青岛版-数学-七年级上册-六种方法帮你去括号
初一数学去括号技巧

初一数学去括号技巧在初一数学的学习中,去括号是一个非常重要的知识点,也是同学们在解题过程中经常会遇到的问题。
掌握好去括号的技巧,能够帮助我们更轻松、更准确地进行整式的运算和方程的求解。
下面就让我们一起来学习一下初一数学去括号的技巧吧。
一、去括号的法则去括号时,要遵循一定的法则。
1、括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变。
例如:a +(b + c) = a + b + c2、括号前是“”号,把括号和它前面的“”号去掉,括号里各项的符号都要改变。
例如:a (b c) = a b + c这里要特别注意,符号的改变是指括号内的每一项都要改变符号。
二、去括号的步骤1、观察式子中括号前面的符号。
2、根据法则确定去括号后各项的符号变化。
3、去掉括号,合并同类项(如果有)。
为了更好地理解去括号的步骤,我们来看几个具体的例子。
例 1:化简 3 +(2x 5)首先,观察括号前是“+”号,所以去括号后各项符号不变,得到:3 + 2x 5然后,合并同类项:2x 2例 2:化简 7 (3x + 2)括号前是“”号,去括号后各项符号改变,得到:7 3x 2接着,合并同类项:5 3x三、去括号的易错点在去括号的过程中,同学们容易出现一些错误,需要特别注意。
1、忘记改变符号这是最常见的错误之一。
比如,在计算 a (b c) 时,容易写成 a b c,而忽略了将“c”变为“+c”。
2、漏乘系数当括号前有数字因数时,要将数字因数与括号内的每一项都相乘。
例如,在计算 2(3x 4) 时,要写成 6x 8,而不能写成 6x 4。
3、顺序错误去括号时,要按照先去小括号,再去中括号,最后去大括号的顺序进行。
如果顺序混乱,就容易出错。
四、去括号的应用去括号在整式的加减、方程的求解等方面都有广泛的应用。
1、整式的加减在进行整式的加减运算时,通常需要先去括号,然后合并同类项。
例如:计算(2x²+ 3x 5) (x² 2x + 1)先去括号:2x²+ 3x 5 x²+ 2x 1再合并同类项:x²+ 5x 62、方程的求解在解方程的过程中,如果方程中有括号,通常也要先去括号,然后再进行移项、合并同类项等操作。
七年级初一数学上册第三章用字母表示数3.5去括号六种方法帮你去括号

六种方法帮你去括号在整式的加减运算中,去括号是重要的一环。
如何去掉括号呢?下面介绍几种去括号的方法,供同学们参考。
一、直接去括号例1 化简:()()532x x y y x --+-。
分析:由于括号前面的系数是1和1-,可以利用去括号的法则直接去括号。
解:原式532x x y y x =-++-55x y =-+。
二、局部合并,再去括号例2 化简:2222221530.532a b ab a b ab a b a b ⎛⎫----+⎪⎝⎭。
分析:由于括号外的25a b 和23a b 及括号内的212a b 和20.5a b -是同类项,所以可以先将它们分别合并后,再去括号。
解:原式()22283a b ab ab =---22283a b ab ab =-+2282a b ab =-。
三、整体合并,再去括号 例3 化简:()()()()5432a b c a b c a b c a b c -+-+-+-+-+-。
分析:若按常规方法先去括号再合并,显然运算量较大,容易出错,而如果把()a b c -+和()a b c +-分别看作整体,先合并,再去括号,这样比先去括号再合并简便。
解:原式()()86a b c a b c =-+-+-888666a b c a b c =-+--+21414a b c =-+。
四、改变常规顺序,巧去括号例4 化简:()23222318612x y xy xy x y ⎡⎤---⎣⎦。
分析:若先去中括号,则小括号前的“-”号变为“+”号,再去小括号时,括号内各项不用变号。
这样就减少了某些项的反复变号,不易出错。
解:原式()23222318612x y xy xy x y =-+-23222318612x y xy xy x y =-+-23265x y xy =-。
五、利用乘法分配律去括号例5 化简:()()()2211312563a a a a ⎡⎤-+-++-⎢⎥⎣⎦。
课件青岛版数学七上 去括号课件

1 x 3x2 y 4x 7 6x2 y 3
2 4 ab2 3a2b ab2 1 a2b
5
2
3.如何找出多项式
8a 2b 5a b
中的同类项进行合并呢?
交流与发现
情景1:
我校原有电脑a台,暑假新增 1、括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变。
改正后:a (b c d) a b c d
a2 (2a c) a2 2a c
改正后: a2 2a c
(x 1) (1 3x) x 11 3x
改正后:
(x 1) (1 3x) x 11 3x
x-(y+z-1)=x-y-z+1
例1.先去括号,再合并同类项。
14a 2a b 22ab 3ab 2a 3a b a c 4 2x y x y
如果括号前有数字,那么这个 数字必须乘以括号内的每一项。
去括号时我们要注意的问题:
(1)看:一看括号前的符号;二看 括号前是否有数字。
(2)去:是“+”号,不变号;是 “-”号,全变号。 (3)若去括号后有同类项,必须 合并同类项,使结果达到最简。
拓展提升
1、化简
a a2 1 3 a2 1 3a
(4)- (3 - 6x2)
(3)a+(-b+c) (2) -(a-4b); (1) +(a-4b); (2) -(a-4b);
电脑b台,同时淘汰旧电脑c
李老师去书店购书,带去人民币a元,买书时付款b元,又找回c元,李老师还剩余多少元?
去括号时一定要按去括号法则进行。
台,我校现有电脑多少台? 去括号时我们要注意的问题:
学习目标
青岛版数学七年级上册 去括号

括号前面是“-”号,把括号和它前面的 “-”号去掉,括号里各项的符号都要改变.
自主学习 形成能力
1、练习:去括号
(1)a+(b-c) (2)a-(b-c)
=a+b-c
=a-b+c
(3)a+(-b+c)(4)a-(-b-c)
=a-b+c
=a+b+c
自主学习 形成能力
思考下列问题,并与同学交流。
(1)时代中学原有a台电脑,暑假新进购的b台电脑, 同时淘汰c台,该中学现有多少台电脑?
a+(b-c) =
a+b-c
思考下列问题,并与同学交流。
(2)李老师去书店购书,带去人民币a元,买书时 付款b元,又找回c元,李老师还剩余多少元?
a+(b-c) = a+b-c
=
a-(b-c)
(4) (a 2b) (c d )
2、先去括号,再合并同类项
(1) (5a 3b) (3a 2b)
(2) 2(4x 6y) 3(2x 3y 1)
(3) 2a 2(3a b 2c)
(4)去括号时应先判断括号前面的符号。 (2)去括号时应将括号前的符号和括号一起去掉。 (3)括号内原有几项,去括号后仍有几项,不能丢项。 (4)去括号后,括号内各项要么全变号,要么全不变号。 (5)若括号前是数字因数时,应利用乘法分配律先将该 数与括号内的各项分别相乘再去括号,切勿漏项。
第6章 整式的加减
6.3 去括号
做一做
利用乘法对加法的分配律计算:
(1) 5a 2(b 1)
(2) a (1)(b c)
(1) 5a 2(b 1)
青岛版数学七上63《去括号》ppt课件

1、什么叫做去括号法则?去括号法则,特别要注意什么?2、一个数乘以多项式,这个数与多项式内每一项都要相乘。
去括号
学习目标
(1)掌握去括号法则。
(2)运用法则,能按要求正确去括号。
(3)培养观察能力和归纳能力以及全方位考虑问题的能力。
教学重、难点和关键
重点:去括号法则。
难点:括号前是“-”号的去括号法则。
创设情景 引入课题
引例一: 图书馆里原有a名同学, 后来某年级组织同学阅读,第一批来了b名同学,第二批来了c名同学,则图书馆里共有 名同学 .我们可以这样理解,后来两批一共回来了 名同学,因而图书馆里共有 名同学,由于 和 均表示同一个量,于是得到(1)式:
先去括号,再合并同类项
(1)4a+(2a-b)
(2)2ab-(3ab-2a)
(3)a-(-b+a-c)
(4)4x-2(x-y)
题组设计 巩固法则
.
3.
.
当堂达标 巩固练习
1.根据去括号法则,在___上填上“+”号或“-”号:
(2) 13-(7-5) 13-7+5
去括号法则:
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.
a-(-b+c)= a b c
a +(-b+c)= a -b +c
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变.
-( )
- +
+ -
自主学习 形成能力
1、练习:去括号
(1)a+(b-c)
(2)a-(b-c)
(3)a+(-b+c)(4)a-(-b-c)
4.3去括号++课件++2024—2025学年青岛版数学七年级上册

分析:暑假期间学生票每张15元,成人票每张30元,有学生 x 人,
家长 (2x 5)
人,因此学生购票 15 x
元,家
长购票 30(2x 5) 元,共需的钱数为: 15x 30(2x 5)
任务一 去括号
(1)类比数的运算,如何化简15x+30(2x-5)?
15x+30(2x-5) =15x+30×2x+30×(-5) =15x+60x-150 =75x-150。
可以运用乘法对加 法的分配率去括号
任务一 去括号
(2)运用乘法对加法的分配律,去掉下列式子中的括号:
(1)a (b c)
(2)a (b c)
a 1(b c)
a 1b 1 (c)
abc
a (1)(b c)
a (1) b (1) (c)
abc
(3)a 2(b c) a 2b 2(c) a 同学及家长组成一个旅行团,打算暑假去北京旅 行,小亮负责购买门票。他从网上查到颐和园门票信息如下:
类型
旺季
淡季
如果这个旅行团有学生
(每年4月1日至10月31日) (每年11月1日至次年3月31日)
x人,家长比学生的2倍
成人票/元
30
20
少5人,那么购买颐和
学生票/元
15
园门票共需多少元?
(4)a 2(b c) a (2)(b c)
a (2) b (2) (c) a 2b 2c
任务一 去括号
思考与交流
都不变
都改变
(1)a+(b-c) =a+b-c
(2)a-(b-c)= a-b+c
都不变
都改变
(3)a+2(b-c)=a+2b-2c (4)a-2(b-c)= a-2b+2c
七年级数学上册第6章六种方法帮你去括号(青岛版)

六种方法帮你去括号在整式的加减运算中,去括号是重要的一环。
如何去掉括号呢?下面介绍几种去括号的方法,供同学们参考。
一、直接去括号例1 化简:()()532x x y y x --+-。
分析:由于括号前面的系数是1和1-,可以利用去括号的法则直接去括号。
解:原式532x x y y x =-++-55x y =-+。
二、局部合并,再去括号例2 化简:2222221530.532a b ab a b ab a b a b ⎛⎫----+ ⎪⎝⎭。
分析:由于括号外的25a b 和23a b 及括号内的212a b 和20.5a b -是同类项,所以可以先将它们分别合并后,再去括号。
解:原式()22283a b ab ab =---22283a b ab ab =-+2282a b ab =-。
三、整体合并,再去括号例3 化简:()()()()5432a b c a b c a b c a b c -+-+-+-+-+-。
分析:若按常规方法先去括号再合并,显然运算量较大,容易出错,而如果把()a b c -+和()a b c +-分别看作整体,先合并,再去括号,这样比先去括号再合并简便。
解:原式()()86a b c a b c =-+-+-888666a b c a b c =-+--+21414a b c =-+。
四、改变常规顺序,巧去括号例4 化简:()23222318612x y xy xy x y ⎡⎤---⎣⎦。
分析:若先去中括号,则小括号前的“-”号变为“+”号,再去小括号时,括号内各项不用变号。
这样就减少了某些项的反复变号,不易出错。
解:原式()23222318612x y xy xy x y =-+-23222318612x y xy xy x y =-+-23265x y xy =-。
五、利用乘法分配律去括号例5 化简:()()()2211312563a a a a ⎡⎤-+-++-⎢⎥⎣⎦。
七年级数学去括号知识点

七年级数学去括号知识点括号在数学中是一个非常重要的概念,常常用来表示算式中的一个整体,也可以用来改变运算的顺序。
对于七年级的学生来说,去括号是一个比较基础的知识点,但是实际操作起来还是有一定难度的。
本文将为大家介绍一些关于去括号的知识点和操作技巧,希望能帮助大家更好地掌握这一技能。
一、拆分法拆分法是去括号的最基本方法,它是指将一个大括号内的算式拆分成两个小算式再进行计算。
例如:$(a+b) \times c$我们可以将括号内的表达式拆分开来,变成:$a \times c + b \times c$然后再将括号去掉,得到最终的结果:$ac+bc$需要注意的是,拆分法只适用于乘法和除法运算。
对于加法和减法运算,我们无法使用拆分法。
二、分配律分配律也是一个常用的去括号方法,它是指将一个乘号前的系数与括号内的每一个项相乘。
例如:$2(a+b)$我们可以将2乘以$a$和$b$,得到:$2a+2b$需要注意的是,只有在乘法的情况下才可以使用分配律。
对于加法和减法运算,我们同样无法使用分配律。
三、综合运用在实际的计算过程中,我们常常需要综合运用不同的方法来去掉括号。
例如:$(a+b)(c-d)$我们可以先使用分配律将第一个括号内的每一项乘以$c$,第二个括号内的每一项乘以$-d$,然后再使用拆分法将的结果计算出来:$(a \cdot c + b \cdot c)(-d) = -ac \cdot d -bd \cdot c$需要注意的是,在进行综合运用的时候,我们需要根据具体情况灵活应用各种方法。
四、加强练习为了更好地掌握去括号的技巧,我们需要进行大量的练习。
以下是一些练习题,大家可以尝试解答一下:1. $(2x+3)(x-4)$2. $(3a-2b)(a+b)$3. $(x+2)(2x+3)-(x-1)(x+2)$4. $(x+1)^2-4$五、总结去括号是初中数学中非常重要的一个知识点,它涉及到基本的运算技巧和概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六种方法帮你去括号
在整式的加减运算中,去括号是重要的一环。
如何去掉括号呢?下面介绍几种去括号的方法,供同学们参考。
一、直接去括号
例1 化简:()()532x x y y x --+-。
分析:由于括号前面的系数是1和1-,可以利用去括号的法则直接去括号。
解:原式532x x y y x =-++-
55x y =-+。
二、局部合并,再去括号
例2 化简:2222221530.532a b ab a b ab a b a b ⎛⎫----+ ⎪⎝⎭。
分析:由于括号外的25a b 和23a b 及括号内的212
a b 和20.5a b -是同类项,所以可以先将它们分别合并后,再去括号。
解:原式()22283a b ab ab =---
22283a b ab ab =-+
2282a b ab =-。
三、整体合并,再去括号
例3 化简:()()()()5432a b c a b c a b c a b c -+-+-+-+-+-。
分析:若按常规方法先去括号再合并,显然运算量较大,容易出错,而如果把()a b c -+和()a b c +-分别看作整体,先合并,再去括号,这样比先去括号再合并简便。
解:原式()()86a b c a b c =-+-+-
888666a b c a b c =-+--+
21414a b c =-+。
四、改变常规顺序,巧去括号
例4 化简:()23222318612x y xy xy x y ⎡⎤---⎣⎦。
分析:若先去中括号,则小括号前的“-”号变为“+”号,再去小括号时,括号内各项不用变号。
这样就减少了某些项的反复变号,不易出错。
解:原式()23222318612x y xy xy x y =-+-
23222318612x y xy xy x y =-+-
23265x y xy =-。
五、利用乘法分配律去括号
例5 化简:()()()2211312563a a a a ⎡⎤-+-++-⎢⎥⎣⎦。
分析:当括号前的乘数不是1或1-时,可以“边去括号边做乘法”。
解:原式()()()22131252
a a a a =-++
+-- 2213352
a a a a =--++-+ 21222a a =--+。
六、一次去掉所有括号
例6 化简:(){}
132327a b ab b ab b a ---+--⎡⎤⎣⎦。
分析:根据某些项前面各层括号前负号的个数来决定去括号时该项的符号。
具体地说就是,若负号的个数是偶数个,则保持该项的符号;若负号的个数是奇数个,则改变该项的符号。
掌握了这一法则,就可以一次去掉多层括号。
解:原式132327a b ab b ab b a =-+-+-+
2054a b ab =-+。