LINGO模型实例及求解讲解学习
LINGO模型实例及求解分析

运 筹 学 实 验
钢管下料问题2
目标函数(总根数) 满足需求
Min x1 x2 x3
模式合理:每根 余料不超过3米
约束 条件
安 阳 师 范 学 院 数 学 与 统 计 学 院
1 2 3 4 5 6 安 阳 7
师 范 学 院 数 学 与 统 计 学 院
运 筹 学 实模式 验
钢管下料问题1
4米钢管根数 4 3 2 1 1 0 0 6米钢管根数 0 1 0 2 1 3 0
合理切割模式
8米钢管根数 0 0 1 0 1 0 2 余料(米) 3 1 3 3 1 1 3
为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省? 两种 标准 1. 原料钢管剩余总余量最小
每根原料钢管长19米
ห้องสมุดไป่ตู้
原料钢管总根数下界: 4 50 5 10 6 20 8 15 26 (最佳切割方式) 19
安 特殊生产计划(简单切割方式):对每根原料钢管 阳 师 范 模式1:切割成4根4米钢管,需13根; 学 院 模式2:切割成1根5米和2根6米钢管,需10根; 数 学 模式3:切割成2根8米钢管,需8根。 与 统 原料钢管总根数上界:31 26 x1 x2 x3 31 计 学 院 模式排列顺序可任定 1 2 3
r11 x1 r12 x2 r13 x3 50
r21 x1 r22 x2 r23 x3 10
16 4r11 5r21 6r31 8r41 19
16 4r12 5r22 6r32 8r42 19
lingo案例

LINGO是一种用于线性规划、整数规划、非线性规划、混合整数规划等数学建模和优化问题的软件工具。
它可以用于解决各种实际问题,包括生产计划、物流、资源分配、网络设计等。
以下是一个简单的LINGO案例,以帮助您了解如何使用LINGO进行优化建模和求解问题:**问题描述:**假设有一家制造公司,他们生产两种产品:A和B。
公司有两个工厂,每个工厂都有不同的生产能力和成本。
公司希望确定每个工厂应该生产多少产品A和B,以最大化利润,同时满足生产能力和市场需求的限制。
**问题数据:**- 工厂1的生产能力:最多生产500个A和300个B- 工厂2的生产能力:最多生产400个A和600个B- 产品A的利润:每个A产品的利润为30美元- 产品B的利润:每个B产品的利润为40美元- 生产一个A产品的成本:工厂1为10美元,工厂2为15美元- 生产一个B产品的成本:工厂1为12美元,工厂2为10美元- 市场需求:产品A的市场需求为600个,产品B的市场需求为800个**LINGO建模和求解:**在LINGO中,可以使用数学表达式来建立优化模型。
以下是一个LINGO模型的示例:```SETS:FACTORIES = 1..2;ENDSETSDATA:CAPACITY(FACTORIES) = 500 300400 600;PROFIT = 30 40;COST(FACTORIES) = 10 1512 10;DEMAND = 600 800;ENDDATAVARIABLES:X(FACTORIES) = 0;ENDVARIABLESMAX = @SUM(FACTORIES, PROFIT(FACTORIES) * X(FACTORIES))SUBJECT TOCAPACITY_CONSTRAINT(F)$(FACTORIES): @SUM(FACTORIES, COST(F, FACTORIES) * X(FACTORIES)) <= CAPACITY(F);DEMAND_CONSTRAINT(I)$(FACTORIES): @SUM(FACTORIES,X(FACTORIES)) >= DEMAND(I);POSITIVE_X(F)$(FACTORIES): X(F) >= 0;ENDSUBMODEL:MAX;SOLVE;```上述LINGO模型首先定义了SETS、DATA、VARIABLES和MAX,然后使用SUBJECT TO部分定义了约束条件,最后使用MODEL和SOLVE命令求解优化问题。
运筹学实例分析及lingo求解讲解

运筹学实例分析及lingo 求解一、线性规划某公司有6个仓库,库存货物总数分别为60、55、51、43、41、52,现有8个客户各要一批货,数量分别为35,37,22,32,41,32,43,38。
各供货仓库到8个客户处的单位货物运输价见表试确定各仓库到各客户处的货物调运数量,使总的运输费用最小。
解:设ijx 表示从第i 个仓库到第j 个客户的货物运量。
ij c表示从第i 个仓库到第j 个客户的单位货物运价,i a 表示第i 个仓库的最大供货量,j d 表示第j 个客户的订货量。
目标函数是使总运输费用最少,约束条件有三个:1、各仓库运出的货物总量不超过其库存数2、各客户收到的货物总量等于其订货数量3、非负约束数学模型为:∑∑===6181)(min i j ijij x c x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥===≤∑∑==08,,2,1,6,2,1,,..6181ij j i ij i j ij x j d x i a x t s 编程如下:model : Sets :Wh/w1..w6/:ai; Vd/v1..v8/:dj;links(wh,vd):c,x;endsetsData:ai=60,55,51,43,41,52;dj=35,37,22,32,41,32,43,38;c=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;EnddataMin=@sum(links(i,j):c(i,j)*x(i,j));@for(wh(i):@sum(vd(j):x(i,j))<=ai(i));@for(vd(j):@sum(wh(i):x(i,j))=dj(j));endGlobal optimal solution found.Objective value: 664.0000Total solver iterations: 0Variable Value Reduced Cost AI( W1) 60.00000 0.000000 AI( W2) 55.00000 0.000000 AI( W3) 51.00000 0.000000 AI( W4) 43.00000 0.000000 AI( W5) 41.00000 0.000000 AI( W6) 52.00000 0.000000 DJ( V1) 35.00000 0.000000 DJ( V2) 37.00000 0.000000 DJ( V3) 22.00000 0.000000 DJ( V4) 32.00000 0.000000 DJ( V5) 41.00000 0.000000 DJ( V6) 32.00000 0.000000 DJ( V7) 43.00000 0.000000 DJ( V8) 38.00000 0.000000 C( W1, V1) 6.000000 0.000000 C( W1, V2) 2.000000 0.000000 C( W1, V3) 6.000000 0.000000 C( W1, V4) 7.000000 0.000000 C( W1, V5) 4.000000 0.000000 C( W1, V6) 2.000000 0.000000 C( W1, V7) 5.000000 0.000000C( W2, V1) 4.000000 0.000000 C( W2, V2) 9.000000 0.000000 C( W2, V3) 5.000000 0.000000 C( W2, V4) 3.000000 0.000000 C( W2, V5) 8.000000 0.000000 C( W2, V6) 5.000000 0.000000 C( W2, V7) 8.000000 0.000000 C( W2, V8) 2.000000 0.000000 C( W3, V1) 5.000000 0.000000 C( W3, V2) 2.000000 0.000000 C( W3, V3) 1.000000 0.000000 C( W3, V4) 9.000000 0.000000 C( W3, V5) 7.000000 0.000000 C( W3, V6) 4.000000 0.000000 C( W3, V7) 3.000000 0.000000 C( W3, V8) 3.000000 0.000000 C( W4, V1) 7.000000 0.000000 C( W4, V2) 6.000000 0.000000 C( W4, V3) 7.000000 0.000000 C( W4, V4) 3.000000 0.000000 C( W4, V5) 9.000000 0.000000 C( W4, V6) 2.000000 0.000000 C( W4, V7) 7.000000 0.000000 C( W4, V8) 1.000000 0.000000 C( W5, V1) 2.000000 0.000000 C( W5, V2) 3.000000 0.000000 C( W5, V3) 9.000000 0.000000 C( W5, V4) 5.000000 0.000000 C( W5, V5) 7.000000 0.000000 C( W5, V6) 2.000000 0.000000 C( W5, V7) 6.000000 0.000000 C( W5, V8) 5.000000 0.000000 C( W6, V1) 5.000000 0.000000 C( W6, V2) 5.000000 0.000000 C( W6, V3) 2.000000 0.000000 C( W6, V4) 2.000000 0.000000 C( W6, V5) 8.000000 0.000000 C( W6, V6) 1.000000 0.000000 C( W6, V7) 4.000000 0.000000 C( W6, V8) 3.000000 0.000000 X( W1, V1) 0.000000 5.000000 X( W1, V2) 19.00000 0.000000 X( W1, V3) 0.000000 5.000000X( W1, V5) 41.00000 0.000000 X( W1, V6) 0.000000 2.000000 X( W1, V7) 0.000000 2.000000 X( W1, V8) 0.000000 10.00000 X( W2, V1) 1.000000 0.000000 X( W2, V2) 0.000000 4.000000 X( W2, V3) 0.000000 1.000000 X( W2, V4) 32.00000 0.000000 X( W2, V5) 0.000000 1.000000 X( W2, V6) 0.000000 2.000000 X( W2, V7) 0.000000 2.000000 X( W2, V8) 0.000000 0.000000 X( W3, V1) 0.000000 4.000000 X( W3, V2) 11.00000 0.000000 X( W3, V3) 0.000000 0.000000 X( W3, V4) 0.000000 9.000000 X( W3, V5) 0.000000 3.000000 X( W3, V6) 0.000000 4.000000 X( W3, V7) 40.00000 0.000000 X( W3, V8) 0.000000 4.000000 X( W4, V1) 0.000000 4.000000 X( W4, V2) 0.000000 2.000000 X( W4, V3) 0.000000 4.000000 X( W4, V4) 0.000000 1.000000 X( W4, V5) 0.000000 3.000000 X( W4, V6) 5.000000 0.000000 X( W4, V7) 0.000000 2.000000 X( W4, V8) 38.00000 0.000000 X( W5, V1) 34.00000 0.000000 X( W5, V2) 7.000000 0.000000 X( W5, V3) 0.000000 7.000000 X( W5, V4) 0.000000 4.000000 X( W5, V5) 0.000000 2.000000 X( W5, V6) 0.000000 1.000000 X( W5, V7) 0.000000 2.000000 X( W5, V8) 0.000000 5.000000 X( W6, V1) 0.000000 3.000000 X( W6, V2) 0.000000 2.000000 X( W6, V3) 22.00000 0.000000 X( W6, V4) 0.000000 1.000000 X( W6, V5) 0.000000 3.000000 X( W6, V6) 27.00000 0.000000 X( W6, V7) 3.000000 0.000000Row Slack or Surplus Dual Price 1 664.0000 -1.000000 2 0.000000 3.000000 3 22.00000 0.000000 4 0.000000 3.000000 5 0.000000 1.000000 6 0.000000 2.000000 7 0.000000 2.000000 8 0.000000 -4.000000 9 0.000000 -5.000000 10 0.000000 -4.000000 11 0.000000 -3.000000 12 0.000000 -7.000000 13 0.000000 -3.000000 14 0.000000 -6.000000 15 0.000000 -2.000000由以上结果可以清楚的看到由各仓库到各客户处的货物调运数量,由此得出的符合条件的最佳运货方案,而使运费最低,最低为664。
lingo讲座.ppt

Erlang繁忙概率。 4.@pel(a,x) 当到达负荷为a,服务系统有x个服务器且不允许排队时的Erlang
繁忙概率。 5.@pfd(n,d,x) 自由度为n和d的F分布的累积分布函数。
如果x<0返回-1;否则,返回1
@floor(x)
返回x的整数部分。
@smax(x1,x2,…,xn) 返回x1,x2,…,xn中的最大值
@smin(x1,x2,…,xn) 返回x1,x2,…,xn中的最小值
概率函数 1.@pbn(p,n,x) 二项分布的累积分布函数。当n和(或)x不是整数时,用线性插
复杂变量:集合
Lingo中没有数组,代之以集合及其属性
集是一群相联系的对象,这些对象也称为集的成员。 一个集可能是一系列产品、卡车或雇员。每个集成员 可能有一个或多个与之有关联的特征,我们把这些特征 称为属性。属性值可以预先给定,也可以是未知的, 有待于LINGO求解。例如,产品集中的每个产品可以有 一个价格属性;卡车集中的每辆卡车可以有一个牵引力 属性;雇员集中的每位雇员可以有一个薪水属性,也可 以有一个生日属性等等。
何时会提升速度?
与数据段不同的是:模型中的变量在这里赋值之后,在模型中 几乎一定会被改变!
(2)Lingo中的运算符与内部函数
三类运算符:算术运算符, 逻辑运算符, 关系运算符
优先级 最高
最低
运算符 #NOT# -(负号) ^ */ + -(减法) #EQ# #NE# #GT# #GE# #LT# #LE# #AND# #OR# <(=) = >(=)
运用Lingo进行线性规划求解(实例)

LinDo
输入模型 求解
点击求解按钮 结果
即可
♂返回
!注释内容,可用中文
输
!目标函数:最大-max,最小-min,大小写不分
max 3 x1+5 x2+4 x3
入
!约束,以subject to开始
模
subject to
型
2 x1+3 x2<=1500
2 x2+4 x3<=800
3*x1+2*x2+5*x3<=2 000; end
注意与LinDo的区别
目标函数中加等号 变量与系数之间用“*” Model:-end可省略
♂返回
LinGo 模 式
Model: Sets: !定义集合
Endsets
Data:
!定义数据
Enddata 调用函数与计算
end
♂返回
model: !开始
数
@sum(set(set_index_list)|condition:expressi
on)
@min(max)(set(set_index_list)|condition:ex pression)
♂返回
Global optimal solution found at
iteration:
3
结
Objective value: 2675.000
果
Variable Value
Reduced Cost
C( 1) 3.000000
0.000000
C( 2) 5.000000
0.000000
C( 3) 4.000000
0.000000
lingo学习实例讲解大全

§2 LINGO 中的集
对实际问题建模的时候,总会遇到一群或多群相联系的对象,比如工厂、消费者群体、交通 工具和雇工等等。LINGO 允许把这些相联系的对象聚合成集(sets)。一旦把对象聚合成集, 就可以利用集来最大限度的发挥 LINGO 建模语言的优势。
伯数字(0,1,…,9)组成的总长度不超过 32 个字符的字符串,且不区分大小写。 注意:该命名规则同样适用于集成员名和属性名等的命名。 Member_list 是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和
隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。 ① 当显式罗列成员时,必须为每个成员输入一个不同的名字,中间用空格或逗号搁开,
warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand; links(warehouses,vendors): cost, volume; endsets ! 目标 函数; min=@sum(links: cost*volume); ! 需求 约束; @for(vendors(J):
这里的 member1 是集的第一个成员名,memberN 是集的最末一个成员名。LINGO 将自动产生 中间的所有成员名。LINGO 也接受一些特定的首成员名和末成员名,用于创建一些特殊的集。 列表如下:
隐式成员列表格式
示例
所产生集成员
1..n
1..5
用LINGO求解线性规划的例子

附1:用LINGO求解线性规划的例子一奶制品加工厂用牛奶生产A1、A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。
根据市场需求,生产的A1、A2能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
现在加工厂每天能得到50桶牛奶的供应,每天正式工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。
试为该厂制定一个生产计划,使每天获利最大,并进一步讨论以下3个附加问题:1)若用35元可以购买到1桶牛奶,应否作这项投资?若投资,每天最多购买多少桶牛奶?2)若可以聘用临时工人以增加劳动时间,付给临时工人的工资最多是每小时几元?3)由于市场需求变化,每公斤A1的获利增加到30元,应否改变生产计划?数学模型:设每天用x1桶牛奶生产A1 ,用x2桶牛奶生产A2目标函数:设每天获利为z元。
x1桶牛奶可生产3x1公斤A1,获利24*3x1,x2桶牛奶可生产4*x2公斤A2,获利16*4x2,故z=72x1+64x2约束条件:原料供应:生产A1、A2的原料(牛奶)总量不超过每天的供应50桶,即x1+x2≤50劳动时间:生产A1、A2的总加工时间不超过每天正式工人总的劳动时间480小时,即12x1+8x2≤480设备能力:A1的产量不得超过设备甲每天的加工能力100小时,即3x1≤100非负约束:x1、x2均不能为负值,即x1≥0,x2≥0综上所述可得max z=72x1+64x2s.t.x1+x2≤5012x1+8x2≤4803x1≤100x1≥0,x2≥0显然,目标函数和约束条件都是线性的,这是一个线性规划(LP),求出的最优解将给出使净利润最大的生产计划,要讨论的问题需要考虑参数的变化对最优解和影响,一般称为敏感性(或灵敏度)分析。
LINGO求解线性规划用LINGO求解线性规划时,首先在LINGO软件的模型窗口输入一个LP模型,模型以MAX或MIN 开始,按线性规划问题的自然形式输入(见下面例子所示)。
运用Lingo进行线性规划求解(实例)

LINGO
支持多种线性规划算法,包括单纯形法、网络算法等。
要点二
Gurobi
主要采用高级优化算法,如分支定界法、动态规划等。
LINGO与Gurobi的比较
LINGO
支持各种类型的约束条件,包括整数约束、非线性约束 等。
Gurobi
特别擅长处理大规模、非线性问题,但对线性问题的处 理能力稍弱。
LINGO
界面简洁,建模语言直观,易于学习和掌握。
Excel
需要结合多个函数和工具进行建模,对于复杂问题操作相对繁琐。
LINGO与Excel的比较
LINGO
针对优化问题进行了优化,求解速度 较快,精度较高。
Excel
求解速度较慢,对于大规模问题可能 无法得到满意的结果。
LINGO与Gurobi的比较
LINGO软件特点
高效求解
LINGO采用先进的求解算法,能够快速求解大规 模线性规划问题。
灵活建模
LINGO支持多种建模语言,用户可以根据需要选 择合适的语言进行建模。
图形界面
LINGO提供直观的图形界面,方便用户进行模型 设计和结果查看。
LINGO软件应用领域
生产计划
LINGO可用于制定生产计划,优化资源配置, 提高生产效率。
金融投资
LINGO可以用于金融投资组合优化,帮助投 资者实现风险和收益的平衡。
物流优化
LINGO可以帮助企业优化物流配送路线,降 低运输成本。
资源分配
LINGO可用于资源分配问题,如人员、设备、 资金的分配,以达到最优效果。
2023
PART 02
线性规划基本概念
REPORTING
线性规划定义
线性规划是数学优化技术的一种,它通过将问 题抽象为数学模型,利用数学方法来寻找最优 解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根4米、1根5米和1根6米钢管, 共10根;
模式3:每根原料钢管切割成2 根8米钢管,共8根。 原料钢管总根数为28根。
运 筹 学
背包问题
实
验
某人打算外出旅游并登山,路程比较远,途中要
坐火车和飞机,考虑要带许多必要的旅游和生活用
品,例如照相机、摄像机、食品、衣服、雨具、书
籍等等,共n件物品,重量分别为ai,而受航空行
RR安阳1123
2.000000 0.000000
R师21 0.000000
R范22 1.000000
RRR学院数学233312
0.000000 1.000000 1.000000
R与33 0.000000
R统41 0.000000
RR计学院4423
0.000000 2.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
运 筹
决策变量
xi
~按第i
种模式切割的原料钢管根数(i=1,2,…7)
学
实验目标1(总余量)Min Z1 3x1 x2 3x3 3x4 x5 x6 3x7
模 4米 6米 8米 余 式 根数 根数 根数 料
14
0
03
约束 满足需求
4x1 3x2 2x3 x4 x5 50
23
1
对大规模问题,用模型的约束条件界定合理模式
安
阳 师
决策变量
(15维)
范
学 院 数
xi ~按第i 种模式切割的原料钢管根数(i=1,2,3)
学 与 统 计 学
r1i, r2i, r3i, r4i ~ 第i 种切割模式下,每根原料钢管 生产4米、5米、6米和8米长的钢管的数量
院
运
筹 学
钢管下料问题2
实
数
学 与
模式3:切割成2根8米钢管,需8根。
统 计
原料钢管总根数上界:31
学 院
模式排列顺序可任定
x1
26
x2
x1
x3
x2
x3
31
运 筹
LINGO求解整数非线性规划模型
学
实
L验ocal optimal solution found at iteration: 12211
模式1:每根原料钢管切割成3
计学规定切割模式不能超过3种。如何下料最节省?
院
运 筹 学
钢管下料
切割模式
实
验按照客户需要在一根原料钢管上安排切割的一种组合。
4米1根 6米1根
8米1根
余料1米
安 阳
4米1根
6米1根
6米1根
余料3米
师
范
学
院
数 学
8米1根
8米1根
余料3米
与
统
计学合理切割模式的余料应小于客户需要钢管的最小尺寸
院
运 筹 学
最优值:25。 与目标1的结果“共切割
学 院
按模式5切割5根,
27根,余料27米” 相比
数 学
按模式7切割5根,
与 统
共25根,余料35米
虽余料增加8米,但减少了2根
计
学 院
当余料没有用处时,通常以总根数最少为目标
运
筹 学
钢管下料问题2
实 验
增加一种需求:5米10根;切割模式不超过3种。
现有4种需求:4米50根,5米10根,6米20根,8米 15根,用枚举法确定合理切割模式,过于复杂。
范
学 院
r31x1 r32 x2 r33 x3
20
16 4r13 5r23 6r33 8r43 19
数 学 与
r41x1 r42 x2 r43 x3 15
统
整数约束: xi ,r1i, r2i, r3i, r4i (i=1,2,3)为整数
计
学
整数非线性规划模型
院
运
筹增加约束,缩小可行域,便于求解
验 目标函数(总根数) Min x1 x2 x3
约束 条件 满足需求
模式合理:每根 余料不超过3米
安 r11x1 r12 x2 r13 x3 50
阳 师
r21x1 r22 x2 r23 x3 10
16 4r11 5r21 6r31 8r41 19
16 4r12 5r22 6r32 8r42 19
0 1 x2 2x4 x5 3x6 20
安3
2
0
1 3 x3 x5 2x7 15
阳 师
4
1范5ຫໍສະໝຸດ 12 10 1
3 1
整数约束: xi 为整数
学 院
6
0
数 学
7
0
与 需 50
统 计
求
3 0 20
01 23 15
最优解:x2=12, x5=15, 其余为0;
最优值:27
学 院
按模式2切割12根,按模式5切割15根,余料27米
学 实
验 需求:4米50根,5米10 根,6米20根,8米15根 每根原料钢管长19米
原料钢管总根数下界: (最佳切割方式)
4
50
5
10 6 19
20
8
15
26
安 阳
特殊生产计划(简单切割方式):对每根原料钢管
师 范
模式1:切割成4根4米钢管,需13根;
学 院
模式2:切割成1根5米和2根6米钢管,需10根;
运
筹学目标2(总根数)
实
Min
Z2 x1 x2 x3 x4 x5 x6 x7
验
约束条 4x1 3x2 2x3 x4 x5 50 最优解:x2=15,
件不变 x2 2x4 x5 3x6 20
x5=5, x7=5,
x3 x5 2x7 15
其余为0;
安 阳 师 范
xi 为整数 按模式2切割15根,
Objective value:
28.00000
Variable Value Reduced Cost
根4米和1根6米钢管,共10根;
X1 10.00000
0.000000
X2 10.00000 X3 8.000000
2.000000 1.000000
模式2:每根原料钢管切割成2
R11 3.000000
运
筹 学 实
LINGO模型实例与求解
验
下料问题
背包问题
安
阳
师
范 学
选址问题
院
数
学 与
指派问题
统
计
学
院
运 筹 学 实 验
客户需求
下料问题
原料钢管:每根19米
4米50根
6米20根
8米15根
安 阳
问题1.
如何下料最节省 ?
节省的标准是什么?
师
范
学 院
问题2.
客户增加需求:
5米10根
数
学
与统由于采用不同切割模式太多,会增加生产和管理成本,
钢管下料问题1
合理切割模式
实模式
验
4米钢管根数
6米钢管根数
8米钢管根数
1
4
0
0
余料(米) 3
2
3
1
0
1
3
2
0
1
3
4
1
2
0
3
5
1
1
1
1
安6
0
3
0
1
阳7
0
0
2
3
师
范 学
为满足客户需要,按照哪些种合理模式,每种模式
院 数
切割多少根原料钢管,最为节省?
学
与 统
两种
1. 原料钢管剩余总余量最小
计 学
标准
院
2. 所用原料钢管总根数最少