对数的运算性质教案
对数的运算教案

对数的运算教案对数的运算教案一、引言数学作为一门基础学科,其重要性不言而喻。
在数学的学习中,对数的运算是一个关键的内容。
对数的运算涉及到对数的性质、对数的运算规则以及对数的应用等方面。
本文将围绕这些内容展开讲解。
二、对数的定义和性质1. 对数的定义对数是指数运算的逆运算。
设a为正数且a≠1,b为正数,则称满足a^x=b的x为以a为底b的对数,记作x=loga(b)。
2. 对数的性质(1)对数的底数不变,对数的值也不变。
(2)对数的值与底数的大小关系有关,当底数大于1时,对数为正;当底数小于1时,对数为负。
(3)对数的值随着真数的增大而增大,但增长速度逐渐变慢。
三、对数的运算规则1. 对数的乘法规则对数的乘法规则是指loga(b) + loga(c) = loga(b * c)。
即,两个数相乘的对数等于这两个数的对数相加。
2. 对数的除法规则对数的除法规则是指loga(b) - loga(c) = loga(b / c)。
即,两个数相除的对数等于这两个数的对数相减。
3. 对数的幂运算规则对数的幂运算规则是指loga(b^c) = c * loga(b)。
即,一个数的指数的对数等于该数的对数乘以指数。
四、对数的应用1. 对数在科学计算中的应用对数在科学计算中有着广泛的应用,尤其是在大数据计算和复杂函数计算中。
对数的运算规则和性质能够简化计算过程,提高计算效率。
2. 对数在经济学中的应用对数在经济学中的应用主要体现在指数增长和指数衰减的模型中。
对数函数能够很好地描述经济增长或衰退的趋势,为经济决策提供重要依据。
3. 对数在生物学中的应用对数在生物学中的应用主要体现在生物学曲线的研究中。
生物学曲线通常呈现出指数增长或指数衰减的趋势,对数函数能够很好地描述这些趋势。
五、对数的综合应用实例以一个实际问题为例,展示对数的综合应用。
某城市的人口数量每年以1.5%的速度增长。
已知该城市在2010年的人口数量为100万人,问到2020年时,该城市的人口数量为多少?解:设2020年时的人口数量为x万人。
对数的运算性质教学设计

对数的运算性质教学设计教学目标:知识与技能:理解和掌握对数的运算性质并能准确运用.过程与方法:在推导对数的运算性质的过程中,让学生猜想、得出规律、再进行证明,体会化归的思想.情感态度与价值观:让学生探索、研究、体会、感受对数运算性质的形成过程及其作用. 教学重点:对数运算性质及推导和应用.教学难点:对数运算性质的探究及证明过程.教学过程:一、 创设情境,导入新课1、 填空:(1)如果N a b=(a >0且a ≠1),那么b 叫做_____________,记作___________。
(2)______log =N a a 结合学生回答,板书如下:Na N a =log 2.请将下列指数式化为对数式[个别口答,集体评价] (1)8134=(2)6426= (3)10=a (4)a a =1注:上述活动中教师应关注:1)指数→对数,幂→真数; 2)式(3)(4)的转换条件,强调“负数与零没有对数”; 3)结合学生回答相机板书:01log =a log =a a3.求下列各式的值(口答,要求用“∵____,∴_____,即_____”的形式表述)(1)9log 3(2)1251log 5(3)1000lg (4)29log 55 4.怎样计算)39(log 523⨯?点题:要解决这样的问题,我们还需要进一步研究对数的运算性质(板书课题)二、诱导尝试,探究新知1. 示演操作,形成假设问题1:填出课本P80表3-7中各组数的值,并从数据中分析等量关系,猜想对数的运算性质(1)学生独立尝试,计算、填表并猜想结论,教师巡视指导,重点关注学困生的表现。
(2)检查尝试情况:1)提问:你们探获的结论是什么?谁愿意将所探获的结论展示一下?2)由一名学生口头汇报,要求其他学生认真倾听、评价、修正、完善,形成以下板书 如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 2. 验证假设,获得定论(1)设问:以上结论是否具有一般性?仅用特例验证能说明其一般性吗?(2)师引导证明(1)如下设a log M=p, a log N=q由对数的定义可以得:M=p a ,N=q a ∴ MN= p a q a =q p a + ∴a log MN=p+q ,即证得a log MN=a log M + a log N注:(2)(3)的证明可让学生模仿(1)的证明自己完成,教师巡视,个别指导 而(2)的证明也可用(1)的证明来证N M N N NM N M a a a a a a log log log log log log -=-+= 这种方法使用到拆分技巧,化简为加,常会用到(3)师:以上三个式子经过证明是正确的,可以作为对数的运算性质加以运用,你们能用语言描述这三个式子所表示的意义吗?学生口述,教师根据学生回答相机在等式左右两边适当位置板书积.——..和;商...——..差;幂...—.—.积.。
高中数学对数的运算性质优秀教案

对数的运算性质教学目标:知识与技能:(1) 理解对数的运算性质;(2)用换底公式能将一般对数转化成自然对数或常用对数;过程与方法:通过对数的运算性质、换底公式的推导,进一步理解对数的概念,掌握对数的运算性质。
情感、态度与价值观:培养学生的观察、猜测、归纳、类比能力.教学重点:对数的运算性质,用换底公式将一般对数转化成自然对数或常用对数。
教学难点:对数的运算性质的熟练运用.教学过程:一、复习回忆1、对数的定义2、指数式与对数式的互化3、指数运算法则二、创设情景,揭示课题的值。
试求:6lg ,4771.03lg ,3010.02lg == 显然,要解决这个问题,就得知道lg6与lg2和lg3之间的关系。
我们知道6=2×3。
那么lg6=lg2×lg3吗?我们只知道对数的定义和性质还不能解决有关对数的运算问题,还得学习对数的运算性质。
这节课我们研究对数的运算性质。
三、新知探索1、判断以下每组数是否相等?〔1〕11lg100lg,lg(100)1010+⨯ 〔2〕2221log 8log ,log 24+ 通过计算,同学们看出它们有什么共同点吗?2、请同学们证明这一猜测如果a >0且a ≠1,M >0,N >0,证明log log log a a a MN M N =+证明:假设设r M a =,s N a =则r s MN a +=写成对数式得log ()a M N r s ⋅=+………①又由r M a =得log a M r =;由sN a =得log a N s =代入①得log ()log log a a a M N M N ⋅=+其中a>0且 a ≠1,M>0,N>0。
由此我们得到对数的运算性质1:log ()log log a a a M N M N ⋅=+其中a>0且 a ≠1,M>0,N>0。
3、你能用文字语言描述出对数运算性质1的意思吗?可以简记为两个正数的积的对数等于它们的对数的和。
对数的运算性质教案

2.2.1对数与对数运算性质(二)教学目标(1)知识与技能:理解对数的运算性质. (2)过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识. (3)情感、态态与价值观:1、利用指、对数式关系启发学生研究对数性质及运算法则培养学生注意探索、研究、揭示事物的内在联系,培养分析问题、解决问题的能力,培养学生大胆探索,实事求是的科学精神。
2、对数运算法则可以把乘、除、乘方、开方运算转化为加减乘除运算,加快了运算速度、简化了计算方法、显示了对数计算忧越性,体现了所学知识实践中的应用。
教学重点、难点教学重点:对数运算性质及其推导过程. 教学难点: 对数的运算性质发现过程及其证明. 教学过程(一)复习巩固,引入新课:(1)对数的定义 b N a =l o g ,掌握其中 a 与 N 的取值范围; (2)指数式与对数式的互化,及两个重要公式; (3)指数运算法则(积、商、幂、方根)。
设计意图:对数的概念和指数的运算性质是学习本节课的基础,学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备. 2、请同学判断以下几组数是否相等? (1) 101lg100lg +,)101100lg(⨯;(2)81log 4log 22+,21log 2;提出问题:由(1)(2)结果出发,同学们能看出他们具有一个怎样的共同点? 设计意图:让学生观察,学会从特殊到一般,寻求规律。
新课讲解:请同学们交流讨论得出结论,当底数相同的时候,两个正数的对数之和等于两个正数积的对数。
那么这个结论是否正确呢?接下来我们具体的来证明我们的这一结论:设计意图:让学生让学生体会“归纳一猜想一证明”是数学中发现结论,证明结论的完整思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略. 如果 a > 0 , a ≠ 1, M > 0 ,N > 0,证明:log ()log log a a a MN M N =+ 证明:(性质1)设log a M p =,log a N q =, 由对数的定义可得 pM a =,qN a =, ∴pqp qMN a a a+=⋅=,∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 结论总结:如果 a > 0 , a ≠ 1, M > 0 ,N > 0,那么log ()log log a a a MN M N =+事实上,除了上面的这个运算性质之外,人们在对数的运算和推理过程中,还发现了两个性质:(2)log log -log aa a MM N N=; 商的对数=对数的差 (3)log log ()n a a M n M n R =∈. 一个数n 次方的对数=这个数对数的n 倍 那么,请同学们结合前面的性质(1)的证明以及以前的所学知识,对我们所给出的性质(2)(3)进行证明。
对数运算性质的应用教案设计

对数运算性质的应用教案设计一、教学目标1. 理解对数运算的基本性质,包括对数的定义、对数的性质及对数运算的法则。
2. 掌握对数运算的技巧,能够运用对数运算性质解决实际问题。
3. 培养学生的逻辑思维能力,提高学生解决数学问题的能力。
二、教学内容1. 对数的定义及性质:回顾对数的定义,探讨对数的性质,如对数的单调性、对数的换底公式等。
2. 对数运算的法则:学习对数运算的基本法则,包括对数的加法、减法、乘法和除法。
3. 对数运算技巧:讲解对数运算的技巧,如利用对数运算性质简化计算过程,快速求解对数问题。
4. 实际问题应用:通过具体例子,展示如何运用对数运算性质解决实际问题,如测量问题、增长率问题等。
三、教学方法1. 讲授法:讲解对数运算的基本性质和法则,阐述对数运算技巧及其应用。
2. 案例分析法:通过具体例子,引导学生运用对数运算性质解决实际问题。
3. 小组讨论法:组织学生分组讨论,共同探讨对数运算的性质和应用,提高学生的合作能力。
四、教学步骤1. 引入对数运算的概念,回顾对数的定义和性质。
2. 讲解对数运算的基本法则,包括加法、减法、乘法和除法。
3. 引导学生运用对数运算性质简化计算过程,巩固对数运算技巧。
4. 举例说明如何运用对数运算性质解决实际问题,如测量问题、增长率问题等。
5. 组织学生进行小组讨论,分享各自的对数运算心得和应用经验。
五、教学评价1. 课堂讲解:评价学生对对数运算性质的理解程度和对数运算技巧的掌握情况。
2. 课后作业:布置相关对数运算题目,检验学生对课堂所学知识的应用能力。
3. 小组讨论:评价学生在讨论中的参与程度和对实际问题解决能力的提升。
4. 综合测试:通过笔试或口试等形式,全面评估学生对对数运算性质及其应用的掌握情况。
六、教学活动1. 互动游戏:设计一些关于对数运算的互动游戏,如对数运算接力赛、对数运算猜谜等,激发学生的学习兴趣,巩固所学知识。
2. 练习与反馈:布置针对性的练习题,让学生在课后巩固所学知识。
《对数的运算性质》教学设计及说课稿

《对数的运算性质》教学设计教学时间:教学班级: 教 者:教学目标:知识目标:掌握对数的运算性质,并能理解推导这些法则的依据和过程.能力目标:1.熟练运用对数的运算法则进行化简和求值;2.逐步培养学生的观察分析、抽象概括能力、归纳总结能力、逻辑推理能力. 情感目标: 1.让学生认识事物之间的相互联系与相互转化;2.培养学生运用联系的观点解决问题的意识;3.培养学生通过探索、发现、归纳、猜想、证明,获取知识的思想方法.教学重点:对数运算性质教学难点:对数运算性质的证明方法.教学模式:引导发现 归纳猜想 理论证明知识应用 练习反馈 授课类型:新授课教学用具:多媒体教学过程:一、复习引入:1.对数的定义:Na b =若 b N a =log 则,其中a ∈),1()1,0(+∞ ,N ∈),0(+∞2.指数式与对数式的互化3.重要公式:⑴01log =a ,1log =a a ; ⑵N a N a =log ;⑶b a b a =log ; (4)负数与零没有对数.3.指数运算法则:),0,0()(),,0()(),,0(R n b a b a ab R n m a a a R n m a a a a n n n mn n m n m n m ∈>>⋅=∈>=∈>=⋅+b N =二、新授内容:1.通过观察几个特殊对数式之间的关系,归纳猜想积、商、幂的对数运算法则: 如果 a >0,a ≠ 1,M >0,N >0 有:)()()(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 2.引导学生证明公式证明:①设a log M=p, a log N=q 则:M=p a ,N=q a∴MN= p a q a =q p a + ∴a log MN=p+q 即证得a log MN=a log M + a log N说明:公式二的证明教师指导学生自己完成.②设a log M=p ,a log N=q 则:M=p a ,N=q a ∴q p q p a a a N M -== ∴q p N M a -=log 即证得N M NM a a a log log log -= ③设a log M=P 由对数定义可以得M=p a∴n M =np a ∴a log n M =np 即证得a log n M =n a log M说明:上述证明是运用转化的思想,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后根据对数定义将指数式化成对数式再进行证明注:①简易语言表达:“积的对数 = 对数的和”……②对数的运算性质只有在同底的情况下才能运用,且底数a 的取值范围必须是 a ∈),1()1,0(+∞ .③真数的取值范围必须是),0(+∞.④有时逆向运用公式.3.通过判断几个式子的真假,考察学生对公式的理解.三、例题选讲例1用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log z y x zxy a a 解:(1)zxy a log =a log (xy )-a log z=a log x+a log y- a log z(2)32log z y x a =a log (2x 3log )z y a -= a log 2x +a log 3log z y a - =2a log x+z y a a log 31log 21- 例2计算:(1)2log (74×52); (2)lg14-2lg37+lg7-lg18 说明:此例题可讲练结合.(1)2log (74×52)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19(2)解法一:lg14-2lg 37+lg7-lg18 =lg14-lg 2)37(+lg7-lg18 =lg 01lg 18)37(7142==⨯⨯ 解法二:lg14-2lg37+lg7-lg18 =lg(2×7)-2(lg7-lg3)+lg7-lg(23×2)=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0四、课堂练习:1. 用lg x,lg y,lg z表示下列各式:(1) lg (xyz ); (2)lg z xy 2; (3)zxy 3lg ; (4)z y x 2lg 2.求下列各式的值:(1)2log 6-2log 3 (2)lg5+lg2(3) 25log 10+5log 0.25 (4)25log 25-32log 64五、小结:1、2、在本节课中渗透了从特殊到一般、从具体到抽象的思维方法,也融入了等价转化的数学思想。
掌握对数的基本运算法则——对数运算法则教案

掌握对数的基本运算法则——对数运算法则教案一、教学目标1.掌握对数的定义,了解对数的意义和应用。
2.掌握对数的基本运算法则,包括对数相乘、对数相除、对数的乘方和除方等四大基本运算规则。
3.发现和理解对数运算规则与指数运算规则之间的联系,形成对数与指数相互转化的思维方式。
二、知识点分析1.对数的定义对数是一个数对另一个数的幂的指数。
它的本质是求幂的逆运算了。
比如,对于某个数b (b>0且不为1),x是另一个正数,那么用y表示x的对数和b是底数,就是:$$ y=log_bx $$读作“以b为底,x的对数是y”。
例如,2^3 = 8,那么以2为底,8的对数是几呢?$$ log_2 8 = 3 $$因此,8的对数是3,可以写作log2 8 = 3。
2.对数的意义及应用对数与指数的重要性源于它们是描述倍增或倍减量级的理想工具。
对数函数不仅在数学中用得广泛,也被广泛地应用于其他各种领域,例如:也被广泛地用于科学研究(光谱学、热力学、电子学、天文学)到统计分析(比如标准正态分布)等等。
3.对数的基本运算法则(1)对数相乘$$ log_{b}x + log_{b}y = log_{b}(x * y) $$(2)对数相除$$ log_{b}x - log_{b}y = log_{b}(x / y) $$(3)对数的乘方$$ log_{b}x^n = n*log_{b}x $$(4)对数的除方$$ log_{b}(x/y) = log_{b}x - log_{b}y $$三、教学方法本课程采用交互式教学法与游戏式教学法相结合的方式,包括课堂讲解、小组讨论、互动游戏和练习测试等环节。
在课堂讲授中,教师通过生动形象的例子讲解,引发学生对于对数学习的兴趣和好奇心。
在小组讨论环节,鼓励学生交流思考,培养学生的合作精神和团队意识。
在互动游戏环节中,采用数字海战游戏,帮助学生快速掌握对数的基本运算法则,提高学生的课堂互动和兴趣。
北师大版高中数学必修一数学必修第一册:4.2.1《对数的运算性质》教案

对数的运算性质【教学目标】1.掌握对数的运算性质。
2.理解对数的运算性质推导过程。
3.通过推导对数运算性质的过程,提升数学运算素养。
【教学重难点】1.掌握对数的运算性质。
2.理解对数的运算性质推导过程。
【教学过程】一、基础铺垫对数与指数概念之间的联系,决定了对数运算与指数运算之间的密切相关性。
若a >0,且a ≠1,M >0,N >0,则(1)log a (MN )=log a M +log a N ;(2)log a M n =n log a M (n ∈R );(3)log a M N =log a M -log a N 。
二、新知探究1.对数运算性质【例】求下列算式的值。
2log 32-log 3329+log 38+3log 515。
[解]原式=log34-log3329+log38-3log55=log3⎝ ⎛⎭⎪⎫4×932×8-3=log39-3=2-3=-1. 【教师小结】对数的计算一般有两种处理方法:一种是将式中真数的积、商、幂、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;二是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值。
2.对数运算性质的应用[探究问题](1)已知a =2lg 3,b =3lg 2,则a ,b 的大小关系是什么?提示:∵lg a =lg 2lg 3=lg 3lg 2,lg b =lg 3lg 2=lg 2lg 3.∴lg a =lg b∴a =B .(2)设2a =5b=m ,且1a +1b =2,则m 的值是什么? 提示:由2a =5b =m ,取对数得a lg 2=b lg 5=lg m ,∴a =lg m lg 2,b =lg m lg 5,又1a +1b =2,∴lg 2lg m +lg 5lg m =2,∴lg 10lg m =2.∴lg m =12,∴m =1012=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1对数与对数运算性质(二)
教学目标 (1)知识与技能:
理解对数的运算性质. (2)过程与方法:
通过对数的运算性质的探索及推导过程,培养学生的“推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识. (3)情感、态态与价值观:
1、利用指、对数式关系启发学生研究对数性质及运算法则培养学生注意探索、研究、揭示事物的内在联系,培养分析问题、解决问题的能力,培养学生大胆探索,实事求是的科学精神。
2、对数运算法则可以把乘、除、乘方、开方运算转化为加减乘除运算,加快了运算速度、简化了计算方法、显示了对数计算忧越性,体现了所学知识实践中的应用。
教学重点、难点
教学重点:对数运算性质及其推导过程. 教学难点: 对数的运算性质发现过程及其证明. 教学过程
(一)复习巩固,引入新课:
(1)对数的定义 b N a =log ,掌握其中 a 与 N 的取值范围;
(2)指数式与对数式的互化,及两个重要公式; (3)指数运算法则(积、商、幂、方根)。
设计意图:对数的概念和指数的运算性质是学习本节课的基础,学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备. 2、请同学判断以下几组数是否相等? (1) 10
1lg
100lg +,)101100lg(⨯;
(2)8
1log 4log 22+,21
log 2;
提出问题:由(1)(2)结果出发,同学们能看出他们具有一个怎样的共同点?
设计意图:让学生观察,学会从特殊到一般,寻求规律。
新课讲解:
请同学们交流讨论得出结论,当底数相同的时候,两个正数的对数之和等于两个正数积
的对数。
那么这个结论是否正确呢?接下来我们具体的来证明我们的这一结论:
设计意图:让学生让学生体会“归纳一猜想一证明”是数学中发现结论,证明结论的完整思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略. 如果 a > 0 , a
1, M > 0 ,N > 0,证明:log ()log log a a a MN M N =+
证明:(性质1)设log a M p =,log a N q =, 由对数的定义可得 p
M a =,q
N a =, ∴p
q
p q
MN a a a
+=⋅=,
∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 结论总结:
如果 a > 0 , a 1, M > 0 ,N > 0,那么log ()log log a a a MN M N =+
事实上,除了上面的这个运算性质之外,人们在对数的运算和推理过程中,还发现了两个性质:
(2)log log -log a
a a M
M N N
=; 商的对数=对数的差 (3)log log ()n
a a M n M n R =∈. 一个数n 次方的对数=这个数对数的n 倍
那么,请同学们结合前面的性质(1)的证明以及以前的所学知识,对我们所给出的性质(2)(3)进行证明。
3分钟后同桌交换,看相互之间的证明,交换心得,并进一步讨论,是否能够找到更多的证明方法。
设计意图:
1、让学生熟悉和掌握对数和指数之间的互化,更深的理解对数的概念;
2、寻求多种方法,发散学生思维 性质2. 方法一:(仿照性质(1)同理可证)
方法二:由性质(1)的结论出发:
M N N
M N N M a a a a
log log log log =⋅=+ N
M
N M a a a log log log =-⇒
方法三:由性质(1)的结论出发:
N M N N N
M N M a a a a a a
log log log log log log -=-+= 这法二和法三证法使用拆分技巧,化减为加(化除为乘),会常用到。
引导学生进行转化,把不熟悉的知识向熟悉的知识转化。
利用指数和对数的关系:
(性质3)
设log a M p =, 由对数的定义可得 p
M a =, ∴n np
M a =, ∴log n a M np =,
即证得log log n a a M n M =. ∴log n
a M np =, 即证得log log n
a a M n M =
通过上述探讨、研究得到了对数的运算性质
如果0>a 且1≠a ,0>M ,0>N 那么
(1)log ()log log a a a MN M N =+; 积的对数 = 对数的和
(3)log log ()n
a a M n M n R =∈. 一个数n 次方的对数=这个数对数的n 倍
说明:(1)语言表达:“积的对数 = 对数的和”……(简易表达以帮助记忆);
(2)注意有时必须逆向运算:如 11025101010==+log log log ; (3)注意限制条件:必须是同底的对数,真数必须是正数; 例如:12log 12log 4log 3log 3232≠≠+
)5(log )3(log )5)(3(log 222-+-=-- 是不成立的,
)(log )(log 10210102
10-=-是不成立的;
(4)当心记忆错误:N log M log )MN (log a a a ⋅≠,试举反例, N log M log )N M (log a a a ±≠±,试举反例。
(5)性质(1)可以进行推广:
即 log a (M 1M 2M 3…M n )=log a M 1+log a M 2+log a M 3+…+log a M n
(其中a >0,且a ≠1,M 1、M 2、M 3…M n >0).
设计意图:加深学生对知识的理解,注意到一些细节问题,避免出现公式的错误应用。
(三).典型例题: 例1、计算
(1))39(log 5
2
3⨯ (2)5
1
100lg
答案:(1)9 (2)
5
2
设计意图:让学生熟悉三个运算性质
例2.计算:lg14-21g
18lg 7lg 3
7
-+; 解:(1)解法一:18lg 7lg 3
7lg 214lg -+-2
lg(27)2(lg 7lg3)lg 7lg(32)=⨯--+-⨯
lg 2lg72lg72lg3lg72lg3lg 20=+-++--=;
解法二:18lg 7lg 3
7
lg 214lg -+-27lg14lg()lg 7lg183=-+-
=18)3
7(714lg 2
⨯⨯lg10==;
设计意图:本例体现了对数运算性质的灵活运用,运算性质常常逆用,应引起足够的重视。
(四).课堂练习:P.68练习2,3
其中第3题同桌分工,一个顺向作,一个逆向作,最后核对答案是否一致。
(五).小结:
2.对数的运算法则(积、商、幂、方根的对数)及其成立的前提条件; 3.运算法则的逆用,应引起足够的重视;
4.对数运算性质的综合运用,应注意掌握变形技巧。
(六)作业:课本74页习题2.2A 组第三、四题。
如有侵权请联系告知删除,感谢你们的配合!。