架空输电线路风偏故障原因分析及预防措施

合集下载

防治输电线路风偏故障及外力破坏方案

防治输电线路风偏故障及外力破坏方案

防治输电线路风偏故障及外力破坏方案1、防治输电线路风偏故障线路风偏故障指线路的导线(包括耐张塔跳线)在风力的作用下,对杆塔或邻近线路的各种物体(如树木、房屋或其他电力线路等)发生放电造成或线路接地的现象。

线路发生风偏故障,如果风力在一定时段内变化不大,将会造成线路长时间接地,严重影响了线路的安全运行,必须采取适当的措施进行防治。

一.HO输电线路设计采取的最大设计风速一般不应低于30m∕s o校验杆塔电气间隙选取的风压不均匀系数α,当档距超过200m时Q=0.61(设计风速v220m∕s);对耐张塔跳线或档距不超过200m时α=I o此外,杆塔电气间隙还应考虑风雨共同作用(湿闪)的情况,并应留有适当的裕度。

二.加强对线路所经区域的气象及导线风偏的观测,记录、搜集有关气象资料(特别是瞬时风及飓线风的数据)以及导线发生风偏故障的规律和特点。

通过对取得资料的汇总、分析并结合运行经验,制订相应的防范措施。

现时可采取的防范措施有:a.在容易发生风偏故障的地段,导线宜采用V型绝缘子串悬挂;b.对耐张塔跳线没有安装跳线串的,应考虑加装跳线串(跳线串不宜采用复合绝缘子,并根据具体情况考虑是否加装重锤);c.对直线塔悬垂绝缘子串,可考虑在导线下方加装重锤。

d.加强线路走廊障碍物的检查清理,校验导线对树木、边坡等在风偏情况下的净空距离,不满足要求的应进行处理。

三.对发生风偏故障的线路,应做好线路故障的分析并填写《输电线路故障(一类障碍、事故)技术调查分析表》,同时应单独建立技术档案、记录等。

线路风偏故障过后,应仔细检查导线、金具、铁塔等受损情况,及时消除缺陷。

四.开展导线风偏的试验与研究(-)开展强风作用下有雨和无雨时的空气间隙工频放电对比试验,找出规律,为线路设计提供依据;(二)研究观测气象和导线风偏的在线监测系统,为线路设计考虑绝缘子串及导线风偏时,风速及风压不均匀系数的选取提供依据;(三)对杆塔设计在各种不利情况下的气象条件组合,特别是在导线发生风偏时的气象条件的选取,进行更深一步的探讨和研究,为今后完善设计理论提供帮助。

浅谈220kV输电线路风偏故障及防风偏改造措施

浅谈220kV输电线路风偏故障及防风偏改造措施
电力 系统 的建 设 。 众所周知 , 2 2 0 k V输 电线 路 通 常 都 是 设 置 在 户 外 的 , 一 旦 天 气 比较 恶 劣 时 , 特别是大风天气 时, 很 容 易 导 致 输 电线 路 出现 风 偏 故障 , 严重地影 响 2 2 0 k V输 电线 路 的 稳定 性 , 从 而 造 成 电弧烧 伤 及 线 路 短 路 等现 象 。如 果 出 现 风 偏 故 障 , 很 有 可 能导 致 输 电线 路 中 断 , 从 而 使
电力 系统 的稳 定 性 受 到严 重 的影 响 , 使 人们 的 正 常 工作 与 生 活 受 到 严 重 影 响 。
【 关键词 】 2 2 0 k V; 输 电线路 ; 风偏 ; 故障 ; 改造 【 中图分类号 】 T M 7 5 【 文献标识码 】 A
【 文章编号 】 1 0 0 6 — 4 2 2 2 ( 2 0 1 7 ) 0 9 — 0 1 6 7 — 0 2
若在 2 2 0 k V输 电线 路 风 偏 故 障 出现 时 未 及 时 消 除 .或 者 出现 短路现象 , 则有 可 能会 扩 大 事故 的 发 生 范 围 , 致 使 出现 更 加 恶 劣 的 影 响 。2 2 0 k V输 电 线路 风 偏 故 障 种 类 中最 为常 见 的 就 是 输 电线 对 杆 塔 的放 电[ 4 1
引 言
输 电线路 中比 较 常 见 的 一 种 故 障 种 类 就 是 2 2 0 k V 输 电 线 路风偏故 障. 其会 严 重 的 影 响 电 力 系统 的安 全 性 与 稳 定 性 , 特
别 是 天 气 比较 恶劣 时 .更 加 容 易 出现 2 2 0 k V 输 电 线 路 风 偏 故
间 隙进 行 检 测 与 计 算 . 同时 还 应 当对 导 线 与周 边 构 筑 物 、 建 筑

输电线路风偏故障分析与防范

输电线路风偏故障分析与防范

输电线路风偏故障分析与防范由于近年来石嘴山地区大风天气较多,该地区110-220kV线路发生多次大风跳闸故障。

针对故障原因,笔者对大风天气与地区线路运行条件进行深入分析,提出了地区电网防风偏治理的方案。

标签:线路;风偏故障;防范1风偏故障类型及特点1.1 风偏故障类型及故障统计风偏故障是输电线路在大风天气下导线(带电体)与杆塔、拉线、树、竹、建筑物等(地电位体)之间或其他相导线的空气间隙小于大气击穿电压而造成的跳闸故障。

风偏故障不能消除或发生相间短路时,会扩大事故范围。

风偏故障主要类型有直线杆塔绝缘子对塔身或拉线放电,耐张杆塔跳线引流对塔身放电,导线对通道两侧建(构)筑物或边坡、树竹木等放电现象。

以石嘴山地区输电线路运行记录为例,2009-2011年输电线路间共发生风偏故障17次,发生风偏故障的线路主要为110-220kV线路,其中220kV线路风偏故障11次,占风偏跳闸故障的64.7%,110kV线路风偏故障6次,占风偏跳闸故障的35.3%。

由于近年来大风天气持续增多、微气候气象条件的不断变化,输电线路风偏故障不断发生,对电网的安全运行也带来了严峻考验,因此对输电线路风偏故障的防治必须引起高度重视。

1.2 输电线路风偏故障特点1.2.1 气象条件发生明显变化。

根据石嘴山地区电网2001年-2011年间110-220kV线路风偏跳闸数据,可以知道2001年-2009年间110-220kV输电线路风偏故障较少,而2010-2011年间该地区风偏故障次数显著增加,调查气象资料,2001年-2009年地区最大风速为21m/s,而2010-2011年间地区瞬时最大风速为30m/s,地区瞬时最大风速有所增强。

1.2.2 风偏跳闸时间具有规律性。

石嘴山地区发生风偏跳闸故障主要集中在每年12月至次年4月,该时间段为西北地区大风季节。

此外,该地区电网110kV 及以上架空输电线路并非每年都会发生。

某些年份的线路风偏故障往往非常严重。

220kV架空输电线路风偏放电原因分析及改造措施

220kV架空输电线路风偏放电原因分析及改造措施

220kV架空输电线路风偏放电原因分析及改造措施王全兴福建省福州电业局摘要:福州地处福建沿海东南部,每年沿海登陆的台风以及强对流天气产生的飑线风都会对输电线路造成严重威胁,其中最易发生导线、引流线在强风作用下对塔身风偏放电,导致输电线路失地故障。

根据多年来的运行经验统计,线路风偏跳闸次数占总跳闸次数的20%~30%。

本文通过对风偏放电机理的分析和历年来典型事故的调查,对线路的防风性能进行系统的科学计算、分析、评价,找出影响线路风偏放电的原因,进而制定针对性的改造措施,以提高线路防风偏性能。

关键词:架空线路防风偏分析改造一、台风与飑线风形成的机理太阳直射的持续高温,造成大面积洋面上的水分大量蒸发。

不断蒸发的水分将逐渐排斥空气中的其它气体成分,使空气的湿度急剧增加,当有外部条件(如降温或水蒸气自动凝结)促使高湿度的空气水分凝聚时,空气的压强会急剧下降,造成了相对于周围空间的大气负压,而这种负压就是形成台风的中心负压。

这种负压一旦形成,周围的空气就会立刻进行补充。

由于负压往往是从低温度的高空开始形成的,因而也就形成了自下而上且周围向中心旋转的空气大旋涡,这就是台风形成的机理。

来源:飑线风系局部强对流天气,飑线前天气较好,多为偏南风,且在发展到成熟阶段的飑线前方常伴有中尺度低压。

飑线后天气变坏,风向急转为偏北、偏西风,风力大增,飑线之后一般有扁长的雷暴高压带和一明显的冷中心,在雷暴高压后方有时还伴有一个中尺度低压,由于它尾随在雷暴高压之后,故称之为“尾流低压”。

飑线沿线到后部高压区内,有暴雨、冰雹、龙卷等天气。

台风、飑线风期间,近中心风速可以达到35m/s以上,风圈影响半径大,对输电线路的导线、引流线、绝缘子串产生极大的风压荷载,引起线路风偏摇摆放电。

二、福州地区输电线路概况福州电业局输电线路主要以220kV/110kV为骨干网,辅之有35kV线路,架空输电线路所经地区气候、地形、地质和各种自然条件十分复杂。

输电线路风偏闪络故障及防范措施分析25

输电线路风偏闪络故障及防范措施分析25

输电线路风偏闪络故障及防范措施分析摘要:随着电力科学技术水平的不断提升,我国电网设施建设进入了新的发展阶段,输电线路运行与安全保护性能不断增强。

输电线路风偏闪络故障是线路在强风扰动下,线路放电间隙减小形成的放电问题,较高的放电水平会对线路形成一定的损害,造成风偏跳闸等系列问题,影响线路的正常运行。

本文探讨了输电线路风偏闪络故障及防范措施的相关问题,旨在提供一定的参考与借鉴。

关键词:输电线路;风偏闪络;故障;防范1输电线路风偏闪络故障分析1.1设计裕度导致的风偏闪络故障在新的输电线路建设指导规范中,相应的抗风性能设计裕度为30、50a,而原有旧的规范中相应的设计裕度仅为15、30a一遇。

同时,原有规范对于抗风性能的设计是依据最大设计风速来进行的,而新的规范则要求根据基本风速来计算,就二者的计算结果来看,采用基本风速来计算更贴近实际情况,线路整体抗风性能裕度要高出5%。

另外,针对风压的计算新规范也将原有规范的不均匀风压系数设置为0.75,同样也更贴近实际风力效果。

相关线路运行实际效果统计表明,部分按照旧规范设计的输电线路裕度过小,输电线路在面临风力侵扰的情况下,相应的抗风能力相对不足。

1.2强风天气导致的风偏闪络故障强风天气对线路造成的侵扰是形成闪络故障的直接诱因,在风力作用下输电线路的抖动或波动造成线路间隔变化,同时绝缘子与导线塔头间的绝缘效果将收到一定破坏,进而在特定位置形成相应的闪络放电现象。

在风偏闪络放电能量较小的情况下,将会对放电位置的导线或金属夹具造成损坏,在能量较大的情况下,则会形成风偏跳闸,导致大面积停电等系列严重事故的产生。

另外,一般强风天气与暴雨等气候条件共同出现的,这时雨水将在风力作用下形成水线,在水线流动与闪络同向的情况下,将会降低线路空隙放电电压,诱发出一系列风偏故障。

1.3微地形环境导致的风偏闪络故障微地形环境指的是在输电线路架设区域局部位置山体、河流、植被等因素构成的地形环境,这种局部地形环境中的风力条件也是导致风偏闪络故障的重要因素。

沿海架空输电线路直线塔风偏故障分析和防风措施探讨

沿海架空输电线路直线塔风偏故障分析和防风措施探讨

沿海架空输电线路直线塔风偏故障分析和防风措施探讨【摘要】计算分析了沿海地区架空输电线路风偏故障原因,通过实例介绍了沿海线路直线铁塔防风改造的方法、措施和应用情况。

【关键词】架空线;风偏;故障;分析;措施1.线路因风偏故障跳闸情况据统计,2008年江门电网受台风影响引起的线路跳闸约占跳闸总数的41%。

尤其是直线铁塔风偏故障因其故障后重合成功率较低,而台风出现的季节正值迎峰度夏期间,这不仅影响区域供电,而且容易引起电网振荡甚至解列,给电网的安全运行带来较大危害。

如:2008年9月24日凌晨,受第14号台风“黑格比”(最大阵风:50m/s)影响,位于沿海的220kV铜唐甲乙线等四回线路相继故障跳闸共23次,其中两回重合不成功的故障均发生在Z633、Z634型直线塔。

2.线路风偏故障分析风速是导线风偏的必备条件,不同风速有不同的影响,风速在5-25m/s(4~8级)时易发生导线跳跃,但在二级气象区内一般不会导致故障发生;大风(特别是阵风)易使导线发生不同期摆动,可能发生对附近物体或塔身的放电。

特别是在微气象地区,当风向垂直导线轴向夹角大于45°时,易形成摆动发生风偏。

从线路故障点来看,由于地形抬升、气象变化显著,风向与输电线路接近垂直,并在该区域形成风力加速。

而气象部门测得的风速值一般是10min的平均值,远无法代表故障点当时的风向和风力,这导致线路风荷载的大幅增加,故障点杆塔局部风速可能超过设计最大风速或出现向上提升导线和绝缘子串的龙卷风(故障点附近强风造成许多大树折断现象),使塔头空气间隙减小;同时由于雨天空气湿度较大,空气绝缘强度降低,两方面的原因相互作用造成导线对塔身放电,造成线路跳闸。

在线路故障点查找中,证明了上述推测的正确性。

影响线路故障跳闸的其它因素:设计对恶劣气象和局部地区微气候影响估计不足,耐张塔设计中引流线设计不合理,引流线过长或跳线绝缘子串为不稳定结构,也是造成风偏跳闸的原因之一。

220kV输电线路风偏故障及防控措施

220kV输电线路风偏故障及防控措施

220kV输电线路风偏故障及防控措施摘要:随着环境的日益恶化,气候也变得越来越复杂多变,许多国家的基础设施建设工作都因天气问题而受到了严重的影响,最为典型的电力系统的建设。

众所周知,220kV输电线路通常都是设置在户外的,一旦天气比较恶劣时,特别是大风天气时,很容易导致输电线路出现风偏故障,严重地影响220kV输电线路的稳定性,从而造成电弧烧伤及线路短路等现象。

如果出现风偏故障,很有可能导致输电线路中断,从而使电力系统的稳定性受到严重的影响,使人们的正常工作与生活受到严重影响。

关键词:220kV;输电线路;风偏;故障;改造1.220kV输电线路风偏故障的规律和类型1.1 220kV输电线路风偏故障规律在恶劣的天气环境下,特别是大风天气环境下,很容易出现220kV输电线路风偏故障,并且强风往往与冰雹、暴雨等强对流天气是相互依存的。

一旦在局部区域内出现强风天气,由于其风力比较强劲,风速也比较快,再加上其阵发性比较强,往往不会持续太长时间,很容易造成220kV输电线路风偏跳闸故障。

同时220kV输电线路的输电塔会因强风的影响而发生一定程度的角度偏移及位移改变,在空气放电间距减小时,与强风相依存的冰雹和暴雨也会在一定程度上减小杆塔与输电线路之间的间距,使其出现频繁放电现象,如此一来,在二者的共同作用下,220kV输电线路极易出现风偏故障,从而严重影响220kV输电线路的运行。

1.2 风偏的放电路径220kV输电线路风偏故障的放电路径主要包括三种形式:①输电线路对周围物体放电;②直线杆塔绝缘子对塔身放电;③耐张杆塔引流线对塔身放电[1]。

此三种风偏故障的放电路径存在着一个共同之处,即输电线上会出现明显的烧伤痕迹,可能很显然地发现风偏故障给输电线路造成的损伤。

输电线对周围物体的放电往往会出现至少100cm的烧伤长度,而且周围物体会出现明显的烧伤痕迹,可以发现周围物体的焦黑程度比较明显。

通常在地形比较繁杂且存在较大档距的地方或者地质条件比较独特的区域才会出现直线杆塔绝缘子对塔身放电,此种风偏故障往往会出现比较长的放电痕迹,而且与地面之间的角度距离比较高,在监控上往往不太突出。

探讨输电线路风偏故障原因与对策

探讨输电线路风偏故障原因与对策

探讨输电线路风偏故障原因与对策输电线路由于处于相对复杂的地理环境空间,很容易遭受来自外界气候因素、地理因素等的影响,其中风力因素就是一大因素。

输电线路在强风影响下出现风偏跳闸问题,会破坏整个输电线路的安全运转,而且一旦出现风偏跳闸,就很难通过重合闸的方式恢复供电,严重时可能导致整个输电线路的停运。

因此必须重视输电线路风偏故障的原因分析,并对应提供科学的解决对策。

1 输电线路概况与故障四周环境1.1 输电线路的风力影响风力、风速的大小将直接影响导线的风偏,而且风偏会随着风速的加大而严重,风速达到5~25米/秒时,输电线路会出现跳跃,阵风会使导线随风摇摆,甚至对周围物体、杆塔等进行放电,遇到微气象、微地区时,如果垂直的导线和风向之间成角在45度以上,则可能形成摆动,造成风偏故障。

根据该220kV输电线路的实际情况,因为其处于山地地形、地势较高,一边山岭遍布,气象容易发生变化,输电线路走向同风向之间夹角近90度,此区域的风速会越发变大。

同时,根据相关部门的监测,以及后期的风速值计算,能够得出故障点的风速势必超出30米/秒,线轴同风向之间的夹角也大于45度。

在强风力作用下,输电线路承受过大的载荷,导致塔头空气间隙逐渐变小,形成对塔身的放电闪络问题,导致故障的出现。

1.2 风速、风向与风偏跳闸的关系输电线路实际工作时,风速与风向会在很大程度上影响风偏放电,特别是当风向和线路方向相垂直时,会加剧导线风偏放电问题。

其中线路风压可以通过以下公式来计算:Wx=1/2αρV2μzμscdLpsin2θ式中:V代表风速,通过观察公式能够得出:导线风压同风速平方之间呈现正相关,这就意味着随着风速的上升与增大,线路更易于出现风偏故障,从而造成巨大的故障问题。

一般来说,线路的风偏故障的发生是由于风向与导线方向垂直时的瞬时风力所导致的,风速急剧上升,对应的风向会不断变化,也不易引发风偏故障。

一旦风向与导线方向垂直,风速已经远远超越杆塔自身的承受力,则会造成杆塔倒塌,引发风偏跳闸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近年来500kV交流和直流线路在强风作用下发生风偏闪络的次数仍然很频繁[3]。发生风偏故障的输电线路通常以山区为主,大风天气多。一方面在设计时未对当地气候条件进行深入剖析,导致杆塔头部尺寸与标准要求存在不符之处,另一方面则是由于对恶劣气象条件估计不足,在极端天气及微气象条件下,瞬时风速超过了设计值,导致风偏故障发生[4]。
架空输电线路发生风偏故障范围广、次数多、影响大,防止风偏故障的发生是设备运行管理单位的“六防”工作之一。对风偏故障特点的分析总结有助于采取针对性措施减少风偏故障的次数,在发生故障时能准确判断是否为风偏故障,并及时查找故障点。
架空输电线路风偏故障有以下特点:一是发生风偏闪络的区域均有强风且大多数情况下伴有大暴雨或冰雹;二是直线杆塔发生风偏跳闸居多,耐张杆塔相对较少;三是风偏故障的放电部位多在塔头及跨越物上,杆塔上放电点均有明显电弧烧痕,放电路径清晰,故障点查找较为容易;四是绝大多数风偏闪络均发生于线路工作电压下,由于强风的持续作用,重合闸不成功,从而导致线路停运。
2)加装重锤片。在悬垂绝缘子串的下方加装重锤,在抑制跳线风偏上起到了很好的作用,然而此方法效果并不十分理想,仅依靠加装重锤片仍无法从根本上解决问题。
3)优化绝缘子型式,采用防风偏绝缘子。新一代防风偏绝缘子的优点是绝缘子风偏摆动幅度小,防止导线与杆塔的电气间隙不满足要求;此外防风偏绝缘子安装可靠,充分考虑了与杆塔连接的金具,有利于后续技改工程。在费用方面,防风偏绝缘子优于瓷质绝缘子和玻璃绝缘子;在防风性能方面,不加重锤、防风拉线等防风措施的情况下,中相及外角侧的普通合成绝缘子串不能满足安全空气间隙的要求,而采用防风偏绝缘子后,即使在40m/s风速情况下,安全空气间隙也能满足要求。
架空输电线路风偏故障原因分析及预防措施
摘要:架空输电线路运行在复杂多变的自然环境中,在强风特别伴有降雨的作用下容易发生风偏故障,造成线路故障跳闸。本文针对架空输电线路风偏故障产生的原因、风偏故障的特点及影响因素进行分析,并提出预防风偏故障的措施。
关键词:输电线路;风偏故障;解决措施;
引言
风自然界影响架空输电线路设计、施工、运维整个过程的重要因素之一。在架空输电线路运行过程中,设备运维管理单位对于防止风偏故障的发生,保证架空输电线路安全运行一直付出巨大的努力。风偏故障发生后会导致线路跳闸、电弧烧伤、断线等故障,且风偏故障发生后线路自动重合闸多数不能重合成功,造成线路停运[1, 2]。
2.2风压高度变化系数
风力随着高度的增大而增大,风压高度变化系数对风偏故障的影响很大。空气在地球表面流动时与地面摩擦而产生摩擦力,该摩擦力引起与地面相接近的气流方向和速度的很大变化。随着高度的增加,摩擦对风速的影响逐渐减小,故风速随高度增加而增加,在低气层中增加很快,而很高时则逐渐减慢。理论上风速沿高度的增大与地面摩擦力、地表基本风速、高度等因素有关。在设计时应充分考虑风压高度变化系数的影响,综合各种参量进行足够的验算并留有一定的裕度。
1风偏故障发生的原因及特点
架空输电线路风偏故障发生的主要原因,是导线及绝缘子串的垂直荷载和水平荷载比值的变化,引起绝缘子串及导线产生风偏角,使得绝缘子串及导线与塔头的空气间隙发生变化。架空输电线路在设计时所采用的最大风速,为30年一遇在距地10米高处10分钟内的平均风速。而由于存在瞬时风速和杆塔高度的影响,实际运行中遭受的强风会大于设计值,导线及绝缘子串的水平荷载大到一定程度时,导线及绝缘子串与塔头的空气间隙不满足安全距离要求,空气被击穿而发生闪络。
2风偏故障影响因素分析
影响风偏故障发生的原因很多,在建立风偏角计算模型时要充分考虑风速、风向与导线轴向夹角、风压不均匀系数、风压高度变化系数、档距、导线型号及分裂数、导线应力、导线挂高度、塔头尺寸以及绝缘子串重量等因素[6]。本文主要对以下影响风偏故障的因素进行分析。
2.1风向与导线轴向夹角
风向与导线轴向夹角对导线风偏角及导线对杆塔最小间隙距离的影响非常明显,随着风向与导线轴向夹角的增大,风偏角数值也迅速增大,而最小间隙距离则迅速减小。因此当线路架设于迎风山坡或山脊时,为使设计更加合理,应当在线路设计阶段考虑风与导线轴向夹角的影响。
1)采用V形串绝缘子组合。架空输电线路发生风偏故障的杆塔塔型以直线塔为主,将直线杆塔悬垂绝缘子串改造成V形串绝缘子串,可增加导线和绝缘子的横向约束,防止导线和绝缘子在强风作用下向杆塔倾斜,降低风偏故障发生的几率。V形串合成绝缘子在500kV紧凑型输电线路中已得到广泛应用,防风偏效果良好。但采用V形串绝缘子也有其不足,由于局部地区大风、强对流极端天气频发,风力过大和风向的变换使V形串合成绝缘子受力不合理而损坏,导致V形串绝缘子发生掉串事故,因此对V形串绝缘子要加强巡视检查。
2.3绝缘子串的型式
绝缘子重量是进行直线杆塔风偏计算的重要参数,不同材质绝缘子对风偏的影响也不同。相同条件下采用合成绝缘子的杆塔与采用瓷质绝缘子的杆塔发生风偏故障的概率差别很大,有很多杆塔在将瓷质绝缘子更换为合成绝缘子后未进行风偏校验,导致发生了风偏故障。
3风偏故障预防措施
输电线路发生风偏放电是在强风作用下导线与杆塔间或导线与导线间的空气间隙距离减小,一旦这种间隙距离的电气强度与系统运行电压不相符时,将导致放电事故的发生。为了更好防止风偏故障的发生,需在设计风速、设计裕度、施工安装工艺、杆塔塔头尺寸等多个方面进行加强,以有效预防输电线路风偏闪络的发生,降低跳闸事故机率[7]。防止风偏故障发生的措施如下:
4)设计时充分考虑当地风速影响。在架空输电线路设计时对当地气候条件进行深入剖析,总结气候特点,特别是要重视微气候气象资料的收集和区域划分,根据实际条件合理提高局部风偏设计标准,进行风偏校验,确定杆塔的型式及塔头的尺寸,可有效减少风偏故障的发生。但风偏设计裕度增加太多,会大大提高设备建设成本,需要综合考虑安全、效能和成本等因素,达到架空输电线路设计的最优化。
目前所发生的架空输电线路风偏故障,与极端气象条件具有直接的关系,特别是在大风伴有降雨时,更易导致风偏闪络故障的发生。这是由于落在导线上的雨水会随风向形成定向的间断型水线,一旦其与放电闪络路径处于相同方向,将导致空气间隙的放电电压下降,从引发风偏故障[5]。另外处在风口及风道位置等微气象区的杆塔,由其承受的风力较为集中,也极易发生风偏故障。
相关文档
最新文档