
确定目标函数商品A的件数为:x11- x12x13商品B的件数为:x21x22x23商品A的件数为:X31 - X32 - X33为使运费最高,目标函数为:确定约束条件前、中、后舱位载重限制为:前、中、后舱位体积限制为:A、B、C三种商品数量的限制条件:各舱最大允许载重量的比例关系构成的约束条件:且决策变量要求非负,即X j > 0,i=1,2;j=1,2,3。
运筹学上机实验报告

学生实验报告实验课程名称《运筹学》开课实验室计算机中心第二机房学院专业学生姓名学号开课时间 2015 至 2016 学年第二学期实验一中小型线性规划模型的求解与Lingo软件的初步使用一、实验目的了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。
二、实验内容1.在Lingo中求解下面的线性规划数学模型:max z=2x1+3x2x 1+2x2≤84x1≤164x2≤12x 1, x2≥02.在Lingo中求解教材P55习题(1)的线性规划数学模型;3.建立教材P42例8的数学模型并用Lingo求解;4.建立教材P57习题的数学模型并用Lingo求解。
三、实验要求1.给出所求解问题的数学模型;2.给出Lingo中的输入;3.能理解Solution Report中输出的四个部分的结果;4.能给出最优解和最优值;5.能理解哪些约束是取等式和哪些约束取不等式。
四、实验步骤五、结论1.该线性规划模型的目标函数值为14,该线性规划经过一次迭代求得最优解,有2个总决策变量,包括目标函数一共有4个约束,最优解的变量X1=4,X2=2 。
2. 该线性规划模型的目标函数值为2,该线性规划经过2次迭代求得最优解,有4个总决策变量,包括目标函数一共有4个约束,最优解的变量X1=0、x2=8、x3=0、x4=-6。
3.该线性规划模型的目标函数值为-2,该线性规划经过0次迭代求得最优解,有3个总决策变量,包括目标函数一共有4个约束,最优解的变量x1=4、x2=1、x3=9。
4.该线性规划模型的目标函数值为150,该线性规划经过4次迭代求得最优解,有6个总决策变量,包括目标函数一共有7个约束,最优解的变量x1=60、x2=10、x3=50、x4=0、x5=30、x6=0。
实验二中小型运输问题数学模型的Lingo软件求解一、实验目的熟悉运输问题的数学模型,掌握简单运输问题数学模型的Lingo软件求解的方法,掌握解报告的内容。
运筹学实验报告lingo

二. 实验题目
1、求解线性规划:
max
z x 1 2x
2
2x 1 5x 2 12 s.t. x 1 2x 2 8 x , x 0 2 1
并对价值系数、右端常量进行灵敏度分析。
2、已知某工厂计划生产I,II,III三种产品,各 产品需要在A、B、C设备上加工,有关数据如下:
Allowable Decrease:允许减少量
Current RHS :当前右边常数项
结论1:
该线性规划问题的最优解为:X*=(35,10,0)T 最优值为:z*=215
结论2:
c1=5 c1在(4,8)内原最优解不变,但最优值是要变的 c2=4 c2在(2.7,5)内原最优解不变,但最优值是要变的 c3=3 c3在(-∞ ,7)内原最优解,最优值都是不变的 b1=45 b1在(40, 50)内原最优基不变,但最优解和最优值是要变的 b2=80 b2在(67.5, 90)内原最优基不变,但最优解和最优值是要变的 b3=90 b3在(65, ∞ )内原最优基不变,但最优解和最优值是要变的
Row 1 2 3 4 Slack or Surplus 215.0000 0.000000 0.000000 25.00000 Dual Price 1.000000 3.000000 1.000000 0.000000
激活灵敏度计算功能
法一:打开command window,输入range;
法二:LINGO——options —— General Solver —Dual Computations——Prices & Ranges
LINGO
Outline
一.熟悉LINDO软件的灵敏度分析功能
lingo运输问题的实验报告

数学与计算科学学院实验报告
实验项目名称运输问题求解
所属课程名称运筹学B
实验类型综合
实验日期 2014年10月25日
姓名张丽芬
学号 0102
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容
基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色.
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。
运筹学实验报告-lingo软件的使用-习题代码

运筹学实验报告姓名:学号:班级:相关问题说明:一、实验性质和教学目的本实验是运筹学课内安排的上机操作实验。
目的在于了解、熟悉计算机Lingo软件在运筹学模型求解中的作用,激发学习兴趣,提高学习效果,增强自身的动手能力,提高实际应用能力。
二、实验基本要求要求学生:1. 实验前认真做好理论准备,仔细阅读实验指导书;2. 遵从教师指导,认真完成实验任务,按时按质提交实验报告。
三、主要参考资料1.LINGO软件2. LINGO8.0及其在环境系统优化中的应用,天津大学出版社,20053. 优化建模与LINDO/LINGO软件,清华大学出版社,20054.运筹学编写组主编,运筹学(修订版),清华大学出版社,19905.蓝伯雄主编,管理数学(下)—运筹学,清华大学出版社,19976.胡运权主编,运筹学习题集(修订版),清华大学出版社,19957.胡运权主编,运筹学教程(第二版),清华大学出版社,2003实验内容1、线性规划问题:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤++=0,13119241171289..68max 2121212121x x x x x x x x t s x x z (1) 给出原始代码;(2) 计算结果(包括灵敏度分析,求解结果粘贴);(3) 回答下列问题(手写):a ) 最优解及最优目标函数值是多少;b ) 资源的对偶价格各为多少,并说明对偶价格的含义;c ) 为了使目标函数值增加最多,让你选择一个约束条件,将它的常数项增加一个单位,你将选择哪一个约束条件?这时目标函数值将是多少?d ) 对x 2的目标函数系数进行灵敏度分析;e ) 对第2个约束的约束右端项进行灵敏度分析;f ) 结合本题的结果解释“Reduced Cost ”的含义。
对偶价格就是说 约束方程右端变量增加1对目标函数值的影响 答案: (1)代码max =8*x1+6*x2; 9*x1+8*x2<=12; 7*x1+11*x2<=24; 9*x1+11*x2<=13; x1>=0; x2>=0;(2)计算结果Global optimal solution found.Objective value: 10.66667 Total solver iterations: 2Variable Value Reduced Cost X1 1.333333 0.000000 X2 0.000000 1.111111Row Slack or Surplus Dual Price 1 10.66667 1.000000 2 0.000000 0.8888889 3 14.66667 0.000000 4 1.000000 0.000000 5 1.333333 0.0000006 0.000000 0.000000 Ranges in which the basis is unchanged:Objective Coefficient RangesCurrent Allowable Allowable Variable Coefficient Increase Decrease X1 8.000000 INFINITY 1.250000 X2 6.000000 1.111111 INFINITYRighthand Side RangesRow Current Allowable Allowable RHS Increase Decrease 2 12.00000 1.000000 12.00000 3 24.00000 INFINITY 14.66667 4 13.00000 INFINITY 1.000000 5 0.0 1.333333 INFINITY 6 0.0 0.0 INFINITY(3)a) b) c) d) e) f)2、运输问题:(1) 给出原始代码;(2) 计算结果(决策变量求解结果粘贴)Min Z = Cij Xij∑=61i Xij <=bj (j=1...8) 销量约束∑∑==6181i j∑=81j Xij = ai (i=1...6) 产量约束Xij ≥ 0(i=1...6;j=1...8)代码:model :!6发点8 model :!6发点8收点运输问题; sets :warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume; endsetsmin =@sum (links: cost*volume); !目标函数; @for (vendors(J):@sum (warehouses(I): volume(I,J))<=demand(J)); !需求约束; @for (warehouses(I):@sum (vendors(J): volume(I,J))=capacity(I)); !产量约束; !这里是数据; data :capacity=55 47 42 52 41 32; demand=60 55 51 43 41 52 43 38; cost=6 2 9 7 4 2 5 9 4 5 5 3 8 5 3 25 2 1 3 7 4 8 3 767 9 9 2 7 1 2 3 6 5 7 2 6 5 5 9 2 28 1 4 3; enddata end答案Global optimal solution found.Objective value: 473.0000 Infeasibilities: 0.000000 Total solver iterations: 9Model Class: LPTotal variables: 48 Nonlinear variables: 0 Integer variables: 0Total constraints: 15Nonlinear constraints: 0Total nonzeros: 144Nonlinear nonzeros: 0Variable Value Reduced Cost CAPACITY( WH1) 55.00000 0.000000 CAPACITY( WH2) 47.00000 0.000000 CAPACITY( WH3) 42.00000 0.000000 CAPACITY( WH4) 52.00000 0.000000 CAPACITY( WH5) 41.00000 0.000000 CAPACITY( WH6) 32.00000 0.000000 DEMAND( V1) 60.00000 0.000000 DEMAND( V2) 55.00000 0.000000 DEMAND( V3) 51.00000 0.000000 DEMAND( V4) 43.00000 0.000000 DEMAND( V5) 41.00000 0.000000 DEMAND( V6) 52.00000 0.000000 DEMAND( V7) 43.00000 0.000000 DEMAND( V8) 38.00000 0.000000 COST( WH1, V1) 6.000000 0.000000 COST( WH1, V2) 2.000000 0.000000 COST( WH1, V3) 9.000000 0.000000 COST( WH1, V4) 7.000000 0.000000 COST( WH1, V5) 4.000000 0.000000 COST( WH1, V6) 2.000000 0.000000 COST( WH1, V7) 5.000000 0.000000 COST( WH1, V8) 9.000000 0.000000 COST( WH2, V1) 4.000000 0.000000 COST( WH2, V2) 5.000000 0.000000 COST( WH2, V3) 5.000000 0.000000 COST( WH2, V4) 3.000000 0.000000 COST( WH2, V5) 8.000000 0.000000 COST( WH2, V6) 5.000000 0.000000 COST( WH2, V7) 3.000000 0.000000 COST( WH2, V8) 2.000000 0.000000 COST( WH3, V1) 5.000000 0.000000 COST( WH3, V2) 2.000000 0.000000 COST( WH3, V3) 1.000000 0.000000 COST( WH3, V4) 3.000000 0.000000 COST( WH3, V5) 7.000000 0.000000 COST( WH3, V6) 4.000000 0.000000COST( WH3, V8) 3.000000 0.000000 COST( WH4, V1) 7.000000 0.000000 COST( WH4, V2) 6.000000 0.000000 COST( WH4, V3) 7.000000 0.000000 COST( WH4, V4) 9.000000 0.000000 COST( WH4, V5) 9.000000 0.000000 COST( WH4, V6) 2.000000 0.000000 COST( WH4, V7) 7.000000 0.000000 COST( WH4, V8) 1.000000 0.000000 COST( WH5, V1) 2.000000 0.000000 COST( WH5, V2) 3.000000 0.000000 COST( WH5, V3) 6.000000 0.000000 COST( WH5, V4) 5.000000 0.000000 COST( WH5, V5) 7.000000 0.000000 COST( WH5, V6) 2.000000 0.000000 COST( WH5, V7) 6.000000 0.000000 COST( WH5, V8) 5.000000 0.000000 COST( WH6, V1) 5.000000 0.000000 COST( WH6, V2) 9.000000 0.000000 COST( WH6, V3) 2.000000 0.000000 COST( WH6, V4) 2.000000 0.000000 COST( WH6, V5) 8.000000 0.000000 COST( WH6, V6) 1.000000 0.000000 COST( WH6, V7) 4.000000 0.000000 COST( WH6, V8) 3.000000 0.000000 VOLUME( WH1, V1) 0.000000 4.000000 VOLUME( WH1, V2) 55.00000 0.000000 VOLUME( WH1, V3) 0.000000 7.000000 VOLUME( WH1, V4) 0.000000 5.000000 VOLUME( WH1, V5) 0.000000 2.000000 VOLUME( WH1, V6) 0.000000 0.000000 VOLUME( WH1, V7) 0.000000 3.000000 VOLUME( WH1, V8) 0.000000 8.000000 VOLUME( WH2, V1) 0.000000 1.000000 VOLUME( WH2, V2) 0.000000 2.000000 VOLUME( WH2, V3) 0.000000 2.000000 VOLUME( WH2, V4) 43.00000 0.000000 VOLUME( WH2, V5) 0.000000 5.000000 VOLUME( WH2, V6) 0.000000 2.000000 VOLUME( WH2, V7) 4.000000 0.000000 VOLUME( WH2, V8) 0.000000 0.000000 VOLUME( WH3, V1) 0.000000 4.000000 VOLUME( WH3, V2) 0.000000 1.000000VOLUME( WH3, V4) 0.000000 2.000000 VOLUME( WH3, V5) 0.000000 6.000000 VOLUME( WH3, V6) 0.000000 3.000000 VOLUME( WH3, V7) 0.000000 7.000000 VOLUME( WH3, V8) 0.000000 3.000000 VOLUME( WH4, V1) 0.000000 5.000000 VOLUME( WH4, V2) 0.000000 4.000000 VOLUME( WH4, V3) 0.000000 5.000000 VOLUME( WH4, V4) 0.000000 7.000000 VOLUME( WH4, V5) 0.000000 7.000000 VOLUME( WH4, V6) 14.00000 0.000000 VOLUME( WH4, V7) 0.000000 5.000000 VOLUME( WH4, V8) 38.00000 0.000000 VOLUME( WH5, V1) 41.00000 0.000000 VOLUME( WH5, V2) 0.000000 1.000000 VOLUME( WH5, V3) 0.000000 4.000000 VOLUME( WH5, V4) 0.000000 3.000000 VOLUME( WH5, V5) 0.000000 5.000000 VOLUME( WH5, V6) 0.000000 0.000000 VOLUME( WH5, V7) 0.000000 4.000000 VOLUME( WH5, V8) 0.000000 4.000000 VOLUME( WH6, V1) 0.000000 4.000000 VOLUME( WH6, V2) 0.000000 8.000000 VOLUME( WH6, V3) 0.000000 1.000000 VOLUME( WH6, V4) 0.000000 1.000000 VOLUME( WH6, V5) 0.000000 7.000000 VOLUME( WH6, V6) 32.00000 0.000000 VOLUME( WH6, V7) 0.000000 3.000000 VOLUME( WH6, V8) 0.000000 3.000000Row Slack or Surplus Dual Price1 473.0000 -1.0000002 19.00000 0.0000003 0.000000 0.0000004 9.000000 0.0000005 0.000000 0.0000006 41.00000 0.0000007 6.000000 0.0000008 39.00000 0.0000009 0.000000 1.00000010 0.000000 -2.00000011 0.000000 -3.00000012 0.000000 -1.00000013 0.000000 -2.00000014 0.000000 -2.00000015 0.000000 -1.0000003、一般整数规划问题:某服务部门各时段(每2h为一时段)需要的服务员人数见下表。
运筹学lingo实验报告

运筹学lingo实验报告
运筹学lingo实验报告
一、引言
实验目的
本次实验旨在探索运筹学lingo在解决实际问题中的应用,了解lingo的基本使用方法和解题思路。
实验背景
运筹学是一门研究决策和规划的学科,其能够帮助我们优化资源分配、解决最优化问题等。
lingo是一种常用的运筹学工具,具有强大的求解能力和用户友好的界面,被广泛应用于各个领域。
二、实验步骤
准备工作
•安装lingo软件并激活
•熟悉lingo界面和基本功能
确定问题
•选择一个运筹学问题作为实验对象,例如线性规划、整数规划、网络流等问题
•根据实际问题,使用lingo的建模语言描述问题,并设置变量、约束条件和目标函数
运行模型
•利用lingo的求解器,运行模型得到结果
结果分析
•分析模型求解结果的合理性和优劣,对于不符合要求的结果进行调整和优化
结论
•根据实验结果,总结lingo在解决该问题中的应用效果和局限性,对于其他类似问题的解决提出建议和改进方案
三、实验总结
实验收获
•通过本次实验,我熟悉了lingo软件的基本使用方法和建模语言,增加了运筹学领域的知识和实践经验。
实验不足
•由于时间和条件的限制,本次实验仅涉及了基本的lingo应用,对于一些复杂问题的解决还需要进一步学习和实践。
•在以后的学习中,我将继续深入研究lingo的高级功能和应用场景,以提升运筹学问题的求解能力。
以上就是本次实验的相关报告内容,通过实验的实践和总结,我对lingo在运筹学中的应用有了更深入的理解,为今后的学习和研究奠定了基础。
2013年运筹学实验报告1-lingo基础

实验报告 1 lingo 基础
课程名称 实验教室 学生姓名 实验 目的 实验 内容 实验 要求 的主 要命 令和 程序 清单 实验日期 实验仪器 计算机 实验名称 班 级 实验成绩
1.熟悉并掌握 lingo 软件的基本命令. 2.熟悉并掌握 lingo 软件的集合命令. lingo 软件的快速入门和 lingo 集合命令操作及编程技巧。
解:
3 、分别用集成员的显示罗列和隐式罗列来 定义一个名为
warehouses 的原始集,它具有成员 wh1、wh2、wh3、和 wh4,属 性有 capacity 和 weight.
解:运行结果
实验 过程 及 结果 记录
4、写出下列集合定义中 allowed 集的所有成员。 sets: product/A B/; machine/M N/; week/1..2/; allowed(product,machine,week):x; endsets
解:运行结果
5、在下列集合过滤器定义中,写出 friend 集的所有成员及其 相应的赋值。 sets: !学生集:性别属性 sex,1 表示男性,0 表示女性;年龄属 性 age. ; students/John,Jill,Rose,Mike/:sex,age;
!男学生和女学生的联系集:友好程度属性 friend,[0,1]之 间的数。 ; linkmf(students,students)|sex(&1) #eq# 1 #and# sex(&2) #eq# 0: friend; !男学生和女学生的友好程度大于 0.5 的集; linkmf2(linkmf) | friend(&1,&2) #ge# 0.5 : x; endsets data: sex,age = 1 16 0 14 0 17 0 13; friend = 0.3 0.5 0.6; enddata
运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。
•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。
实验目的•了解运筹学的基本原理和应用。
•掌握LINGO软件的使用方法。
•运用LINGO进行优化建模和求解实际问题。
实验内容1.使用LINGO进行线性规划的建模和求解。
2.使用LINGO进行整数规划的建模和求解。
3.使用LINGO进行非线性规划的建模和求解。
4.使用LINGO进行多目标规划的建模和求解。
实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行建模,设定目标函数和约束条件。
•运行LINGO求解线性规划问题。
2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。
•使用LINGO进行整数规划的建模和求解。
3. 非线性规划•确定决策变量、目标函数和约束条件。
•使用LINGO进行非线性规划的建模和求解。
4. 多目标规划•确定多个目标函数和相应的权重。
•使用LINGO进行多目标规划的建模和求解。
实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。
结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。
•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。
讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。
•提出对于实验内容或方法的建议和改进方案。
参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。
致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。
以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。
实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。