2019-2020年高考数学一轮复习 第四篇三角函数、解三角形第7讲 正弦定理、余弦定理应用举例教案 理
2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理与余弦定理定理正弦定理余弦定理内容asin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a sin B =b sin A ,b sin C =c sin B , a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边. (3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cosC2;cosA +B2=sin C2. (5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于( ) A.π6 B.π3 C.2π3D.5π6答案 C解析 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7, 所以由余弦定理得cos∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角, 所以∠BAC =2π3.2.在△ABC 中,若A =60°,a =43,b =42,则B =. 答案 45°解析 由正弦定理知a sin A =bsin B ,则sin B =b sin A a =42×3243=22.又a >b ,则A >B ,所以B 为锐角,故B =45°.3.在△ABC 中,a =2,b =3,C =60°,则c =,△ABC 的面积=. 答案7 332解析 易知c =4+9-2×2×3×12=7,△ABC 的面积等于12×2×3×32=332.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2021·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD ·sin∠ABC =a sin C . (1)证明:BD =b ;[切入点:角转化为边](2)若AD =2DC ,求cos∠ABC .[关键点:∠BDA 和∠BDC 互补]高考改编在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +a sin A =b sin B +c sin C . (1)求A ;(2)设D 是线段BC 的中点,若c =2,AD =13,求a . 解 (1)根据正弦定理,由b sin C +a sin A =b sin B +c sin C , 可得bc +a 2=b 2+c 2, 即bc =b 2+c 2-a 2,由余弦定理可得,cos A =b 2+c 2-a 22bc =12,因为A 为三角形内角,所以A =π3.(2)因为D 是线段BC 的中点,c =2,AD =13, 所以∠ADB +∠ADC =π, 则cos∠ADB +cos∠ADC =0,所以AD 2+BD 2-AB 22AD ·BD +AD 2+DC 2-AC 22AD ·DC=0,即13+a 24-22213·a 2+13+a 24-b2213·a2=0,整理得a 2=2b 2-44,又a 2=b 2+c 2-2bc cos A =b 2+4-2b , 所以b 2+4-2b =2b 2-44, 解得b =6或b =-8(舍), 因此a 2=2b 2-44=28, 所以a =27.思维升华 解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.跟踪训练1 (2021·北京)已知在△ABC 中,c =2b cos B ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =2b ;②周长为4+23;③面积为S △ABC =334.解 (1)∵c =2b cos B ,则由正弦定理可得sin C =2sin B cos B , ∴sin2B =sin2π3=32,∵C =2π3, ∴B ∈⎝ ⎛⎭⎪⎫0,π3,2B ∈⎝⎛⎭⎪⎫0,2π3, ∴2B =π3,解得B =π6.(2)若选择①:由正弦定理结合(1)可得 c b =sin C sin B =3212=3, 与c =2b 矛盾,故这样的△ABC 不存在; 若选择②:由(1)可得A =π6,设△ABC 的外接圆半径为R , 则由正弦定理可得a =b =2R sinπ6=R , c =2R sin2π3=3R , 则周长为a +b +c =2R +3R =4+23, 解得R =2,则a =2,c =23, 由余弦定理可得BC 边上的中线的长度为232+12-2×23×1×cosπ6=7; 若选择③:由(1)可得A =π6,即a =b ,则S △ABC =12ab sin C =12a 2×32=334,解得a =3,则由余弦定理可得BC 边上的中线的长度为b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos 2π3=3+34+3×32=212. 题型二 正弦定理、余弦定理的简单应用 命题点1 三角形形状判断 例2 在△ABC 中,c -a 2c =sin 2 B 2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 A解析 由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B2, 即cos B =ac.方法一 由余弦定理得a 2+c 2-b 22ac =ac,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,无法判断两直角边是否相等. 方法二 由正弦定理得cos B =sin Asin C ,又sin A =sin(B +C )=sin B cos C +cos B sin C , 所以cos B sin C =sin B cos C +cos B sin C , 即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为三角形的内角,所以C =π2,所以△ABC 为直角三角形,无法判断两直角边是否相等.延伸探究将“c -a 2c =sin 2 B 2”改为“sin A sin B =a c,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解 因为sin A sin B =ac ,所以a b =a c,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论. 命题点2 三角形的面积例3 (2022·沧州模拟)在①sin A ,sin C ,sin B 成等差数列;②a ∶b ∶c =4∶3∶2;③b cos A =1这三个条件中任选一个,补充在下面问题中.若问题中的三角形存在,求该三角形面积的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且a (sin A -sin B )+b sinB =c sinC ,c =1,?注:如果选择多个条件分别解答,按第一个解答计分. 解 因为a (sin A -sin B )+b sin B =c sin C , 由正弦定理得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), 所以C =π3.选择①:因为sin A ,sin C ,sin B 成等差数列, 所以sin A +sin B =2sin C ,即a +b =2c =2, 由a 2+b 2-c 2=a 2+b 2-1=ab , 得(a +b )2-3ab =1,所以ab =1, 故存在满足题意的△ABC ,S △ABC =12ab sin C =12×1×sin π3=34. 选择②:因为a ∶b ∶c =4∶3∶2, 所以A >B >C =π3,这与A +B +C =π矛盾,所以△ABC 不存在. 选择③: 因为b cos A =1,所以b ·b 2+1-a 22b=1,得b 2=1+a 2=c 2+a 2, 所以B =π2,此时△ABC 存在.又C =π3,所以A =π6,所以a =1×tanπ6=33, 所以S △ABC =12ac =36.思维升华 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 命题点3 与平面几何有关的问题例4 如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin∠BCE 的值; (2)求CD 的长.解 (1)在△BEC 中,由正弦定理, 知BE sin∠BCE =CEsin B.∵B =2π3,BE =1,CE =7,∴sin∠BCE =BE ·sin B CE =327=2114. (2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714. ∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos∠DEA =55714=27.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos∠CED=7+28-2×7×27×⎝ ⎛⎭⎪⎫-12=49. ∴CD =7. 教师备选1.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .钝角三角形答案 C解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), ∴C =π3,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b =c 2+b 2-a22bc ,∴b 2=a 2,即b =a ,又C =π3,故三角形为等边三角形.2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -c cos(B +C )=-b3cos A +B .(1)求tan C ;(2)若c =3,sin A sin B =1627,求△ABC 的面积.解 (1)∵a cos C -c cos(B +C ) =-b3cos A +B ,∴a cos C +c cos A =b3cos C.由正弦定理得sin A cos C +sin C cos A =sin B3cos C ,∴sin(A +C )=sin B3cos C ,即sin B =sin B3cos C ,又∵sin B ≠0, ∴cos C =13,∴sin C =1-⎝ ⎛⎭⎪⎫132=223, tan C =sin Ccos C =2 2.(2)若c =3,由正弦定理asin A =bsin B =csin C,得asin A =b sin B =3223=924, 则a =924sin A ,b =924sin B ,则ab =924sin A ·924sin B =16216sin A sin B=16216×1627=6, ∴S △ABC =12ab sin C =12×6×223=2 2.思维升华 平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.跟踪训练 2 (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B = (2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 D解析 因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B=2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B=2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形.(2)(2022·郑州模拟)如图,在△ABC 中,AB =9,cos B =23,点D 在BC 边上,AD =7,∠ADB 为锐角.①求BD ;②若∠BAD =∠DAC ,求sin C 的值及CD 的长.解 ①在△ABD 中,由余弦定理得AB 2+BD 2-2AB ·BD ·cos B =AD 2,整理得BD 2-12BD +32=0,所以BD =8或BD =4.当BD =4时,cos∠ADB =16+49-812×4×7=-27,则∠ADB >π2,不符合题意,舍去; 当BD =8时,cos∠ADB =64+49-812×8×7=27,则∠ADB <π2,符合题意,所以BD =8.②在△ABD 中,cos∠BAD =AB 2+AD 2-BD 22AB ·AD =92+72-822×9×7=1121,所以sin∠BAD =8521,又sin∠ADB =357,所以sin C =sin(∠ADB -∠CAD )=sin(∠ADB -∠BAD )=sin∠ADB cos∠BAD -cos∠ADB sin∠BAD=357×1121-27×8521=175147,在△ACD 中,由正弦定理得CD sin∠CAD =ADsin C ,即CD =ADsin C ·sin∠CAD =7175147×8521=39217.课时精练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于() A.π2 B.π3C.π4D.π6答案 C 解析 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24, 所以sin C =a 2+b 2-c 22ab=cos C , 所以在△ABC 中,C =π4. 2.(2022·北京西城区模拟)在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6D .5答案 B解析 因为sin A =6sin B ,由正弦定理可得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×1×6×12, 解得c =31.3.(2022·济南质检)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,a =4,cos2A = -725,则△ABC 外接圆半径为( ) A .5B .3C.52D.32答案 C解析 因为cos2A =-725, 所以1-2sin 2A =-725, 解得sin A =±45, 因为A ∈(0,π),所以sin A =45,又a =4,所以2R =a sin A =445=5, 所以R =52. 4.(2022·河南九师联盟联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2b ,sin 2A -3sin 2B =12sin A sin C ,则角C 等于( ) A.π6B.π3C.π2D.2π3答案 B解析 ∵sin 2A -3sin 2B =12sin A sin C , 由正弦定理可得a 2-3b 2=12ac , ∵c =2b ,∴a 2-3b 2=12a ·2b =ab , 由余弦定理可得cos C =a 2+b 2-c 22ab =a 2-3b 22ab =12, ∵0<C <π,∴C =π3. 5.(多选)(2022·山东多校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC 的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( )A .cos∠BAC =-66 B .S △ABC =3 5 C .BE =2D .AD = 5答案 AD解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B +cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sin B =12×2×6×53=25;C 项,由角平分线性质可知AEEC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝ ⎛⎭⎪⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B=4+9-2×2×3×23=5,∴AD = 5.6.(多选)(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B =60°,b 2=ac ,则△ABC 必是等边三角形答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝ ⎛⎭⎪⎫0,π2,∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , ∴不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,由a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,∴是假命题,错误;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,可得A =C =B =60°,故正确.7.(2022·潍坊质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且b =3,a -c =2,A =2π3.则△ABC 的面积为. 答案 1534解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =3,a -c =2,A =2π3, ∴(c +2)2=32+c 2-2×3c ×⎝ ⎛⎭⎪⎫-12, 解得c =5,则△ABC 的面积为S =12bc sin A =12×3×5×32=1534. 8.(2021·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案 2 2解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).9.(2022·南平模拟)在①2c cos B =2a -b ,②△ABC 的面积为34(a 2+b 2-c 2),③cos 2A -cos 2C =sin 2B -sin A sin B ,这三个条件中任选一个,补充在下面的问题中,并加以解答.(如果选择多个条件作答,则按所选的第一个条件给分)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且.(1)求角C 的大小;(2)若c =2且4sin A sin B =3,求△ABC 的面积.解 (1)若选条件①2c cos B =2a -b ,则2c ·a 2+c 2-b 22ac=2a -b , 即a 2+b 2-c 2=ab ,所以cos C =12, 又因为C ∈(0,π),所以C =π3. 若选条件②△ABC 的面积为34(a 2+b 2-c 2), 则34(a 2+b 2-c 2)=12ab sin C , 即sin C =3cos C ,所以tan C =3,又因为C ∈(0,π),所以C =π3. 若选条件③cos 2A -cos 2C =sin 2B -sin A sin B ,则(1-sin 2A )-(1-sin 2C )=sin 2B -sin A sin B ,即sin 2A +sin 2B -sin 2C =sin A sin B ,即a 2+b 2-c 2=ab ,所以cos C =12,又因为C ∈(0,π),所以C =π3. (2)因为c =2, 所以a sin A =b sin B =c sin C =2sin π3=43, 所以sin A =34a ,sin B =34b , 又因为4sin A sin B =3,所以ab =4,△ABC 的面积为12ab sin C = 3. 10.(2022·湘豫联盟联考)如图,在△ABC 中,∠B =60°,AB =8,AD =7,点D 在BC 上,且cos∠ADC =17.(1)求BD ;(2)若cos∠CAD =32,求△ABC 的面积. 解 (1)∵cos∠ADB =cos(π-∠ADC )=-cos∠ADC =-17. 在△ABD 中,由余弦定理得82=BD 2+72-2·BD ·7·cos∠ADB ,解得BD =3或BD =-5(舍).(2)由已知sin∠ADC =437,sin∠CAD =12, ∴sin C =sin(∠ADC +∠CAD )=437×32+17×12=1314. 由正弦定理得CD =AD sin∠CAD sin C =7×121314=4913, ∴BC =3+4913=8813,∴S △ABC =12×8×8813×32=176313.11.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =(a+b )2-c 2,则sin ⎝ ⎛⎭⎪⎫π4+C 等于 ( ) A .1B .-22C.22D.32 答案 C解析 因为S =12ab sin C , cos C =a 2+b 2-c 22ab, 所以2S =ab sin C ,a 2+b 2-c 2=2ab cos C .又4S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以2ab sin C =2ab cos C +2ab .因为ab ≠0,所以sin C =cos C +1.因为sin 2C +cos 2C =1,所以(cos C +1)2+cos 2C =1,解得cos C =-1(舍去)或cos C =0,所以sin C =1,则sin ⎝ ⎛⎭⎪⎫π4+C =22(sin C +cos C )=22. 12.(2022·焦作模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,△ABC 的周长为15,且(sin A +sin B )2+cos 2C =1+sin A sin B ,则cos B 等于( )A.1314B.1114C.12D .-12答案 B解析 因为(sin A +sin B )2+cos 2C=1+sin A sin B ,所以sin 2A +sin 2B +2sin A ·sin B +1-sin 2C=1+sin A ·sin B ,所以由正弦定理得a 2+b 2-c 2=-ab ,又a ,b ,c 依次成等差数列,△ABC 的周长为15,即a +c =2b ,a +b +c =15, 由⎩⎪⎨⎪⎧ a 2+b 2-c 2=-ab ,a +c =2b ,a +b +c =15,解得⎩⎪⎨⎪⎧ a =3,b =5,c =7.cos B =a 2+c 2-b 22ac =32+72-522×3×7=1114. 13.(2022·开封模拟)在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为.答案 1或5解析 因为在△ABC 中,∠B =3π4,AB =32, AC =35,由正弦定理可得AC sin B =AB sin∠ACB, 所以sin∠ACB =AB ·sin B AC =32×2235=55, 又BC ⊥CD ,所以∠ACB 与∠ACD 互余,因此cos∠ACD =sin∠ACB =55, 在△ACD 中,AD =210,AC =35,由余弦定理可得cos∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD, 所以CD 2-6CD +5=0,解得CD =1或CD =5.14.(2022·大连模拟)托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为.答案 9 3 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积 S =12BC ·AC sin30°+12CD ·AC sin30°=14(BC +CD )·AC =34AC 2=9 3.15.(多选)中国南宋时期杰出数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S 为三角形的面积,a ,b ,c 为三角形的三边).现有△ABC 满足sin A ∶si n B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =63,则下列结论正确的是( )A .△ABC 的周长为10+27B .△ABC 的三个内角满足A +B =2CC .△ABC 的外接圆半径为4213D .△ABC 的中线CD 的长为3 2答案 AB解析 A 项,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为sin A ∶sin B ∶sin C =2∶3∶7,所以由正弦定理可得a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t (t >0),因为S △ABC =63,所以63=14⎣⎢⎡⎦⎥⎤7t 2×4t 2-⎝ ⎛⎭⎪⎫7t 2+4t 2-9t 222,解得t =2,则a =4,b =6,c =27,故△ABC 的周长为10+27,A 正确;B 项,因为cos C =a 2+b 2-c 22ab =16+36-282×4×6=12, 所以C =π3,A +B =π-π3=2π3=2C , 故B 正确;C 项,因为C =π3,所以sin C =32, 由正弦定理得2R =c sin C =2732=4213, R =2213, C 错误;D 项,由余弦定理得cos B =a 2+c 2-b 22ac =16+28-362×4×27=714, 在△BCD 中,BC =4,BD =7,由余弦定理得cos B =16+7-CD 22×4×7=714, 解得CD =19,D 错误.16.(2021·新高考全国Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 解 (1)因为2sin C =3sin A ,则2c =2(a +2)=3a ,则a =4,故b =5,c =6,cos C =a 2+b 2-c 22ab =18,所以C 为锐角, 则sin C =1-cos 2C =378,因此, S △ABC =12ab sin C =12×4×5×378=1574. (2)显然c >b >a ,若△ABC 为钝角三角形,则C 为钝角,由余弦定理可得cos C =a 2+b 2-c 22ab =a 2+a +12-a +222a a +1=a 2-2a -32a a +1<0,则0<a <3,由三角形三边关系可得a +a +1>a +2, 可得a >1,因为a ∈N *,故a =2.。
(北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第七节正弦定理和余弦定理课件理

6
3.在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C= ,则
3
△ABC的面积是 ( C ) A.3
9 3 B. 2 3 3 C. 2
D.3 3
答案 C c2=(a-b)2+6即c2=a2+b2-2ab+6①.由C= 及余弦定理得c2=a2+b2
3
.
6
答案 解析
6
∴B= .
6.在△ABC中,角A,B,C的对边分别为a,b,c,若c=4,sin C=2sin A,sin B=
15 ,则a= 4
15 2 ,S△ABC=
.
15 答案 2;
解析 ∵sin C=2sin A,∴c=2a=4,∴a=2,∴S△ABC= ×2×4× = 15 .
3 6 6
故∠DBC=∠C,DB=DC. 设DC=x,则DB=x,DA=3x.
在△ADB中,由余弦定理得
AB2=DA2+DB2-2DA· DB· cos∠ADB,
即7=(3x)2+x2-2· 3x· x· =7x2,
解得x=1(舍负),即DC=1. (2)在△ADB中,由余弦定理得
1 AB 2 BD 2 AD 2 7 1 9 cos∠ABD= = =- , 2 AB BD 2 7 1 2 7 3 3 又∠ABD∈(0,π),故sin∠ABD= , 2 7 故tan∠ABD=-3 3 .
(2)解题中注意三角形内角和定理的应用及角范围的限制.
1-1 (2018北京海淀高三期末,15)如图,在△ABC中,点D在AC边上,且
AD=3DC,AB= 7 ,∠ADB= ,∠C= .
(北京专用)2019版高考数学一轮复习第四章三角函数、解三角形第七节正弦定理和余弦定理课件文

答案 或2
33
解析 ∵在△ABC中,cos A= 13 ,
14
∴sin A= 1= cos, 2 A 3 3
14
∵7a=3b,
∴sin B= bsi=n A ×7 3 =3 ,3
a 3 14 2
∵B∈(0,π),
∴B= 或2 .
33
故答案为 或2 .
33
.
9
5.(2018北京海淀高三期末)在△ABC中,a=1,b= 7,且△ABC的面积为
在△ABD中,AD= ,7AB=2x,∠B= ,
3
∴由余弦定理可得AD2=AB2+BD2-2AB·BD·cos B, 即7=4x2+9x2-2x·3x,解得x=1(舍负), ∴CD=1.
规律总结 (1)在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是 两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中 含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的 正弦或边的一次式,要考虑用正弦定理;以上特征都不明显时,则要考虑 两个定理都有可能用到. (2)解题时注意三角形内角和定理的应用及角的范围限制.
sin D
(2)求CD的长.
解析 (1)∵△ABC是等边三角形,∴AC=BC, 又∵BC=2CD,∴AC=2CD,
∴在△ACD中,由正弦定理可得 =CD , AC
sin CAD sin D
∴ sin=CA=D C. D 1
sin D AC 2
(2)设CD=x(x>0),则BC=2x, ∴BD=3x.
4
C3 .
1D.
4
6
答案 B 在△ABC中,∵sin(A+B)= 1 ,∴sin C=1 .
2020高考数学一轮总复习课件(北师大版):第四章 三角函数、三角恒等变形、解三角形-7

走向高考 ·高考一轮总复习 ·北师大版 ·数学
∴AB=BEtan30°=130(3- 3)(m). 故所求的塔高为130(3- 3)m.
第四章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[方法总结] (1)处理有关高度问题时,要理解仰角、俯角 (视线在水平线上方、下方的角分别称为仰角、俯角)是一个关 键.
第四章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[解析] 在△ABC 中,AB2=AC2+BC2-2AC·BCcosC =4002+6002-2×400×600×cos60°=280 000, ∴AB=200 7,∴DE=200 7-120(m).
第四章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
2
第四章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
4.(教材改编题)有一长为 1 的斜坡,它的倾斜角为 20°,
现高不变,将倾斜角改为 10°,则斜坡长为( )
A.1
B.2sin10°
C.2cos10° D.cos20°
[答案] C
第四章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
走向高考 ·高考一轮总复习 ·北师大版 ·数学
2.方位角 指从____方向顺时针转到目标方向线的水平角,如 B 点 的方位角为 α(如图②). 3.方向角:相对于某一正方向的水平角(如图③)
第四章 第七节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
①北偏东 α°:指北方向顺时针旋转 α°到达目标方向. ②东北方向:指北偏东 45°或东偏北 45°. ③其他方向角类似.
6.海上有 A,B,C 三个小岛,测得 A,B 两岛相距 10 海里,∠BAC=60°,∠ABC=75°,则 B,C 间的距离是________ 海里.
高考数学一轮复习 第四篇三角函数、解三角形第7讲 正弦定理、余弦定理应用举例教案 理

高考数学一轮复习第四篇三角函数、解三角形第7讲正弦定理、余弦定理应用举例教案理【2013年高考会这样考】考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【复习指导】1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.2.加强解三角形及解三角形的实际应用,培养数学建模能力.基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ).A.α>β B.α=βC.α+β=90° D.α+β=180°解析根据仰角与俯角的定义易知α=β.答案 B3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10° D.北偏西10°解析如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75°.解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.[审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a . 在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620km.考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系. 解如图,设CD =x m , 则AE =x -20 m ,tan 60°=CD BD, ∴BD =CDtan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理. 【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得ABsin∠ADB=ADsinB,∴AB=AD·sin∠ADBsin B=10sin 60°sin 45°=10×3222=5 6.规范解答9——如何运用解三角形知识解决实际问【问题研究】1解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答.,2三角形应用题常见的类型:,①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;,②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;,③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.,【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.[解答示范] 如图,连接A1B2由已知A2B2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分) 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【试一试】 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,求cos θ.[尝试解答] 如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,所以BC =207.由正弦定理,得sin ∠ACB =AB BC ·sin∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30° =277×32-217×12=2114.。
2020高考数学一轮复习第四章三角函数与解三角形4-7正弦定理和余弦定理学案理

【2019最新】精选高考数学一轮复习第四章三角函数与解三角形4-7正弦定理和余弦定理学案理考纲展示► 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量、几何计算有关的实际问题.考点1 利用正、余弦定理解三角形正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则续表B 2Rsin Csin A∶sin B∶sin C c2+a2-b22ac(1)[教材习题改编]在△ABC中,已知a=5,b=7,c=8,则∠A+∠C=( )A.90° B.120°C.135° D.150°答案:B(2)[教材习题改编]在△ABC中,已知∠A=60°,∠B=75°,c=20,则a=________.答案:10 6解三角形的一般类型:已知两边及一角;已知两角及一边;已知三边.(1)在△ABC中,已知a=5,b=2,C=30°,则c=________.答案:7解析:由余弦定理,得c2=a2+b2-2abcos C=52+(2)2-2×5×2cos 30°=7,所以c=.(2)在△ABC中,内角A,B,C的对边分别为a,b,c,若B=,sin A=,b=,则a=________.答案:65解析:由正弦定理=,得a==.(3)在△ABC中,已知a∶b∶c=2∶4∶3,则cos C=________.答案:1116解析:设a=2k,b=4k,c=3k(k>0),则cos C==.[典题1] [2017·山师大附中一模]设△ABC的内角A,B,C的对边分别为a,b,c,且bsin A=acos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.[解] (1)∵bsin A=acos B,由正弦定理得sin Bsin A=sin Acos B.在△ABC中,sin A≠0,即得tan B=,∴B=.(2)∵sin C=2sin A,由正弦定理得c=2a,由余弦定理b2=a2+c2-2accos B,即9=a2+4a2-2a·2acos ,解得a=,∴c=2a=2.[点石成金] 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cos B=.(1)求a,c的值;(2)求sin(A-B)的值.解:(1)由余弦定理,得cos B===,即a2+c2-4=ac.∴(a+c)2-2ac-4=ac,∴ac=9.由得a=c=3.(2)在△ABC中,cos B=,∴sin B===.由正弦定理,得=,∴sin A===.又A=C,∴0<A<,∴cos A==,∴sin(A-B)=sin Acos B-cos Asin B=×-×=.考点2 利用正弦、余弦定理判定三角形的形状三角形中的角的关系判断误区:角的大小比较的误区;角的个数的误区.(1)在△ABC中,若sin A>sin B,则A与B的大小关系是________.答案:A>B解析:由正弦定理,得sin A=,sin B=.若sin A>sin B,则>,即a>b,故A>B.(2)在△ABC中,若A=60°,a=4,b=4,则B等于________.答案:45°解析:由正弦定理,有=,则sin B===.又a>b,所以A>B,故B=45°.注意挖掘题中隐含条件,以便确定满足条件的角的情况.判断三角形的形状.利用正、余弦定理判断三角形的形状,一般都可以通过两种途径实现:(1)把角的条件转化为边,通过边的关系判断;(2)把边的条件转化为角,通过计算角的大小进行判断.[典题2] (1)在△ABC中,内角A,B,C的对边分别为a,b,c,且2c2=2a2+2b2+ab,则△ABC是( )A.钝角三角形B.直角三角形D.等边三角形C.锐角三角形[答案] A[解析]由2c2=2a2+2b2+ab,得a2+b2-c2=-ab,所以cos C===-<0,所以90°<C<180°,即△ABC为钝角三角形.(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asinA,则△ABC的形状为( )B.直角三角形A.锐角三角形D.不确定C.钝角三角形[答案] B[解析] 依据题设条件的特点,由正弦定理,得sin Bcos C+cos Bsin C=sin2A,有sin(B+C)=sin2A,∵A∈(0,π),∴sin A≠0.从而sin(B+C)=sin A=sin2A,解得sin A=1,∴A=,故选B. [题点发散1] 若将本例条件改为“若2sin Acos B=sin C”,那么△ABC一定是( )B.等腰三角形A.直角三角形D.等边三角形C.等腰直角三角形答案:B解析:解法一:由已知得2sin Acos B=sin C=sin(A+B)=sin Acos B+cosAsin B,即sin(A-B)=0,因为-π<A-B<π,所以A=B.解法二:由正弦定理,得2acos B=c,再由余弦定理得2a·=c⇒a2=b2⇒a=b. [题点发散2] 若将本例条件改为“若a2+b2-c2=ab,且2cos Asin B=sinC”,确定△ABC的形状.解:解法一:利用边的关系来判断:由正弦定理,得=,由2cos Asin B=sin C,有cos A==.又由余弦定理,得cos A=,∴=,即c2=b2+c2-a2,∴a2=b2,∴a=b.又∵a2+b2-c2=ab.∴2b2-c2=b2,∴b2=c2,∴b=c,∴a=b=c.∴△ABC为等边三角形.解法二:利用角的关系来判断:∵A+B+C=180°,∴sin C=sin(A+B),又∵2cos Asin B=sin C,∴2cos Asin B=sin Acos B+cos Asin B,∴sin(A-B)=0.又∵A与B均为△ABC的内角,所以A=B,又由a2+b2-c2=ab,由余弦定理,得cos C===,又0°<C<180°,所以C=60°,∴△ABC为等边三角形.[题点发散3] 若将本例条件改为“若△ABC的三个内角满足sin A∶sin B∶sinC=5∶11∶13”,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形答案:C解析:在△ABC中,sin A∶sin B∶sin C=5∶11∶13,∴a∶b∶c=5∶11∶13,故设a=5k,b=11k,c=13k(k>0),由余弦定理可得cos C===-<0,又∵C∈(0,π),∴C∈,∴△ABC为钝角三角形.[题点发散4] 若将本例条件改为“(a2+b2)sin(A-B)=(a2-b2)sin(A+B)”,试判断三角形的形状.解:∵(a2+b2)sin(A-B)=(a2-b2)sin(A+B),∴b2[sin(A+B)+sin(A-B)]=a2[sin(A+B)-sin(A-B)],∴2sin Acos B·b2=2cos Asin B·a2,即a2cos Asin B=b2sin Acos B.解法一:由正弦定理知a=2Rsin A,b=2Rsin B,∴sin2Acos Asin B=sin2Bsin Acos B,又sin A·sin B≠0,∴sin Acos A=sin Bcos B,∴sin 2A=sin 2B.在△ABC中,0<2A<2π,0<2B<2π,∴2A=2B或2A=π-2B,∴A=B或A+B=.∴△ABC为等腰三角形或直角三角形.解法二:由正弦定理、余弦定理,得a2b=b2a,∴a2(b2+c2-a2)=b2(a2+c2-b2),∴(a2-b2)(a2+b2-c2)=0,∴a2-b2=0或a2+b2-c2=0.即a=b或a2+b2=c2.∴△ABC为等腰三角形或直角三角形.[题点发散5] 若将本例条件改为:“2asin A=(2b+c)·sin B+(2c+b)sinC,且sin B+sin C=1”,试判断△ABC的形状.解:由已知,根据正弦定理,得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc,cos A=-,sin A=,则sin2A=sin2B+sin2C+sin Bsin C.解得sin B=sin C=.故B=C=,所以△ABC是等腰钝角三角形.[点石成金] 1.判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是不是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.2.判断三角形形状主要有以下两种途径:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出三条边之间的关系进行判断.在△ABC中,角A,B,C所对的边分别为a,b,c,若<cos A,则△ABC为( )A.钝角三角形B.直角三角形D.等边三角形C.锐角三角形答案:A解析:依题意得<cos A,sin C<sin Bcos A,所以sin(A+B)<sin Bcos A,即sin Bcos A+cos Bsin A-sin Bcos A<0,所以cos Bsin A<0.又sin A>0,于是有cos B<0,B为钝角,△ABC是钝角三角形.考点3 与三角形面积有关的问题三角形中常用的面积公式(1)S=ah(h表示边a上的高);(2)S=bcsin A=acsin B=absin C;(3)S=r(a+b+c)(r为三角形的内切圆半径).[教材习题改编]在△ABC中,内角A,B,C的对边分别为a,b,c,且a=2,b=3,S△ABC=,则角C的值为________.答案:60°或120°解析:由S△ABC=absin C=×2×3sin C=,得sin C=,因为C为三角形ABC的内角,所以C=60°或C=120°.三角形面积公式.利用正余弦定理三角形的面积还可以写成:S=2R2sin Asin Bsin C,S=.[典题3] [2017·河北衡水模拟]如图,在△ABC中,sin ∠ABC=,AB=2,点D在线段AC上,且AD=2DC,BD=.(1)求BC的长;(2)求△DBC的面积.[解] (1)因为sin ∠ABC=,所以cos∠ABC=1-2×=.在△ABC中,设BC=a,AC=3b,则由余弦定理可得,9b2=a2+4-a,①在△ABD和△DBC中,由余弦定理可得,cos∠ADB=,cos∠BDC=.因为cos∠ADB=-cos∠BDC,所以有=-,所以3b2-a2=-6.②由①②可得,a =3,b =1,即BC =3.(2)由(1)得△ABC 的面积为S =×2×3×=2,所以△DBC 的面积为. [点石成金] 三角形面积公式的应用原则(1)对于面积公式S =absin C =acsin B =bcsin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用正弦定理或余弦定理进行边和角的转化. [2017·湖北武汉质量预测]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足a2-b2-c2+bc =0,2bsin A =a ,BC 边上中线AM 的长为.(1)求角A 和角B 的大小;(2)求△ABC 的面积.解:(1)由a2-b2-c2+bc =0,得b2+c2-a2=bc , ∴cos A ==,∴A =,由2bsin A =a ,得b =a ,∴B=A =.(2)设AC =BC =x ,由余弦定理,得AM2=x2+-2x··⎝ ⎛⎭⎪⎫-12 =()2,解得x =2,故S△ABC=×2×2×=2.真题演练集训1.[2014·新课标全国卷Ⅱ]钝角三角形ABC 的面积是,AB =1 ,BC =,则AC =( )A .5B.D.1C.2答案:B解析:由题意可得AB·BC·sin B=,又AB=1 ,BC=,所以sin B=,所以B=45°或B=135°.当B=45°时,由余弦定理可得AC==1,此时AC=AB=1,BC=,易得A=90°,与“钝角三角形”条件矛盾,舍去.所以B=135°.由余弦定理可得AC==. 2.[2014·新课标全国卷Ⅰ]已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为________.答案:3解析:∵===2R,a=2,又(2+b)(sin A-sin B)=(c-b)sin C可化为(a+b)(a-b)=(c-b)c,∴a2-b2=c2-bc,∴b2+c2-a2=bc.∴===cos A,∴A=60°.∵△ABC中,4=a2=b2+c2-2bc·cos 60°=b2+c2-bc≥2bc-bc=bc(当且仅当b=c时等号成立),∴S△ABC=·bc·sin A≤×4×=. 3.[2016·新课标全国卷Ⅱ]△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cos C=,a=1,则b=________.答案:2113解析:解法一:因为cos A=,cos C=,所以sin A=,sin C=,从而sin B=sin(A+C)=sin Acos C+cos Asin C=×+×=.由正弦定理=,得b==.解法二:因为cos A=,cos C=,所以sin A=,sin C=,从而cos B=-cos(A+C)=-cos Acos C+sin Asin C=-×+×=.由正弦定理=,得c==.由余弦定理b2=a2+c2-2accos B,得b=.解法三:因为cos A=,cos C=,所以sin A=,sin C=,由正弦定理=,得c==.从而b=acos C+ccos A=.解法四:如图,作BD⊥AC于点D,由cos C=,a=BC=1,知CD=,BD=.又cos A=,所以tan A=,从而AD=.故b=AD+DC=. 4.[2016·新课标全国卷Ⅰ]△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.解:(1)由已知及正弦定理,得2cos C(sin Acos B+sin Bcos A)=sin C,2cos Csin(A+B)=sin C,故2sin Ccos C=sin C,C∈(0,π).可得cos C=,所以C=.(2)由已知,absin C=.又C=,所以ab=6.由已知及余弦定理,得a2+b2-2abcos C =7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+.课外拓展阅读转化与化归思想在解三角形中的应用[典例] [2016·新课标全国卷Ⅰ]△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(acos B+bcos A)=c.(1)求C;(2)若c=,△ABC的面积为,求△ABC的周长.[审题视角] (1)利用正弦定理进行边角互化求解;(2)利用三角形的面积公式得出ab,再结合余弦定理联立方程求出a+b,进而求得△ABC的面积.[解] (1)由已知及正弦定理得,+=sin C,①2cos Csin(A+B)=sin C.故2sin Ccos C=sin C.可得cos C=,所以C=.(2)由已知,得absin C=.又C=,所以ab=6.由已知及余弦定理得,a2+b2-2abcos C=7.故②所以△AB C的周长为5+.满分心得1.(1)题中①处不能利用正弦定理将边化为角,使已知条件中的式子转化为同类.(2)题中②处不能结合余弦定理将(a+b)视为整体进行求解而走入误区.2.转化与化归思想在解三角形中的应用主要体现在边角之间利用正、余弦定理统一的转化化简上,使关系式中的量达到统一性.。
高考数学一轮复习第三章三角函数与解三角形第7讲正弦定理和余弦定理课件理
方法二,同方法一,可得 2a2cos Asin B=2b2sin Acos B. a2b·c2+2bb2c-a2=b2a·a2+2ca2c-b2, ∴a2(b2+c2-a2)=b2(a2+c2-b2), 即(a2-b2)(a2+b2-c2)=0. ∴a=b 或 a2+b2=c2. ∴△ABC 为等腰三角形或直角三角形.故选 D. 答案:D
45°,则 AC=___2____.
3.(2018 年新课标Ⅲ)△ABC 的内角 A,B,C 的对边分别为
a,b,c.若△ABC 的面积为a2+b42-c2,则 C=( C )
π
π
π
π
A.2
B.3
C.4
D.6
4.(2016 年天津)在△ABC 中,若 AB= 13,BC=3,∠C=
120°,则 AC=( A )
解析:(1)方法一, 已知等式可化为 a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B) -sin(A-B)], ∴2a2cos Asin B=2b2cos Bsin A. 由正弦定理知上式可化为 sin2Acos Asin B=sin2Bcos Bsin A, ∴sin 2A=sin 2B. 由 0<2A<2π,0<2B<2π, 得 2A=2B 或 2A=π-2B, 即 A=B 或 A=π2-B. ∴△ABC 为等腰三角形或直角三角形.故选 D.
3.在△ABC中,已知a,b和A时,解的情况如下:
A 为锐角
A 为钝角 或直角
图形
关系式 a=bsin A bsin A<a<b
a≥b
解的 个数
一解
两解
一解
a>b 一解
1.(2016 年北京)在△ABC 中,∠A=23π,a= 3c,则bc=__1___.
高考数学一轮复习 第四章 三角函数(基本初等函数(Ⅱ)) 4.7 正弦定理、余弦定理及其应用课件(理
____________⇔2sinB2=cosA-2 C⇔2cosA+2 C=cosA-2 C⇔tanA2tanC2=13.
(4) 在 △ABC 中 , a = bcosC + ccosB , b = ____________ , c = ____________.(此定理称作“射影定理”,亦称第一余弦定理)
() A.锐角三角形 C.钝角三角形
B.直角三角形 D.不确定
解:由已知和正弦定理可得 sinBcosC+sinCcosB= sinA·sinA,即 sin(B+C)=sinAsinA,亦即 sinA=sinAsinA. ∵0<A<π,∴sinA=1,A=π2.∴△ABC 为直角三角形.故
选 B.
(2015·北京)在△ABC 中,a=4,b=5,c =6,则ssiinn2CA=________.
第四章 三角函数(基本初等函数(Ⅱ))
§4.7 正弦定理、余弦 定理及其应用
1.正弦定理 (1)正弦定理:在一个三角形中,各边和它所对角的正弦的 比相等,即___________.其中 R 是三角形外接圆的半径. (2)正弦定理的其他形式: ①a=2RsinA,b=__________,c=__________; ②sinA=2aR,sinB=___________,sinC=___________; ③a∶b∶c=______________________.
图形
关系式
a=bsinA
bsinA<a<b
a≥b
a>b
解的个
①
②
2020年高三数学第一轮复习教案-三角函数-第七节 正弦定理和余弦定理
2.S=12
absinC=
1 2
acsinB=
1 2
bcsinA.
1.三角形中的必备结论 (1)a>b⇔A>B(大边对大角).
【知识必备】 (2)A+B+C=π(三角形内角和定理). (3)sin(A+B)=sinC, cos(A+B)=-cosC, sinA+2 B=cosC2, cosA+2 B=sinC2. (4)射影定理:bcosC+ccosB=a, bcosA+acosB=c, acosC+ccosA=b.
第四章 三角函数、解三角形
第七节 正弦定理和余弦定理
【知识必备】
知识点一 正弦定理和余弦定理
【知识必备】
知识点二 在△ABC中,已知a、b和A时,解的情况
【知识必备】
知识点二 在△ABC中,已知a、b和A时,解的情况
【知识必备】
知识点三 三角形常用面积公式
1.S=12 a·ha(ha表示边a上的高).
2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角 的范围的限制.
【典型例题】
【典型例题】
【典型例题】
【典题演练】
B
C
【典题演练】
C
【作 业】
1、完成新数学中的【典例剖析】 2、完成课时作业(二十三)
再见
2019版高考数学一轮复习第四章三角函数、解三角形第七节正弦定
a2+b2- c2 a2+2a2-4a2 2 ∴cos C= = =- , 2ab 4 2a× 2a 故选 B.
答案:B
2.在△ ABC 中,内角 A, B, C 所对的边分别是 a, b,c,若 a π 3 = 2 3,C= ,tan A= ,则 sin A= ________,b= ________. 3 4 sin A 3 解析:因为角 A 为△ ABC 的内角,tan A= = ,sin2A cos A 4
2 2 2 a + b - c cos C= 2ab
c 转化) sin C= 2R; a∶ b∶ c= sin A∶sin B∶sin C
2.三角形中常用的面积公式 1 (1)S= ah(h 表示边 a 上的高); 2
1 1 1 (2)S= bcsin A= 2acsin B = 2absin C ; 2
2
[由题悟法]
(1)解三角形时,如果式子中含有角的余弦或边的二次式, 要考虑用余弦定理;如果式子中含有角的正弦或边的一次式 时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个 定理都有可能用到. (2)三角形解的个数的判断:已知两角和一边,该三角形是 确定的,其解是唯一的;已知两边和一边的对角,该三角形具 有不唯一性,通常根据三角函数值的有界性和大边对大角定理 进行判断.
[小题纠偏]
1.在△ABC 中,角 A,B,C 对应的边分别为 a,b,c, 2 3 若 A=120°,a=2,b= ,则 B 等于 3 A.60° B.150° C.30°或 150° ( ) D.30°
2 3 a b 解析:∵ A= 120°,a= 2,b= ,∴由正弦定理 = 3 sin A sin B 2 3 b 3 3 1 可得, sin B= sin A= × = .∵ A= 120°,∴ B= 30°. a 2 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一轮复习第四篇三角函数、解三角形第7讲正弦定理、余弦定理应用举例教案理【2013年高考会这样考】考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【复习指导】1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.2.加强解三角形及解三角形的实际应用,培养数学建模能力.基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522 m解析 由正弦定理得AB sin ∠ACB =ACsin B ,又∵B =30°∴AB =AC ·sin∠ACBsin B =50×2212=502(m).答案 A2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=βC .α+β=90° D.α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB-60°-.解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.[审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a . 在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620km.考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系. 解如图,设CD =x m , 则AE =x -20 m ,tan 60°=CD BD, ∴BD =CDtan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理. 【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDCsin ∠CBD =s ·sin βα+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βα+β.考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.规范解答9——如何运用解三角形知识解决实际问【问题研究】解三角形实际应用问题的一般步骤是:审题——建模准确地画出图形——求解——检验作答三角形应用题常见的类型:,①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;,②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;,③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.,【解决方案】 航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中. 【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.[解答示范] 如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分) 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【试一试】 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,求cos θ.[尝试解答] 如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,所以BC =207.由正弦定理,得sin ∠ACB =AB BC ·sin∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30° =277×32-217×12=2114.。