函数值域求法大全

合集下载

函数值域的十种求法

函数值域的十种求法

函数值域的十种求法
1、通过定义域的极限来求函数值域:由于函数表示法中的变量x的取值范围是定义域,而函数值f(x)的取值范围则可以通过定义域极限的方法来求得。

2、通过函数定义关系来求函数值域:由于函数在定义域内有一定的定义关系,所以可以根据函数定义关系来求函数值域。

3、由于函数在定义域内有一定的性质,所以可以根据函数性质来求函数值域。

4、由于函数在定义域内有一定的对称性,所以可以根据函数的对称性来求函数值域。

5、由于函数在定义域内有一定的单调性,所以可以根据函数的单调性来求函数值域。

6、根据函数的奇偶性来求函数值域:如果函数在定义域内具有奇偶性,则可以根据函数的奇偶性来求函数值域。

7、由于函数在定义域内有一定的常数性,所以可以根据函数的常数性来求函数值域。

8、根据函数增减性来求函数值域:如果函数在定义域内具有增减性,则可以根据函数的增减性来求函数值域。

9、由于函数在定义域内有一定的循环性,所以可以根据函数的循环性来求函数值域。

10、根据函数的图像形状来求函数值域:如果函数在定义域内具有特定的图像形状,则可以根据函数的图像形状来求函数值域。

函数值域的13种求法

函数值域的13种求法

函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

可以采取如下方法进一步确定原函数的值域。

∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

函数值域的十种求法

函数值域的十种求法

函数值域的十种求法函数值域是一种数学概念,它描述了一个函数的结果范围,是数学研究的基础。

求函数值域的方法有多种,每种方法都有不同的优劣。

本文介绍了求函数值域的十种方法,及其优势和劣势,以供参考。

一、定义法定义法是求取函数值域最为简单的方法,只要将函数的定义式扩大至所有可能被求出的范围即可。

定义法最大的优势在于可以精确求出函数值域,大大减少误差,使得函数值域的求解更有可靠性。

但是,定义法也有其缺点,即求解过程会很繁琐,在有多个参数的函数中,会消耗大量的计算时间。

二、图像法图像法是一种简单易行的求函数值域的方法,它只需要将函数的图像表示出来,然后从图像中观察出函数值域的范围即可。

图像法的优势在于求解速度快,只需要对函数的图像做一次有限次的绘制,就可以直观了解函数的值域,而无需进行耗时的计算。

但是,图像法本身并不能精确求出函数值域,无法判断一些细微的函数特征,从而可能导致求得的函数值域不够准确。

三、五行式五行式是一种常见的求函数值域的方法,它将参数组合为五个不同的行,分别代表不同的极限情况,然后从五行式中求取函数值域。

五行式的最大优势就在于可以根据函数本身的特征,从而排除掉一些不必要的计算,减少运算量,大大提高求解的效率。

但是,五行式也存在一定的局限性,它无法正确处理复杂的函数,也不能处理参数过多的函数。

四、三角形法三角形法是一种求函数值域的经典方法,它将参数抽象出来,将参数空间细分为多个三角形,并将每个三角形中的值域分别求取出来。

三角形法的最大优势在于可以将参数空间剖分为有结构的模块,并在不同模块之间建立联系,从而大大减少计算量。

但是,三角形法也有其不足,即它只能处理二元函数的值域求解,而且在一些复杂函数的情况下,其求解精度也无法保证。

五、基于函数本质的求法基于函数本质的求法是一种综合的求值域的方法,它的原理是从函数的定义本质出发,抽象出函数的特征,并对参数和函数值域之间的联系进行分析,最后求解出函数值域。

求函数值域的方法大全

求函数值域的方法大全

求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。

原理是找到函数的变量的极限,在此极限处求函数的极值。

求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。

2、求导法:求导法是求函数的最值的经典方法。

原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。

3、几何法:几何法是求函数最值问题的一种有效方法。

原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。

因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。

4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。

这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。

5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。

求函数值域的十种常用方法

求函数值域的十种常用方法

求函数值域的十种常用方法函数的值域是指函数在定义域上取到的所有可能的函数值的集合。

确定函数的值域是函数分析中的一个重要内容,对于了解函数的性质和作用有着重要的意义。

下面是常用的十种方法来确定一个函数的值域:1.通过求导数:对于一个实变函数,可以通过求导数找到函数的极值点和临界点,并确定函数在这些点的函数值,然后从中选择最大值和最小值作为函数的值域的边界值。

2.分析极限:通过求函数的极限可以确定函数的趋势和发散的情况,从而可以确定函数的值域。

3.分段函数的值域:对于一个分段函数,可以分析每个分段的值域,然后将这些值域合并在一起得到整个函数的值域。

4.利用平移、伸缩和翻转:通过对函数进行平移、伸缩和翻转等运算,可以改变函数的图像和函数值的取值范围,并进一步确定函数的值域。

5.利用对称性:如果函数具有对称性,如轴对称、中心对称等,可以利用对称性来确定函数的值域。

6.利用图像分析:通过绘制函数的图像,可以直观地观察函数的取值范围。

7.利用函数的性质:对于特定的函数,可以利用函数的性质,如增减性、单调性、周期性等来确定函数的值域。

8.利用函数的定义域:函数的值域一般不能超出其定义域,因此可以通过函数的定义域来确定其值域的范围。

9.利用复合函数的值域:如果函数可以表示为其他函数的复合,可以利用复合函数的值域和定义域来确定原函数的值域。

10.利用数学工具:如利用不等式、方程以及数列等数学工具来分析函数的取值范围和值域。

当然,以上只是常用的一些方法,对于一些特殊的函数,可能需要运用其他方法和技巧来确定其值域。

准确确定函数的值域需要结合具体的函数形式和问题的要求进行分析和计算。

函数值域求法十一种

函数值域求法十一种

函数值域求法十一种函数值域求法十一种1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例1. 求函数x1y =的值域。

解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x3y -=的值域。

解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

例3. 求函数]2,1[x ,5x 2xy 2-∈+-=的值域。

解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法例4. 求函数22x 1x x 1y +++=的值域。

解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域。

解:两边平方整理得:0y x )1y (2x222=++-(1)∵R x ∈ ∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤ 由0≥∆,仅保证关于x 的方程:0y x )1y (2x222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

可以采取如下方法进一步确定原函数的值域。

∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

函数值域求法十一种

函数值域求法十一种

函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。

例如,求函数 $y=\frac{1}{x}$ 的值域。

解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。

2.配方法配方法是求二次函数值域最基本的方法之一。

例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。

解:将函数配方得:$y=(x+1)^2+2$。

由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。

故函数的值域是:$[2,4]$。

3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。

解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。

1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。

2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。

4.反函数法例如,求函数 $y=3x+4$ 的值域。

解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。

注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。

例13.求函数y sinx cosx的值域。

解:由三角函数的性质可知。

1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。

函数值域求法大全

函数值域求法大全

022解 ( 1 ) 令
u=x2+2x=(x+1)2 -1,得u∈〔-1,+∞), 则y=2u≧2-1=1/2;
故值域是y ∈ 〔1/2,+∞).
01
令u=x2+2x+1=-(x1)2+2≦2,
02 且u>0,
03
故y=log1/2u的 定义域为(0,2] 上的减函数,
04
即原函数值域的为 y ∈〔-1,+∞)。
y [ 2 , 2 ]
(1 ) y 2 x 2 2 x ;
01
例6 求下列函 数的值域:
(2 ) y lo g 1 ( x 2 2 x 1 ).
分析:求复合函数 的值域,利用函数 的单调性采用换元 法先求出外层函数 的值域作为内层函 数的定义域,然后 求原函数的值域, 要特别注意内层函 数的定义域的取值 范围。
例11 求函数
y=√x22x+10+√x2 +6x+13的值
域。
分析:本题求函数的 值域可用解析几何与 数形结合法解之。
B(-3,2)
y A(1,3)
P
o
x A1(1,-3)
解:函数变形为 y=√(x-1)2+(0-3)2+√(x+3)2+(0-2)2.
y
将上式可看成为x轴上点
A(1,3)
P(x,0)与A(1,3),B(-3,2)的 B(-3,2)
解法1:不难看出y≥0,且可得定义域为3≤x≤ 5,原函数变形为:
解法2:(判别 式法).
两边平方移项得:y2-2=2√(x-3)(5-x), 再平方整理得4x2-32x+y4-4y2+64=0且y2-2≥ 0, y看成常数,方程有实根的条件是 △ =162-4(y4-4y2+64)=-4y2(y2-4) ≥ 0, 注意到y2>0得y2-4≤0 即0<y2≤4而y2-2≥0 即有√2≤y≤2, ∴y∈[√2,2].
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数值域求法大全函数的值域是由定义域和对应法则共同确定。

确定函数的值域是研究函数不可缺少的重要一环。

本文介绍了十一种函数值域求法。

首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。

例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。

再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。

其次是配方法,这是求二次函数值域最基本的方法之一。

例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。

还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。

除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。

这些方法各有特点,应根据具体情况选择合适的方法来求解。

总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。

换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。

其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。

换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。

例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。

代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。

由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。

因此,函数的值域为 $[1,+\infty)$。

又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。

由于 $-1\leq\cos\beta\leq 1$,因此 $-\frac{\pi}{2}\leq\beta\leq\frac{\pi}{2}$。

根据三角函数的性质,$-\sqrt{2}\leq\sin\beta+\cos\beta\leq\sqrt{2}$,因此 $0\leq y\leq1+2\sqrt{2}$。

因此,函数的值域为 $[0,1+2\sqrt{2}]$。

再如,对于函数 $y=\frac{x^3-x}{4x+2x^2+1}$,我们可以将其变形为 $y=\frac{x(x^2-1)}{2x^2+1}=\frac{(x^2-1)+x}{2x^2+1}$。

令 $x=\tan\beta$,则$y=\frac{\sin\beta+\cos\beta}{2\cos^2\beta+1}$。

由于 $-\frac{\pi}{2}<\beta<\frac{\pi}{2}$,因此 $0<\cos^2\beta<1$,从而 $1<2\cos^2\beta+1<3$。

因此,$0<\frac{\sin\beta+\cos\beta}{2\cos^2\beta+1}<\frac{\sqrt{2}+1} {3}$。

因此,函数的值域为 $(0,\frac{\sqrt{2}+1}{3})$。

在x轴的同侧,例18的A,B两点坐标分别为(3,2)和(2,-1)。

使用基本不等式a+b≥2ab和a+b+c≥3abc(a,b,c∈R),可以求出函数的最值。

题型特征是和式时要求积为定值,积时要求和为定值。

有时需要用到拆项、添项和两边平方等技巧。

例19中要求解sinxcosx的值域。

原函数变形为y=(sinx+1/2)+(cosx-2)-4.y=1+cos2x+1/sin2x=3+tan2x+cot2x≥3(3tan2xcot2x+2)=5,当且仅当tanx=cotx时取等号。

因此,原函数的值域为[5,+∞)。

例20要求解y=2sinxsin2x的值域。

y=4sinxsinxcosx=16sin4xcos2x=8sin2xsin2x(2-2sin2x)≤8[(sin2x+sin2x+2-2sin2x)/3]3=64/27,当且仅当sin2x=2/3时取等号。

因此,函数的值域为[-64/27,8/27]。

例21要求解y=(ax+b)/(cx+d)的值域,其中c≠0.在定义域上,x与y是一一对应的。

因此,若知道一个变量范围,就可以求另一个变量范围。

令t=x+2(t≥2),则x+3=t+1.当t>1时,y>0;当t=1时,y=0.因此,0<y≤1.例22要求解y=(x+2)/(x+3)的值域。

令t=x+2(t≥2),则x+3=t+1.因此,2≤t≤3.当t>3时,y1/3.因此,1/3<y≤1/2.例23.求函数 $y=\frac{1+x-2x^2+x^3+x^4}{1+2x^2+x^4}$ 的值域。

解:将分子分母分别因式分解得:y=\frac{(x-1)(x^3-1)}{(x^2+1)^2}$$令 $t=x^2$,则:y=\frac{(t-1)(t^2-1)}{(t+1)^2}$$为了方便计算,我们先求出 $t$ 的取值范围。

因为$t=x^2\geq 0$,所以 $t-1\geq -1$,$t^2-1\geq -1$,$t+1>0$。

又因为 $t+1>0$,所以 $t\neq -1$。

因此,$t$ 的取值范围为$[0,+\infty)$。

对于 $y$ 的值域,我们可以先求出 $y$ 的最大值和最小值。

令 $y=\frac{(t-1)(t^2-1)}{(t+1)^2}=k$,则:t-1)(t^2-1)=k(t+1)^2$$化___:t^3+(k-2)t^2+(k+2)t-(k+2)=0$$由于 $t\geq 0$,所以 $t$ 是上述方程的一个实数根。

因此,根据___定理,有:t_1+t_2+t_3=2-k$$t_1t_2+t_2t_3+t_3t_1=k+2$$t_1t_2t_3=k+2$$其中 $t_1,t_2,t_3$ 是方程的三个实数根。

由于 $t\geq 0$,所以 $t+1>0$,即 $t\neq -1$。

因此,$t=-1$ 不是方程的实数根。

又因为 $t$ 是实数,所以$t_1,t_2,t_3$ 都是实数。

对于最大值,我们要使得 $t$ 取到最大值。

由于 $t\geq 0$,所以 $t_1,t_2,t_3$ 中至少有一个为 $0$。

如果 $t_1=0$,则$t_2t_3=k+2$,由于 $t_2,t_3\geq 0$,所以$t_2=t_3=\sqrt{k+2}$。

因此。

t_1+t_2+t_3=2-k$$t_1=0,t_2=t_3=\sqrt{k+2}$$代入得:sqrt{k+2}=1-\frac{k}{2}$$解得 $k_{\max}=\frac{17}{16}$,此时$t_1=0,t_2=t_3=\frac{\sqrt{17}}{4}$,从而:y_{\max}=\frac{(t_1-1)(t_2^2-1)}{(t_2+1)^2}=\frac{1}{16}$$对于最小值,我们要使得 $t$ 取到最小值。

由于 $t\geq 0$,所以 $t_1,t_2,t_3$ 都不为 $0$。

因此,它们都是方程 $t^3+(k-2)t^2+(k+2)t-(k+2)=0$ 的三个实数根。

根据___定理,有:t_1+t_2+t_3=2-k$$t_1t_2+t_2t_3+t_3t_1=k+2$$t_1t_2t_3=k+2$$由于$t_1,t_2,t_3$ 都不为$0$,所以它们都是正数或负数。

又因为 $t_1t_2t_3=k+2>0$,所以它们要么都是正数,要么都是负数。

如果它们都是正数,那么 $t_1,t_2,t_3$ 都是方程 $t^3+(k-2)t^2+(k+2)t-(k+2)=0$ 的三个正实数根。

根据均值不等式,有:frac{t_1+t_2+t_3}{3}\geq \sqrt[3]{t_1t_2t_3}$$即:2-k\geq 3\sqrt[3]{k+2}$$解得$k\leq -\frac{1}{3}$。

但是,当$k=-\frac{1}{3}$ 时,方程 $t^3+(k-2)t^2+(k+2)t-(k+2)=0$ 的三个实数根分别为$t_1=-\frac{1}{3},t_2=t_3=\frac{2}{3}$。

此时。

y=\frac{(t_1-1)(t_2^2-1)}{(t_2+1)^2}=-\frac{2}{3}$$不满足 $y\geq -2$ 的条件,因此,当 $k>-\frac{1}{3}$ 时,$t_1,t_2,t_3$ 中至少有一个是负数。

如果 $t_10$,$t_2t_3=k+2-t_1(t_2+t_3)>0$。

因此,$t_2,t_3$ 都是正数。

从而:y=\frac{(t_1-1)(t_2^2-1)}{(t_2+1)^2}<0$$不满足 $y\geq -2$ 的条件,因此,当 $k>-\frac{1}{3}$ 时,$t_1,t_2,t_3$ 中至少有一个是正数。

综上所述,当$k>-\frac{1}{3}$ 时,$y$ 的最小值为$-2$,此时 $y_{\min}=-2$。

因此,当 $k>-\frac{1}{3}$ 时,$y$ 的值域为 $[-2,\frac{1}{16}]$。

相关文档
最新文档