线性代数证明题

合集下载

自考线性代数证明题

自考线性代数证明题

27.证明:若A 为3阶可逆的上三角矩阵,则1-A 也是上三角矩阵.证:设⎪⎪⎪⎭⎫⎝⎛=332322131211000a a a a a a A ,则⎪⎪⎪⎭⎫ ⎝⎛==*-3323133222123121111||1||1A A A A A A A A A A A A A , 其中000332312=-=a a A ,00002213=-=a A ,00121123=-=a aA , 所以⎪⎪⎪⎭⎫⎝⎛=-3332223121111||1A A A A A A A A 是上三角矩阵. 四、证明题(本大题6分)27.设A 是n 阶方阵,且0)(2=+E A ,证明A 可逆.证:由0)(2=+E A ,得022=++E A A ,E A A =+-)2(2,E A E A =+-)2(.所以A 可逆,且)2(1E A A +-=-. 四、证明题(本大题6分)27.设向量组1α,2α线性无关,证明向量组211ααβ+=,212ααβ-=也线性无关. 证:设02211=+ββk k ,即0)()(212211=-++ααααk k ,0)()(221121=-++ααk k k k .由1α,2α线性无关,得⎩⎨⎧=-=+002121k k k k ,因为021111≠-=-,方程组只有零解,所以1β,2β线性无关.四、证明题(本题6分)27.设n 阶矩阵A 满足A A =2,证明A E 2-可逆,且A E A E 2)2(1-=--.证:由A A =2,得E A A E A A E A E A E =+-=+-=--4444)2)(2(2,所以A E 2-可逆,且A E A E 2)2(1-=--.四、证明题(本大题6分)27.设α为0=Ax 的非零解,β为b Ax =(0≠b )的解,证明α与β线性无关. 证:设021=+βαk k ,则0)(21=+βαk k A ,021=+βαA k A k ,0021=+b k k ,由此可得02=k ,从而01=αk ,又0≠α,可得01=k ,所以α与β线性无关.27.设η为非齐次线性方程组Ax =b 的一个解,r ξξξ,,,21 是其导出组Ax =0的一个基础解系.证明r ξξξη,,,,21 线性无关.证:设02211=++++r r k k k k ξξξη , 则0)(2211=++++r r k k k k A ξξξη , 02211=++++r r A k A k A k kA ξξξη ,000021=++++r k k k kb ,0=kb , 由0≠b ,得0=k --(1) 从而02211=+++r r k k k ξξξ , 由r ξξξ,,,21 线性无关,得021====r k k k -(2) 由(1)(2)可知r ξξξη,,,,21 线性四、证明题(本大题共1小题,6分)27.设向量组321,,ααα线性无关,211ααβ+=,322ααβ+=,133ααβ+=,证明:向量组321,,βββ线性无关. 证:设0332211=++βββk k k ,即0)()()(133322211=+++++ααααααk k k , 0)()()(332221131=+++++αααk k k k k k ,因为321,,ααα线性无关,必有⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,021111110110101110011101||≠=-=-==A ,方程组只有零解:0321===k k k ,所以321,,βββ线性无关.四、证明题(本题6分)27.已知A 是n 阶矩阵,且满足方程022=+A A ,证明A 的特征值只能是0或2-.证: 设a 是A 的特征值, 则 a^2+2a 是 A^2+2A 的特征值而 A^2+2A =0, 零矩阵的特征值只能是0 所以 a^2+2a = 0 所以 a(a+2)=0 所以 a=0 或 a=-2 即A 的特征值只能是0或-2.四、证明题(本大题共1小题,6分)27.证明:若向量组n ααα,,,21 线性无关,而n n n n ααβααβααβααβ+=+=+=+=-132321211,,,, ,则向量组n βββ,,,21 线性无关的充要条件是n 为奇数.证:设02211=+++n n k k k βββ ,即0)()()(1232121=+++++++n n k k k k k k ααα ,由n ααα,,,21 线性无关,可得齐次方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+0013221n k k k k k k ,其系数行列式110000100110001)1(10001100001001110001110000010001100011||1nA +-+== n +-+=1)1(1,当且仅当n 为奇数时,0||≠A ,齐次方程组只有零解,n βββ,,,21 线性无四、证明题(本题6分)27.设向量组321,,ααα线性无关,且332211αααβk k k ++=.证明:若01≠k ,则向量组32,,ααβ也线性无关.证:设033221=++ααβx x x ,即0)()(33132212111=++++αααx x k x x k x k .由321,,ααα线性无关,可得⎪⎩⎪⎨⎧=+=+=00031321211x x k x x k x k .若01≠k ,则方程组的系数行列式01001001321≠=k k k k ,只有0321===x x x ,所以32,,ααβ 四、证明题(本大题6分)27.已知向量组α1,α2,α3,α4线性无关,证:α1+α2,α2+α3,α3+α4,α4-α1线性无 证明:设存在不全为0的实数k1,k2,k3,k4,k5使得k1(α1+α2)+k2(α2+α3)+k3(α3+α4)+k4(α4+α5)+k5(α5+α1)=0 则(k1+k5)α1+(k1+k2)α2+(k2+k3)α3+(k3+k4)α4+(k4+k5)α5=0 因为向量组α1.α2.α3.α4,α5线性无关,所以k1+k5=0,k1+k2=0,k2+k3=0,k3+k4=0,k4+k5=0 解得k1=k2=k3=k4=k5=0所以不存在不全为0的实数使k1(α1+α2)+k2(α2+α3)+k3(α3+α4)+k4(α4+α5)+k5(α5+α1)=0, 所以向量组α1+α2,α2+α3,α3+α4,α4+α5,α5+α1线性无关。

《线性代数》常见证明题型及常用思路

《线性代数》常见证明题型及常用思路

《线性代数》常见证明题型及常用思路二、证明题题型1关于-「m线性相关性的证明中常用的结论(1)设'' m> m = °,然后根据题设条件,通过解方程组或其他手段:如果能证明U,'m必全为零,则…「m线性无关;如果能得到不全为零的-厂,’m使得等式成立,贝,1厂「m线性相关。

(2)i厂「m线性相关当且仅当其中之一可用其他向量线性表示。

(3)如果〉i厂「m F n,则可通过矩阵的秩等方面的结论证明。

(4 ) 如果我们有两个线性无关组,〉1厂,5,W i,1,,「W且W「W 是同一个线性空间的两个子空间,要证>1,…「m「i,_「t线性无关。

这种情况下,有些时候我们设-°1 1 mm 11 t t1 1 mm, 1 1 t t根据题设条件往往能得到----° ,进而由〉1,_「m・W「」…,1 W的线性无关得到系数全为零。

题型2・关于欧氏空间常用结论(1)内积的定义(2)单位正交基的定义U B二(X i, ,X n),B 二(y「,y n)。

则(u,v)二人%人丫“5 题型3.关于矩阵的秩的证明中常用的结论(1)初等变换不改变矩阵的秩(2)乘可逆矩阵不改变矩阵的秩(3)阶梯形的秩(4)几个公式(最好知道如何证明):常用来证明关于秩的不等式r(A Bp r(A) r(B);r(AB)乞min{ r(A),r(B)};r(A) = r(A T) = r(A T A);max{r(A), r(B)}乞r(A, B) = r I T乞r(A) r(B);6丿Ar = r(A) + r(B);< B丿(A、r(A) + r(B)兰r | 兰r(A) + r(B) + r(C);<C B丿A m nB 二0= r(A) r(B尸n(5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式)例:证明:r(A m n) r(B厂n r(AB)。

线性代数证明题

线性代数证明题

线性代数证明题1.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,证明234,,ααα是方程组*0A x =的基础解系.2.设A 是n 阶矩阵,且0nA =,则A E n -必是可逆矩阵。

3.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,证明:BCA E = 4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆.5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是.0==BA AB8.如果对称矩阵A 为非奇异,试证:1-A 也是对称矩阵 9.设A ,B ,C 都是n 阶方阵,且C 可逆,T --+=A E B C C )(11,证明:A 可逆且T-+=)(C B A 1。

10.设0=kA,其中k 为正整数,证明:121)(--++++=-k A A A E A E11.设方阵A 满足A 2-A-2E=O ,证明A 及A+2E 都可逆,并求112--+)及(E A A 12.试证:对任意方阵A ,均有 T A A +为对称矩阵, TA A -为反对称矩阵。

13.证明 1)(=A R 的充分必要条件是存在非零列向量α和非零行向量Tβ,使TA αβ= 14.设A 为列满秩矩阵,C AB =,证明方程0=BX 与0=CX 同解 15.设A 为n m ⨯矩阵,证明方程m E AX =有解m A R =⇔)( 16.向量组A 能 用向量组B 表示,则R(A)<=R(B)17.设B A ,分别为m n n m ⨯⨯,矩阵,则齐次方程组O =ABx 当n m >时必有非零解。

《线性代数》课后习题答案

《线性代数》课后习题答案

第一章 行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ⊆,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ⊄。

(反证法)如果)()(q Q p Q ⊆,则q b a p Q b a +=⇒∈∃,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

如果0=a ,则2qb p =,这与q p ,是互异素数矛盾。

考研线代证明题

考研线代证明题

考研线代证明题摘要:1.考研线代证明题概述2.线性无关组的概念及性质3.证明题的解题思路和方法4.举例说明5.结论正文:一、考研线代证明题概述线性代数是考研数学的重要组成部分,其中证明题是历年考研数学试卷中必考的内容。

线代证明题主要涉及到向量空间、线性变换、特征值与特征向量、二次型等知识点。

这类题目不仅考查考生的数学知识,还考查考生的逻辑思维和推理能力。

二、线性无关组的概念及性质线性无关组是线性代数中一个基本概念,是指一组向量线性无关。

线性无关组的性质有:1.线性无关组中的向量可以线性表示其他向量;2.线性无关组中的向量数量是最大的;3.线性无关组中的向量具有线性无关性,即任意一个向量都不能由其他向量线性表示。

三、证明题的解题思路和方法解线代证明题,首先要理解题目所给出的已知条件,然后找到解题的思路。

具体方法如下:1.利用已知条件,通过线性组合将向量表示出来;2.利用线性无关组的性质,判断向量是否线性无关;3.利用矩阵的性质,如行列式、秩等,推导出所需结论。

四、举例说明假设有一个线性无关组a(1), a(2),..., a(s),现在需要证明这个线性无关组是极大线性无关组。

我们可以按照以下步骤进行证明:1.假设a(1), a(2),..., a(s) 不是极大线性无关组,即存在一个向量a(i) 可以表示为a(1), a(2),..., a(s) 的线性组合,其中i 不属于{1, 2,..., s}。

2.根据线性组合的定义,可以得到一个矩阵方程,即a(i) = A * a(1) + B * a(2) +...+ D * a(s),其中A、B、...、D 为待定系数。

3.由于a(1), a(2),..., a(s) 线性无关,所以矩阵方程中系数矩阵的行列式不为0,即|A * a(1) + B * a(2) +...+ D * a(s)| ≠0。

4.根据矩阵的秩的定义,系数矩阵的秩等于矩阵方程中未知数的个数,即r(A * a(1) + B * a(2) +...+ D * a(s)) = s。

线性代数试题及答案

线性代数试题及答案

线性代数习题和答案好东西第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内.错选或未选均无分。

1.设行列式=m,=n,则行列式等于()A. m+nB. -(m+n)C. n-mD. m—n2。

设矩阵A=,则A—1等于( )A. B。

C。

D.3。

设矩阵A=,A*是A的伴随矩阵,则A*中位于(1,2)的元素是( )A. –6B. 6C. 2 D。

–24。

设A是方阵,如有矩阵关系式AB=AC,则必有()A。

A =0 B. BC时A=0C. A0时B=CD. |A|0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A。

1 B。

2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C。

有不全为0的数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-β)=0sD.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsα=0和μ1β1+μ2β2+…+μsβs=0s7.设矩阵A的秩为r,则A中()A.所有r—1阶子式都不为0 B。

所有r—1阶子式全为0C。

至少有一个r阶子式不等于0 D。

所有r阶子式都不为08。

设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解 B.η1+η2是Ax=b的一个解C。

η1—η2是Ax=0的一个解D。

2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A。

线性代数证明题练习

线性代数证明题练习

线性代数证明题练习线性代数证明题是线性代数课程中的一部分,通过解答这些证明题可以加深对线性代数理论的理解和掌握。

本文将提供一些线性代数证明题的练,帮助读者提高他们的证明能力。

1. 向量空间的性质证明1.1 证明向量空间的加法交换律要证明向量空间的加法交换律,需要证明对于任意的向量a和b,有a + b = b + a。

下面是证明的步骤:* 步骤1:首先考虑向量的定义。

向量可以表示为a = (a1, a2, ..., an)和b = (b1, b2, ..., bn),其中ai和bi分别是实数。

根据向量的定义,a + b可以表示为(a1 + b1, a2 + b2, ..., an + bn)。

* 步骤2:考虑向量加法的交换性质。

根据实数的加法交换律,可以推导出向量加法的交换律。

因此,可以得出(a1 + b1, a2 + b2, ..., an + bn) = (b1 + a1, b2 + a2, ..., bn + an)。

* 步骤3:得出结论。

根据步骤2的结果,可以得出a + b = b + a。

通过以上的证明步骤,可以证明向量空间的加法交换律成立。

1.2 证明向量空间的数乘结合律要证明向量空间的数乘结合律,需要证明对于任意的实数k和向量a,有k(a) = (ka)。

下面是证明的步骤:* 步骤1:考虑向量和数的定义。

向量a可以表示为a = (a1,a2, ..., an),其中ai是实数。

数k可以表示为一个实数k。

* 步骤2:考虑数乘的定义。

数乘k(a)可以表示为(k * a1, k *a2, ..., k * an)。

* 步骤3:考虑数乘的结合性质。

根据实数的乘法结合律,可以推导出数乘的结合律。

因此,可以得出(k * a1, k * a2, ..., k * an) = (ka1, ka2, ..., kan)。

* 步骤4:得出结论。

根据步骤3的结果,可以得出k(a) = (ka)。

通过以上的证明步骤,可以证明向量空间的数乘结合律成立。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数证明题1.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,证明234,,ααα是方程组*0A x =的基础解系.2.设A 是n 阶矩阵,且0nA =,则A E n -必是可逆矩阵。

3.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,证明:BCA E = 4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆.5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是.0==BA AB8.如果对称矩阵A 为非奇异,试证:1-A 也是对称矩阵 9.设A ,B ,C 都是n 阶方阵,且C 可逆,T --+=A E B C C )(11,证明:A 可逆且T-+=)(C B A 1。

10.设0=kA,其中k 为正整数,证明:121)(--++++=-k A A A E A E11.设方阵A 满足A 2-A-2E=O ,证明A 及A+2E 都可逆,并求112--+)及(E A A 12.试证:对任意方阵A ,均有 TA A +为对称矩阵, TA A -为反对称矩阵。

13.证明 1)(=A R 的充分必要条件是存在非零列向量α和非零行向量Tβ,使TA αβ= 14.设A 为列满秩矩阵,C AB =,证明方程0=BX 与0=CX 同解 15.设A 为n m ⨯矩阵,证明方程m E AX =有解m A R =⇔)( 16.向量组A 能 用向量组B 表示,则R(A)<=R(B)17.设B A ,分别为m n n m ⨯⨯,矩阵,则齐次方程组O =ABx 当n m >时必有非零解。

18、设,,,,144433322211ααβααβααβααβ+=+=+=+=证明向量组4321ββββ,,,线性相关.19.向量组123,,ααα与向量组123,,βββ等价的充分必要条件为: 123123123123(,,)(,,)(,,,,,)r r r αααβββαααβββ==20. 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,AB 为可逆矩阵,且m n ≠,则B 的列向量组线性无关。

21.{}11211(,,),,,0Tn n n V x x x x x x R x x ==∈++= ,证明1V 是向量空间22.设向量211ααβ-=,322ααβ-=,323ααβ-=,……, 1ααβ-=r r 且向量组12,,,r a a α 线性无关,证明向量组12,,,r b b b 线性无关。

23. 设A,B都是n 阶矩阵,且AB=0。

证明()()R A R B n +≤。

24. 设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且m n >,证明0AB =。

25.已知向量组12,,m ααα中任一向量i α都不是它前面i -1个向量的线性组合,且1≠0α,证明12,,m ααα的秩为m . 26.设有两个向量组12:,,,r A ααα;112:B =-βαα,223=-βαα,…,11r r r --=-βαα,1r r =+βαα,证明向量组A 的秩等于向量组B 的秩.27.设有一个含m 个向量的向量组12,,,m ααα(m ≥2),且12+++m = βααα,证明向量组12,,,m β-αβ-αβ-α线性无关的充分必要条件是12,,,m ααα线性无关. 28. 设向量组12,,,m A :ααα线性无关,向量1β可由向量组A 线性表示,而向量2β不能由向量组A 线性表示.证明向量组1212,,,,m l + αααββ线性无关(其中l 为常数). 29.设12,,s ααα线性无关,12+++s s λλλ12= βααα,其中i λ≠0,证明11+1,,,,,i-i s ααβαα线性无关.30.已知向量组123,,ααα线性相关,向量组234,,ααα线性无关,证明 (1) 1α可由23,αα线性表示; (2) 4α不能由123,,ααα线性表示.31.设V 1是由T 1(1,1,0,0)=a ,T 2(1,0,1,1)=a 所生成的向量空间,V 2是由T 1(2,1,3,3)=-b ,T 2(0,1,1,1)=--b 所生成的向量空间,试证V 1= V 2.32.证明由T T T 123(0,1,1),(1,0,1),(1,1,0)===ααα所生成的向量空间就是3R . 33.向量组A:n a a a ,,21;B:m βββ ,,21 ;C:m n a a a βββ ,,,,,2121,证明:)()()())(),(max(B r A r C r B r A r +≤≤33.设,A B 是同型矩阵, 证明()()()R R R +≤+A B A B .34.证明n 维向量组12n ,,, a a a 线性无关的充分必要条件是,任一n 维向量都可由12,,,n a a a 线性表示.35. 设n 阶矩阵A 满足A A =2,E 为n 阶单位阵,证明n E A R A R =-+)()(36. 设向量组r a a a ,,21 是齐次线性方程组AX=O 的一个基础解系,向量β不是方程组AX=O 的解,即βA ≠0,求证:r αβαββ++,,,1 线性无关。

37.对于矩阵s n n m B A ⨯⨯,,有n AB r B r A r ≤-+)()()(。

证明:构造如下矩阵⎪⎪⎭⎫ ⎝⎛=n E AB C 00,显然有n AB r C r +=)()(,对C 作如下变换:用A 乘以第二行再加到第一行得到⎪⎪⎭⎫⎝⎛n E A AB 0 用第一列减去第二列右乘B 得到⎪⎪⎭⎫ ⎝⎛-n E BA 0,而)()(0B r A r E B A r n +≥⎪⎪⎭⎫ ⎝⎛- 故)()()()(B r A r n AB r C r +≥+=38.设A ,B 均为n 阶矩阵,且A 与-E AB 都可逆, 证明-E BA 可逆.39.设向量组;3;2;32133122211αααβαααβααβ++=--=-=。

若已知向量组321,,ααα线性无关,问向量组321,,βββ 是否线性相关,请证明之.40.如果()I B A +=21,证明:当且仅当I B =2时,A A =241.若A 是n 阶方阵,且,I AA =T,1-=A 证明 0=+I A 。

其中I 为单位矩阵。

42.设η为非齐次线性方程组Ax=b 的一个解,ξ1,ξ2,…,ξr 是其导出组Ax=0的一个基础解系.证明η,ξ1,ξ2,…,ξr 线性无关.43.设向量组321,,ααα线性无关,且332211αααβk k k ++=.证明:若1k ≠0,则向量组32,,ααβ也线性无关.44.已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 45.设向量1α,2α,….,k α线性无关,1<j ≤k.证明:1α+j α,2α,…,k α线性无关.46.设123ααα,,线性无关,证明1121323ααααα++,,也线性无关. 47.设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.48.设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵.49.证明1)(=A R 的充分必要条件是存在非零列向量a 及非零行向量T b ,使T ab A =。

50.设A 为n m ⨯矩阵,若AY AX =,且n A R =)(,则Y X =。

证:将s m ⨯矩阵X ,Y 按列分块为()s x x x X 21=,()s y y y Y 21=,则Y X -=()s s y x y x y x --- 2211如果AY AX =,且n A R =)(; 即0)(=-Y X A ,且n A R =)(;亦即0)(=-j j y x A ,且n A R =)(,那么根据齐次线性方程组的理论,当n A R =)(时,齐次线性方程组0=AX 只有零解,0)(=-j j y x A 只有零解,即0=-j j y x ,亦即j j y x =,s j ,,2,1 =,故Y X =。

51.已知R(a 1, a 2, a 3)=2, R(a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.52.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ⨯矩阵,且A 组线性无关。

证明B 组线性无关的充分必要条件是矩阵K 的秩r K R =)(. 53.设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n nn ααααβαααβαααβ, 证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.。

相关文档
最新文档