平面任意力系

合集下载

平面任意力系

平面任意力系
M P sin θ FAy = - + l 2
M F 0 ∑
B i
例2:如图所示支架,其中Q=Q',求A、B处的约束力。
F
A
Q
r
r
B
解:1)以AB为研究对象
2)列平衡方程
a
FAy
Q
l
2Qr


∑M
A
=0
FB cosα l - Fa - 2Qr 0
F
FAx
B
FB
A
B
F l a 2Qr FAy l 0
3.4 平面任意力系的平衡条件与平衡方程
平面任意力系平衡的充要条件是:力系的主 矢和力系对任一点的主矩都等于零,即
RO ∑ Fi 0
MO ∑ M O Fi 0
2 R ∑X 2 ∑ Yi 0 O i M o M o Fi 0
O O
b) R 0, M 0 力系简化为一个力偶,其力偶矩等于主矩Mo。
O O
c) RO 0, M O 0 力系可以简化为一个合力R,其大小和方向均与
Ro相同,而作用线与简化中心点 O 的距离为: d M O RO 。
R 0, M 0 原力系为平衡力系, 其简化结果与简化中心的 d)
例2:水平外伸梁AB,若均布载荷q=20kN/m,P=20kN,力
偶矩m =16kN· m,a =0.8m。求支座A、B处的约束力。
FA
FB
解:(1)选梁AB为研究对象,画受力图。
(2)属于平面平行力系,列平衡方程求解未知量。
M M
A
0 0
B
a m qa p 2 a FB a 0 2 3a m qa p a FA a 0 2

工程力学-平面任意力系

工程力学-平面任意力系
即:
R' ( X )2 (Y )2 0
LO mO (Fi ) 0
①一般式 (一矩式)
X 0
平面力系中各力在直角坐标系oxy中
Y 0
各坐标轴上投影的代数和及对任意
点的力矩的代数和均为0。
mO (Fi ) 0
②二矩式
∑X=0 或∑Y=0
mA(Fi ) 0
mB (Fi ) 0
AB O
工程中的桁架结构
桁架的优点:轻,充分发挥材料性能。
桁架的特点:①直杆,不计自重,均为二力杆;②杆端铰接;

学 中 的 桁 架 模
基 本 三 角 形

③外力作用在节点上。


中 的 桁 架
简 化 计 算 模
模型



中 的 桁 架
简 化 计 算 模
节点
杆件
模型

一、节点法 [例3-3] 已知:如图 P=10kN,求各杆内力?
第三章 平面任意力系
平面任意力系(General coplanar force systems):各力的作用 线在同一平面内,既不汇交为一点又不相互平行的力系叫∼。
[例]
研究方法:把未知力系(平面任意力系)变成已知 力系(平面汇交力系和平面力偶系)
第三章 平面一般力系
§3–1 力向一点平移 §3–2 平面力系的简化 §3–3 平面力系的平衡条件 §3–4 刚体系统的平衡问题 §3–5 考虑有摩擦时物体的平衡问题
§3-2 平面力系的简化
一、平面力系向作用面内一点简化
O: 简化中心
主矢(Principal vector) R Fi
大小: R' R'x2 R'y2 ( X )2 (Y )2

平面任意力系

平面任意力系

且其作用线互相平行的力系。
∑ ∑

Yi 0 or
Xi 0



M o Fi 0
A、B两点


M A Fi 0


M B Fi 0
的连线不 能与各力 的作用线 平行
例1:图示吊车,起吊物 重W=30kN,横梁单位长 度重q =4.2N/cm,l=5m, x=l /4。求A、B约束力。
R R2 R2 42kN
O
Ox
Oy
arctg ROy 52.4
ROx
2)求力系的主矩 M A 1 25 2 20 sin60 - 3 18 sin30 32.6kN m
3)求合力作用线到A点的距离 d M A 32.6 0.777
RO 42
个固定矢量。与简化中心密切相关,简化中心不同 其主矩一般也不相同,简化中心就是其作用点。
力系的合力:为主矢和主矩的合力,是一个固定矢量。与
原力系互为等效力系,不仅仅取决于主矢和主矩的 大小、方向及转向,还必须指出其作用线。
例1:正三角形ABC边长为a,受力如图,且F1=F2=F3=F。
求力系的主矢、对A点的主矩及力系合力作用线的位置。
解:1)求力系的主矢
ROx F1 F2 cos 60 F3 cos 60 2F ROy F2 sin60 F3 sin60 0
F3
CC
RO
R2 Ox

R2 Oy

4F2 0 2F
2)求对A点的主矩
2F
A
BB
F1
MA C
M A aF2 sin60 0.87aF

平面任意力系

平面任意力系
处旳约束反力。
C
D G
EF
75° 75°
A
B
§4.4 刚体系旳平衡
解: 取整个系统为研究对象:
MA= 0,
FB·AB-G·ADcos75°= 0
AD cos 75
FB=
G AB
=225 N
Fy = 0, FA + FB-G = 0
FA=600-225=375 N
C
D
G FA E F FB
75° 75°
平衡
平衡
平衡
不平衡
§4.4 刚体系旳平衡
二、刚体系旳平衡
求解刚体系平衡问题与求解单一刚体旳环节基本相同: 选择合适旳研究对象,画出其分离体图和受力图,列平衡 方程求解未知力。 不同之处:单一刚体平衡问题研究对象旳选择是唯一旳, 而刚体系则能够选用其中一种刚体,选用刚体系整体或者 某一部分为研究对象。研究对象选择旳灵活性,使得问题 旳解法往往有多种。
(1) FR'= 0 , MO= 0 (3) FR'= 0 , MO 0
(2) FR' 0 , MO= 0 (4) FR' 0 , MO 0
(1) FR'= 0 , MO= 0
(2) FR' 0 , MO= 0 用于简化中心旳主矢
原力系是一种平衡力系 原力系能够合成一种合力,即作
(3) FR'= 0 , MO 0 原力系合成一种力偶,合力偶矩 等于主矩
解:
y
取梁AB为研 FAy
q
究对象,建立坐 标系如图
A FAx
Fx = 0, FA x= 0
2a
MA(F) = 0,
FBy·4a-M-F·2a-q·2a·a = 0

平面任意力系

平面任意力系

解:
对象:小车ABC T, TC = G, NA, NB
y
h
分析力:
C TC
E
d
T
B NB b x
选轴列平衡方程:
A Nb A G


X T T c sin 0 T T c sin 1 . 04 kN
N
A
Y
N B T c cos 0
B
例2. 轮轴AD, A为止推轴承,C为圆柱轴承,轮B重 W==40kN,外伸端D的齿轮直径为d,受径向力P=20kN和 轴向力Q=40kN。L=20cm. 求两轴承的约束力。
解:
对象:轮轴
y YA L XA A W
A
分析力: W, P, Q, YC, XA, YA 选轴列平衡方程:
L L B C d YC
m 2 2P 20 0 . 8 2 16 0 .8 2 20 12 KN
(3) 解方程组;
RB qa 2
R Ay P qa R B 20 20 0 . 8 12 24 KN

平面任意力系平衡方程的其它形式
平衡方程的多矩形式
m A (F ) N
2 b Td T c cos b T c sin h 0
N
B

T c sin ( h d ) T c cos b 2b
1 . 67 kN
代入二式解得 或利用两矩式
N
A
T C cos N B 2 . 19 kN
B
F’1
n
平面任意力系三
F’R O MO
汇交力系合力的力矢称为原力系的主矢。

理论力学5平面任意力系

理论力学5平面任意力系

P
1m
q
C
2m
A
2m
B
43
P
1m
q
C
XA
2m
A
YA
2m
XB
B
YB
解: ( 1 ) 取整体为研究对象,画受力图.
44
P
1m
q
C
XA
2m
A
2m
XB
B
YA
MA( F ) = 0
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
45
P
1m
q
C
XA
2m
2m
A
FR 0, M O (F ) 0
(一)基本平衡方程
Fx = 0 Fy = 0 Mo ( F ) = 0
(一力矩式)
能解 3 个未知量
16
(二)平面任意力系平衡方程旳其他形式
(1) 二力矩式
MA ( Fi ) = 0 MB ( Fi ) = 0 Fx = 0
投影轴 x 不能与矩心 A 和 B 旳连线垂直.
a
G3 A
C
e G1 L G2
B
NA
b
NB
1、满载时,当重物距离右轨最远时,易右翻。 当起重机平衡 m B( F ) = 0 - G1 ·e - G2 ·L - NA ·b+ G3 ·(a+ b) = 0
NA = [ - G1 ·e - G2 ·L + G3 ·( a+ b)] / b
33
a
G3 A
XA = 14.14 kN
Fy = 0
YA

理论力学平面任意力系

理论力学平面任意力系
齿轮II上旳力偶矩M;轴 承A,B处旳约束力。
解: 取齿轮I及重物C ,画受力图.
M B 0 Pr F R 0 F 10 P1
由 Fr taan 200 3.64 P1
t
X 0 FBx Fr 0 FBx 3,64P1
Y 0 FBy P P2 F 0 FBy 32P1
[例1]
静定(未知数三个)
静不定(未知数四个)
[例2]
物体系统(物系): ——由若干个物体经过 约束所构成旳系统。
超静定拱
[P62 思索题 3-10]
超静定梁
超静定桁架
3-3 物体系旳平衡•静定与超静定问题
二、物体系统旳平衡问题
外力:外界物体作用于系统上旳力。 内力:系统内部各物体之间旳相互作用力。
R
主矢
FR 0 FR 0
主矩
MO 0
MO 0 MO 0
MO 0
最终成果
阐明
合力 合力作用线过简化中心
合力 合力偶
合力作用线距简化中心M O FR
与简化中心旳位置无关
平衡
与简化中心旳位置无关
3-2 平面任意力系旳平衡条件与平衡方程
一、平面任意力系平衡旳充要条件为:
力系旳主矢
FR
'和对于任一点旳主矩
独立方程旳数目
平面力偶系
mi 0
1
平面平行力系 Y 0, mo (F ) 0
2
平面汇交力系
X 0
2
Y 0
平面任意力系
X 0
Y
0
3
mO (F i ) 0
3-3 物体系旳平衡•静定与超静定问题
独立方程数目≥未知数数目时,是静定问题 (可求解) 独立方程数目<未知数数目时,是超静定问题(静不定问题)

平面任意力系

平面任意力系
y
F4 F1 F2
F3
O
x
平面平行力系平衡的必要与充分条件是:力系 中所有各力的代数和等于零,以及各力对平面内任 一点之矩的代数和等于零。
n
{∑
i =1 n i =1
∑Y
i
=0
M O ( Fi ) = 0
二力矩形式的平衡方程:
{∑
i =1 n i =1
∑M
n
A
( Fi ) = 0
M B ( Fi ) = 0

′ FR = (∑ X ) 2 + (∑ Y ) 2
′ FRy ∑Y θ = arctg = arctg ′ FRx ∑X
• 固定端约束 物体的一部分固嵌于另一物体的约束称为固 定端约束。 固定端约束的特点是既限制物体的移动又限 制物体的转动。
在外载荷的作用下,物体在固嵌部分所受的作 用力为一任意力系。 将此力系向连接处物体横截面的形心A简化,得 到一个力FA和一个力偶MA。 对于平面固定端约束,可用两个正交分力和一个 力偶矩表示。
平面任意力系的平衡方程:
∑ ∑ ∑
n n
n
X
i =1
i
= 0
i =1
Yi = 0 M
O
i =1
(Fi) = 0
所有各力在两个任选的坐标轴上投影的代数和 分别等于零,以及各力对于任意一点的矩的代数和 也等于零。
平衡方程的其它形式:
• 二力矩形式的平衡方程
∑ ∑ ∑
n n
n
M M X
i =1
A
(Fi) = 0 (Fi) = 0 = 0
F
600
y
l l
M
B
D P
3l
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面任意力系
平面任意力系是探究力学问题中采用的一种数学模型。

该模型被广泛用于研究坐标系内的任意力的作用的原点以及其对物体的影响。

它是一种理论模型,用于理解物体在任意力作用下的受力方向和大小。

平面任意力系以三个坐标轴x, y以及z为基础,以这三个轴上的一组受力大小作为决定物体位置、速度和加速度的参数来描述它。

在静力学中,平面任意力系经常被用来模拟物体受若干外力作用下的质点力学运动。

假设物体受到x轴、y轴和z轴上的n条外力作用,其受力状态可以用平面任意力系来描述。

这些外力在平面任意力系上唯一确定,根据它们的方向以及大小可以计算得到受力物体的转动惯量和转矩。

在运动学中,平面任意力系也被用来描述物体的位置、速度和加速度情况。

根据物体受到的初始加速度以及力学运动的运动方程,可以求得物体在任意时刻的位置、速度和加速度。

这也可以看作是在一组外力的作用下,物体在平面任意力系中运动的过程,通过求解平面任意力系可以计算出物体在任意时刻的位置、速度和加速度。

平面任意力系是一个复杂的理论模型,但它可以简单有效地用于模拟坐标系内多外力作用情况下物体受力情况以及物体的运动状态,在力学和运动学方面都显示出其重要的应用价值。

相关文档
最新文档