三角函数的最值(专题)

合集下载

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。

专题2.1+与三角函数相关的最值问题-玩转压轴题突破140分之高三数学选填题高端精品

专题2.1+与三角函数相关的最值问题-玩转压轴题突破140分之高三数学选填题高端精品

一.方法综述三角函数相关的最值问题历来是高考的热点之一,而三角函数的最值问题是三角函数的重要题型,其中包括以考查三角函数图象和性质为载体的最值问题、三角函数的有界性为主的最值问题时屡见不鲜的题型,熟悉三角函数的图象和性质和掌握转化思想是解题关键. 二.解题策略类型一 与三角函数的奇偶性和对称性相关的最值问题【例1】若将函数()sin2cos2f x x x =+的图象向左平移ϕ(0ϕ>)个单位,所得的图象关于y 轴对称,则ϕ的最小值是( ) A.4π B. 38π C. 8π D. 58π 【答案】C【指点迷津】()sin()f x A x ωϕ=+具有奇偶性时,k ϕπ=(k z ∈)或2k πϕπ=+(k z ∈).【举一反三】1、【广州市2018届高三第一学期第一次调研】将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为A.12π B. 6π C. 4π D. 3π【答案】B【解析】将函数2sin 23y x π⎛⎫=+⎪⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数:()2sin 23y x πϕ⎡⎤=++⎢⎥⎣⎦,又其为奇函数, ∴2sin 203πϕ⎛⎫+= ⎪⎝⎭, ()22k πZ 3k πϕ+=∈,, k π23πϕ=-, ()Z k ∈,又0ϕ> 当k 1=时, ϕ的最小值为6π 故选:B2、【河南省2018届高三12月联考】若函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭关于直线x m =(0m <)对称,则m 的最大值为( ) A. 4π-B. 1112π-C. 512π-D. 712π- 【答案】C【解析】由题意得, ()232m k k Z πππ+=+∈,即()212k m k Z ππ=+∈, 0m <Q , 1k ∴=-时, m 的最大值为512π-. 3、【2018河南省林州市第一中学模拟】定义运算12142334a a a a a a a a =-,将函数()3sin (0)1cos wxf x w wx=>的图象向左平移23π个单位长度,所得图象对应的函数为偶函数,则w 的最小值是( ) A. 14 B. 54 C. 74 D. 34【答案】B令0k =可得ω的最小值为54. 本题选择B 选项.类型二 与三角函数的单调性相关的最值问题 【例2】已知0ω>, ()sin 4f x x πω⎛⎫=+⎪⎝⎭在2ππ⎛⎫⎪⎝⎭,上单调递减,则ω的取值范围是( ) A. 15[24⎤⎥⎦, B. 13[ 24⎤⎥⎦, C. 102⎛⎫⎪⎝⎭, D. ](0 2, 【答案】A【指点迷津】熟记三角函数的单调区间以及五点作图法做函数图象是解决单调性问题的关键. 【举一反三】1、【皖江名校2018届高三12月份大联考】若函数()2sin 0y x ωω=>的图象在区间,36ππ⎛⎫- ⎪⎝⎭上只有一个极值点,则ω的取值范围为( ) A. 312ω<≤ B. 332ω<≤ C. 34ω≤< D. 3922ω≤< 【答案】B【解析】结合题意,函数唯一的极值点只能是2x πω=-,所以有32{62ππωππω-⨯<-⨯≤得332ω<≤。

初升高数学暑假衔接(人教版)高一预习专题强化1 三角函数中的最值问题(教师版)

初升高数学暑假衔接(人教版)高一预习专题强化1 三角函数中的最值问题(教师版)

强化专题1三角函数中的最值问题【方法技巧】求解三角函数的值域(最值)常见到以下几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).求三角函数取最值时相应自变量x 的集合时,要注意考虑三角函数的周期性.(2)形如y =a sin 2x +b sin x +c (或y =a cos 2x +b cos x +c ),x ∈D 的函数的值域或最值时,通过换元,令t =sin x (或cos x ),将原函数转化为关于t 的二次函数,利用配方法求值域或最值即可.求解过程中要注意t =sin x (或cos x )的有界性.(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).域,也可利用正弦函数、余弦函数自身的有界性求解.【题型目录】一、y =A sin(ωx +φ)+B 型的最值问题二、可化为y =f (sin x )型的二次式的值域问题三、含sin x ±cos x ,sin x cos x 的最值问题四、形如()sin sin x af x x b +=+的最值问题五、函数图象平移问题的最值六、ω的最值问题【例题详解】一、y =A sin(ωx +φ)+B 型的最值问题1.已知()ππ2sin cos 26f x x x ⎛⎫⎛⎫=+⋅- ⎪ ⎪⎝⎭⎝⎭,则()f x 的最大值为()A .12B .2C .1D2.函数sin()cos()26y x x ππ=+-的最大值为________________.3.函数2cos cos 33y x x ππ⎛⎫⎛⎫=++⎪ ⎪的最大值是_______.4.已知函数()()cos 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则()f x 在区间,44⎡⎤-⎢⎥⎣⎦上的值域为______.5.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.【答案】1【详解】由题意知:()()()sin 22sin cos f x x x ϕϕϕ=+-+=()()sin[]2sin cos x x ϕϕϕϕ++-+=()sin cos x ϕϕ++()cos sin x ϕϕ+-()2sin cos x ϕϕ+=()cos sin x ϕϕ+-()sin cos x ϕϕ+=()sin[]x ϕϕ+-=sin x ,即()sin f x x =,因为x R ∈,所以()f x 的最大值为1.考点:本小题主要考查两角和与差的三角函数、三角函数的最值的求解,熟练公式是解答好本类题目的关键.二、可化为y =f (sin x )型的二次式的值域问题1.当x ∈π6,7π6时,函数y =3-sin x -2cos 2x 的值域为________.又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=x +78,所以当sin x =14时,y min =78,当sin x =-12或sin x =1时,y max =2.即函数的值域为78,2.2.已知函数()22cos 2cos f x x x =-+,[]0,x a ∈的值域为10,2⎡⎤⎢⎥⎣⎦,则实数a 的取值范围为__________.3.函数2()2cos 2sin 4cos f x x x x =+-的最大值为__,取得最大值时对应的x =_______.4.已知函数2()4tan 4tan 3(0)2f x x x x π=-+<<,当x θ=时,()f x 取得最小值,则tan(4πθ+=__________.【答案】3【分析】根据x 的取值范围求得tanx 的范围,将tanx 视为一个整体,利用二次函数的最值,求得tan θ的值,再利用两角和的正切公式,求解即可.5.函数2tan 3tan 1,,34⎡⎤=+-∈-⎢⎥y x x x ππ的值域为________.6.若方程2cos sin 0x x a -+=在,22ππ⎛⎤- ⎥⎝⎦内有解,则a 的取值范围是______.三、含sin x±cos x,sin x cos x的最值问题1.函数2sin cos2y x x x x=+的最大值为()A.52B.3C.72D.42.函数y =sin x -cos x +sin x cos x 的值域为________.【答案】-1+222,1【详解】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x ·cos x ,sin x cos x =1-t 22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1;当t =-2时,y min =-1+222.∴函数的值域为-1+222,1.3.若π03x <≤,则函数sin cos sin cos y x x x x =++的值域是___________.4.函数()13sin cos cos 222f x x x x π⎛⎫=+--⎪⎝⎭的最小值为___________________.【答案】-1【分析】利用诱导公式和二倍角公式化简函数为()sin cos sin cos f x x x x x =++,令sin cos x x t +=,5.函数1()sin 2()24g x x x x π⎛⎫=-+∈ ⎪R 的值域为___________.6.已知函数1sin cos (),sin cos x xf x x R x x+=∈,则()y f x =的值域为_______.所以(][)1,22,y t t=+∈-∞-⋃+∞,所以(][)11,11,y t ⎛⎫=+∈-∞-⋃+∞ ⎪,7.函数sin cos ()1sin cos =++x xf x x x的值域为_____________.8.若()sin cos 2sin cos a x x x x +≤+对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 的最大值为()A .2B .3C .522D .524四、形如()sin sin x af x x b +=+的最值问题1.函数cos 12cos 1x y x +=-的值域是()A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+C .[]0,4D .[]0,22.函数2cos2cos xy x+=的最大值为__________;3.求下列函数的值域:(1)sin 2sin 1x y x -=-;(2)1tan ,,01tan 2+⎛⎫=∈- ⎪-x y x x π.五、函数图象平移问题的最值1.将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),再向右平移()0ϕϕ>个单位,得到函数()g x 的图象,若函数()g x 图象关于y 轴对称,则ϕ的最小值为()A .6πB .4πC .3πD .2π2.设函数5()sin 26f x x ⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是()A .6πB .3πC .23πD .56π3.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是()A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .⎪⎭⎫⎢⎣⎡ππ,2【答案】A22故ϕ的取值范围是[),2ππ故选:A.【点睛】关键点睛:本题的关键是通过对三角函数平移的过程利用数形结合找到相交的临界位置.4.将函数2sin 23y x π⎛⎫=+⎪⎝⎭的图象沿水平方向平移ϕ个单位后得到的图象关于直线4x π=对称(0ϕ>向左移动,0ϕ<向右移动),当ϕ最小时,则ϕ=()A .3πB .12π-C .6πD .3π-5.已知函数()()sin f x A x =+ωϕ(0A >,0ω>,0ϕπ<<)的部分图象如图所示,且23f ⎛⎫=⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的18,再向上平移一个单位长度,得到()g x 的图像;若()()129g x g x =,1x ,250,2x π⎡⎤∈⎢⎥⎣⎦,则21x x -的最大值为()A .πB .34πC .32πD .2π6.已知1x ,2x ,是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点,且12x x -的最小值为3π,若将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称,则ϕ的最大值为()A .34πB .4πC .78πD .8π7.声音是由物体振动产生的声波,其中纯音的数学模型是sin y A x ω=,已知函数()()()2sin 2ππf x x =+-≤≤f f 的图像向右平移5π12个单位后,与纯音的数学模型函数2sin 2y x =图像重合,且()f x 在[],a a -上是减函数,则a 的最大值是()A .6πB .4πC .3πD .512π8.将函数()3sin()2f x x =--图象上每一点的纵坐标不变,横坐标缩短为原来的13,再向右平移29π个单位得到函数()g x 的图象,若()g x 在区间,18πθ⎡⎤-⎢⎥⎣⎦上的最大值为1,则θ的最小值为()A .12πB .6πC .3πD .18π9.将函数()2cos f x x =的图象先向右平移()0ϕϕπ<<个单位长度,再把所得函数图象的横坐标变为原来的()10ωω>倍,纵坐标不变,得到函数()g x 的图象,若对()g x 满足()()124g x g x -=,有12min4x x π-=恒成立,且()g x 在区间()63ππ,上单调递减,则ϕ的取值范围是()A .[]123ππ,B .[]32ππ,C .2(]33ππ,D .2[]33ππ,六、ω的最值1.设函数()()cos 0f x x ωω=>,将()y f x =的图象向右平移3π个单位长度后,所得图象与原图象重合,则ω的最小值等于()A .12B .3C .6D .9则6,k k Z ω=∈,又0ω>,所以当1k =时,ω的最小值为6故选:C【点睛】本题考查三角函数的平移知识,以及余弦函数的周期,关键在于重合的条件,相当于加上的是周期,属基础题.2.已知函数()sin()(0,0)f x A x ωϕωϕπ=+><<为偶函数,在0,3π⎡⎫⎪⎢⎣⎭单调递减,且在该区间上没有零点,则ω的取值范围为()A .3,22⎡⎤⎢⎥B .31,2⎡⎤⎢⎥C .35,22⎡⎤⎢⎥D .30,2⎛⎤ ⎥3.已知函数()()sin 0f x x ωω=>在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且()1f x =在区间[0,2]π上有且仅有一解,则ω的取值范围是()A .30,4⎛⎤ ⎥B .33,42⎛⎫ ⎪C .15,44⎡⎫⎪⎢D .13,44⎡⎤⎢⎥4.函数sin(0)3y x πωω=->的图象向左平移4π个单位后,得到函数()f x 的图象,若函数()f x 为奇函数,则ω的最小值为()A .12B .43C .13D .565.已知函数()tan f x x ω=在(,22ππ-内是减函数,则ω的取值范围是()A .01ω<≤B .10ω-≤<C .20ω-≤<D.102ω<≤6.已知函数()cos()(0,0)f x x ωϕωϕπ=+><<的图象的一条对称轴与其相邻的一个对称中心的距离为4π,将()f x 的图象向右平移6π个单位长度得到函数()g x 的图象.若函数()g x 的图象在区间423,ππ⎡⎤⎢⎥⎣⎦上是增函数,则ϕ的取值范围为()A .,62ππ⎡⎤⎢⎥B .5,36ππ⎡⎤⎢⎥C .2,33ππ⎡⎤⎢⎥D .3,44ππ⎡⎤⎢⎥7.已知函数()()cos (0)2f x x πωϕωϕ=+>≤,,8x π=-是()y f x =的零点,直线38x π=为()y f x =图象的一条对称轴,且函数()f x 在区间51224ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值是()A .9B .7C .5D .38.已知函数()cos 3f x x ω⎛⎫=- ⎪⎝⎭(ω>0),对任意x ∈R ,都有()f x ≤3f ⎛⎫⎪⎝⎭,并且()f x 在区间,63⎡⎤-⎢⎥⎣⎦上不单调,则ω的最小值是()A .6B .7C .8D .99.函数()=sin2+1(0)f x x ωω>在ππ62⎡⎤⎢⎥,上单调递增,则ω取值范围为_____。

三角函数的最值习题精选精讲

三角函数的最值习题精选精讲

三角函数的值域或最值常见的三角函数最值的基本类型有:(1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。

(2)y=asinx+bcosx 型,引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。

Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。

(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。

(4)Y=d x c b x a ++sin sin (或y=dx bx a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。

(5)y=d x c b x a ++cos sin (y=dx c bx a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。

(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx 转化为t 的函数关系式,从而化为二次函数的最值问题。

一、利用三角函数的有界性.求解这类问题,首先利用有关三角函数公式化为sin()y A x k ωϕ=++的形式.在化简过程中常常用到公式:22sin cos sin(),tan ,ba xb x x aab ϕϕϕ+=++=其中由及点(a,b)的位置确定. 例1 、(2000年高考)已知:2123sin cos 12sin y x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合. 解:∵2123sin cos 12sin y x x x =+⋅+1cos 2315sin 21sin(2)44264x x x π+=++=++,∴当sin(2)16x π+=时,max 157244y=+= .此时,2262x k πππ+=+,即6x k ππ=+. 所以y 的最大值为74,此时x 的集合为{|}6x x k k Z ππ=+∈,.例2、求函数1cos 3cos xy x-=+的值域.解: 1cos 3cos x y x -=+⇒(1)cos 2y x +=-⇒2cos 1x y=-+,由|cos |1x ≤得2||11y -≤+, |1|2y +≥即,解得31y y ≤-≥或,所以函数1cos 3cos xy x-=+的值域是3][1-∞-∞ (,,+)二、利用二次函数最值性质求解这类问题,首先利用有关三角函数公式化为2sin sin y x b x c a =++的形式.例3、求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域. 解:278c o s 2s i n y x x =--=278cos 2(1)cos x x ---=223,(cos 2)x --∵[,]63x ππ∈-,∴1cos [1]2x ∈,,∴3[1]2y ∈-,.例4、(90年高考)求函数sin cos sin cos y x x x x =++的最小值. 解:设sin cos x x t +=,[22]t ∈-,,则21sin cos 2x x t -=,所以()y f t ==211,2(1)t ⋅-+([2,2])t ∈-,当1[22]t =-∈-,时,y 有最小值1-.三、利用均值不等式*利用均值不等式求三角函数时,一定要注意均值不等式中的使用条件:一正、二定、三相等.例6、当0x π<<时,求sin 2cos xy x=+的最大值.解:设2223tan 0,(0),,23233x t t t x y t t π=><<=≤=⋅+则(当且仅当tan 32xt ==时取等号)。

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法(解析版)

三角函数专题:三角函数最值(值域)的5种常见考法1、形如sin y a x = (或cos y a x =)型可利用正弦函数,余弦函数的有界性,注意对a 正负的讨论 2、形如sin()y a x b ωϕ=++ (或cos()y a x b ωϕ=++型 (1)先由定义域求得x ωϕ+的范围(2)求得sin()x ωϕ+ (或cos()x ωϕ+)的范围,最后求得最值 3、形如sin cos y a x b x =+型引入辅助角转化为22)y a b x ϕ=++,其中tan baϕ=,再利用三角函数的单调性求最值。

4、形如2sin sin (0)y a x b x c a =++≠或2cos cos (0)y a x b x c a =++≠型, 可利用换元思想,设sin y x =或cos y x =,转化为二次函数2y at bt c =++求最值,t 的范围需要根据定义域来确定. 5、形如sin cos (sin cos )y x x x x =⋅±±型利用sin cos x x ±和sin cos x x ⋅的关系,通过换元法转换成二次函数求值域 6、分式型三角函数值域(1)分离常数法:通过分离常数法进行变形,再结合三角函数有界性求值域; (2)判别式法题型一 借助辅助角公式求值域【例1】该函数sin 3y x x =的最大值是( ) A .1 B 6 C .2 D .2- 【答案】C【解析】因为πsin 32sin 3y x x x ⎛⎫==+ ⎪⎝⎭,又[]πsin 1,13x ⎛⎫+∈- ⎪⎝⎭,所以函数sin 3y x x =的最大值是2.故选:C.【变式1-1】已知()()sin 3cos 0f x A x x A =->的最大值是2,则()3sin 3cos g x x A x +在π3π,44⎡⎤⎢⎥⎣⎦中的最大值是( )A .32B .3C 326+ D .23【答案】C【解析】根据辅助角公式可得:()2223sin 3=333f x A x x A x x A A ⎫=+⎪⎪++⎭()2=3A x ϕ+-,其中3tan ϕ=. 由()f x 的最大值为2()2320A A +>,解得1A =.∴()1333cos 23sin 2g x x x x x ⎫=+=⎪⎪⎭π233x ⎛⎫=+ ⎪⎝⎭.∵π3π,44x ⎡⎤∈⎢⎥⎣⎦,∴π7π13π,31212x ⎡⎤+∈⎢⎥⎣⎦. ∴当π7π312x +=,即π4x =时,()g x 取得最大值. 故()max ππ343g x ⎛⎫=+ ⎪⎝⎭231326232⎫+==⎪⎪⎝⎭故选:C.【变式1-2】已知函数()()3cos sin 3cos 0,2f x x x x x π⎫⎡⎤=∈⎪⎢⎥⎣⎦⎝⎭,则函数()f x 的值域为( ) A .33⎡⎢⎣⎦ B .3⎡⎤⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】()23sin cos 3x x f x x =+)133sin 21cos 22x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 42,333x πππ⎡⎤+∈⎢⎥⎣⎦,所以3sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 所以函数()f x 的值域为3⎡⎤⎢⎥⎣⎦.故选:B【变式1-3】函数2()sin 3cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A .1B .2C .32D .3 【答案】C【解析】因为2()sin 3cos f x x x x =,所以1cos 231()2sin(2)226x f x x x π-==+-,42ππx ≤≤,52366x πππ∴≤-≤,1sin 2126x π⎛⎫∴≤-≤ ⎪⎝⎭,∴13()122max f x =+=.故选:C .【变式1-4】己知函数()3sin 4cos ,R f x x x x =+∈,则()()12f x f x -的最小值是_________. 【答案】10-【解析】由题意可得()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.因为12,R x x ∈,所以min max ()5,()5f x f x =-=.所以()()12f x f x -的最小值是min max ()()10f x f x -=-.题型二 借助二次函数求值域【例2】求函数22sin 2sin 1y x x =-++的值域.【答案】3[3,]2-【解析】y =−2sin 2x +2sinx +1=−2(sinx −12)2+32,−1≤sinx ≤1,根据二次函数性质知,当1sin 2x =时,max 32y =;当sin 1x =-时,min 3y =-, 故值域为3[3,]2-.【变式2-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式2-2】函数2tan 4tan 1y x x =+-的值域为____________【答案】[)5,-+∞【解析】因为2tan 4tan 1y x x =+-令tan t x =,则t R ∈所以()()224125f t t t t =+-=+-,所以()[)5,f t ∈-+∞,故函数的值域为[)5,-+∞【变式2-3】函数()193sin cos 2R 24y x x x =+-∈的最小值是( ) A .14B .12 C .234- D .414-【答案】C【解析】22197313sin cos 2sin 3sin sin 24422y x x x x x ⎛⎫=+-=-+-=--+ ⎪⎝⎭,令sin x t =,则11t -≤≤.因为23122t ⎛⎫--+ ⎪⎝⎭在[]1,1-上单增,所以当1t =-时,2min31231224y ⎛⎫=---+=- ⎪⎝⎭.故选:C .题型三 借助换元法求值域【例】已知函数(),则()A .()f x 的最大值为3,最小值为1 B .()f x 的最大值为3,最小值为-1 C .()f x 的最大值为32,最小值为34D .()f x 的最大值为32,最小值为32 【答案】C【解析】因为函数()sin cos 2sin cos 2f x x x x x =+++,设sin cos 24x x x t π⎛⎫+=+= ⎪⎝⎭,2,2t ⎡∈-⎣, 则22sin cos 1x x t =-,所以2213124y t t t ⎛⎫=++=++ ⎪⎝⎭,2,2t ⎡∈-⎣,当12t =-时,()min 34f t =;当2t =时,()max 32f t =故选:C【变式3-1】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________. 【答案】[-1,1]【解析】设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,即sin x cos x =1-t 22,且-1≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-1时,y min =-1. ∴函数的值域为[-1,1].【变式3-2】函数()sin cos sin 2f x x x x =++的最大值为( ) A .1 B .12 C .12 D .3 【答案】C【解析】()sin cos sin 2sin cos 2sin cos f x x x x x x x x =++=++,令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,所以[2,2]t ∈-,则22(sin cos )12sin cos t x x x x =+=+, 所以22sin cos 1x x t =-,所以原函数可化为21y t t =+-,[2,2]t ∈,对称轴为12t =-,所以当2t 时,21y t t =+-取得最大值,所以函数的最大值为222121=,即()sin cos sin 2f x x x x =++的最大值为12C【变式3-3】函数f (x )=sinxcosx +√2sin (x −π4)的值域为________. 【答案】[−12−√2,1]【解析】由于f (x )=sinxcosx +√2sin (x −π4)=sinxcosx +sinx −cosx ,令sinx −cosx =t ,则sinxcosx =1−t 22,于是函数化为y =1−t 22+t =−12(t −1)2+1,而t =sinx −cosx =√2sin (x −π4)∈[−√2,√2] , 所以当1t =时,函数取最大值1,当t =−√2时,函数取最小值−12−√2,故值域为[−12−√2,1].题型四 分式型三角函数的值域【例4】函数cos 12cos 1x y x +=-的值域是( )A .][(),04,∞∞-⋃+B .][(),02,∞∞-⋃+ C .[]0,4 D .[]0,2 【答案】B【解析】令11cos ,1,,122x t t ⎡⎫⎛⎤=∈-⋃⎪ ⎢⎥⎣⎭⎝⎦,13(21)11322212122211t t y t t t -++===+⋅---,可得[)(]213,00,1t -∈-⋃,[)11,1,213t ⎛⎤∈-∞-⋃+∞ ⎥-⎝⎦,3113,,22122t ⎛⎤⎡⎫⋅∈-∞-⋃+∞ ⎪⎥⎢-⎝⎦⎣⎭,故(][),02,y ∈-∞⋃+∞.故选:B.【变式4-1】函数sin 3sin 2x y x +=+的值域为___________. 【答案】4,23⎡⎤⎢⎥⎣⎦【解析】解:sin 31sin 2sin 21x y x x +==+++, 因为1sin 1x -≤≤,所以1sin 23x ≤+≤,所以1113sin 2x ≤≤+,所以411+23sin 2x ≤≤+, 所以sin 3sin 2x y x +=+的值域是4,23⎡⎤⎢⎥⎣⎦.【变式4-2】函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】212111,2⎡⎫⎛-----⎪ ⎢⎪⎣⎭⎝⎦【解析】令sin cos 24t x x x π⎛⎫=+=+ ⎪⎝⎭,[2,1)(1,2]t ∈---,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[2,1)(1,2]t ∈---,所以()212111,2f t ⎫⎛---∈--⎪ ⎪ ⎣⎭⎝⎦, 即函数sin cos ()1sin cos =++x xf x x x 的值域为212111,2⎡⎫⎛-----⎪ ⎢⎪ ⎣⎭⎝⎦.【变式4-3】当04x π<<时,函数221sin ()cos sin sin xf x x x x-=⋅-的最小值是________.【答案】4【解析】22cos ()sin cos sin xf x x x x=-21tan tan x x =-, 当04x π<<时,tan (0,1)x ∈,所以21110tan tan 244<-≤-=x x ,()4f x ∴≥,即221sin ()cos sin sin xf x x x x-=⋅-的最小值为4.含绝对值的三角函数值域A .[-1,0] B .[0,1] C .[-1,1] D .[-2,0] 【答案】D【解析】当0sin 1x ≤≤ 时,sin sin 0y x x =-= ,所以,当1sin 0x -≤<,2sin y x =,又22sin 0x -≤< ,所以函数的值域为[]2,0-,故选:D.【变式5-1】函数()2sin 3cos f x x x =+的值域是( )A .[]2,5B .[]3,5C .13⎡⎤⎣⎦D .13⎡⎣【答案】C【解析】()sin()2cos()2sin 3cos 2sin 3cos f x x x x x x x +=+++=-+-=+πππ,∴()f x 为周期函数,其中一个周期为T π=,故只需考虑()f x 在[0,]π上的值域即可,当[0,]2x π∈时,()2sin 3cos 13)f x x x x =+=+α,其中cos 13α,sin 13α=, ∴max ()()132f x f =-παmin ()()22f x f ==π,当[,]2x ππ∈时,()2sin 3cos 13)f x x x x =-=+β,其中,cos 13β=sin 13=β, ∴max ()()132f x f =-πβmin ()()22f x f ==π,∴()f x 的值域为13].故选:C【变式5-2】设函数2()|sin |2cos 1f x x x =+-,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则函数()f x 的最小值是______. 【答案】0【解析】∵2()|sin |2cos 1f x x x =+-|sin |cos 2x x =+为偶函数,∴只需求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值,此时2()sin cos22sin sin 1f x x x x x =+=-++,令[]sin 0,1t x =∈,则221y t t =-++,函数的对称轴为[]10,14t =∈,∴当1t =时,min 2110y =-++=.【变式5-3】若不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则k 的取值范围是______. 【答案】[)2,∞+ 【解析】∵ ()sin 1cos sin tan sin sin cos cos x x xx x x x x++=+=,3,4x ππ⎡⎤∈⎢⎥⎣⎦∴ sin 0,1cos 0,cos 0x x x >+><,∴ tan sin 0x x +<,∴sin tan tan sin sin tan tan sin 2tan x x x x x x x x x -++=---=-, ∵ 不等式sin tan tan sin 0x x x x k -++-≤在3,4x ππ⎡⎤∈⎢⎥⎣⎦恒成立 ∴ 2tan k x ≥-,3,4x ππ⎡⎤∈⎢⎥⎣⎦,∴()max 2tan 2k x ≥-=. 故k 的取值范围是[)2,∞+.。

三角函数最值问题常见解法

三角函数最值问题常见解法

三角函数最值问题的几种常见解法一 、配方法若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。

例1 函数3cos 3sin 2+--=x x y 的最小值为( ).A . 2B . 0C . 41- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B.例2 求函数y=5sinx+cos2x 的最值[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。

()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二 、引入辅助角法例3已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。

[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。

解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ三 、利用三角函数的有界性在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。

求三角函数的值域(最值)题型例析

求三角函数的值域(最值)题型例析
3c
2
2
1
3
3
s
i
n2
x c
o
s2
x +
=
3 =
2
2
2
s
i
n2
x-
(
3

π
。 由 0≤x ≤
,可 得
+
2
1
2
3
)
π
π

3
,所 以 - ≤ 2
x ≤

3
3
6
2
s
i
n2
x-
(
π
π
≤1,所 以 0 ≤ s
i
n2
+
x3
3
)
(
)
[
;
当定义域为某个给定
-|A|+k,
|A|+k]
函数的单调性求值域。
题 型 2:
(
或 y=Ac
Aω≠0)
o
s(
ωx+φ)
+k(
Aω≠0)
例1
(32π-x) - 3 cosx + 3。 当 x ∈
[0,712π] 时,函 数 f(x)的 最 小 值 和 最 大 值 分
s
i
n
2

别为
解:
函数 f(
x)= (-s
i
nx)(-c
o
sx)-
1
3
(
o
s2x+ 3= s
i
n2
xc
o
s2
x+1)+
i
n(
ωx+φ)
+k 或y=Ac

专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)

专题52 高中数学正、余弦函数的单调性与最值专题(原卷版)

专题52 正、余弦函数的单调性与最值一.正弦函数、余弦函数的图象和性质[-1,1][-1,1](1)形如y =a sin x (或y =a cos x )型,可利用正弦函数、余弦函数的有界性,注意对a 正负的讨论.(2)形如y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )型,可先由定义域求得ωx +φ的范围,然后求得sin(ωx +φ)(或cos(ωx +φ))的范围,最后求得最值.(3)形如y =a sin 2x +b sin x +c (a ≠0)型,可利用换元思想,设t =sin x ,转化为二次函数y =at 2+bt +c 求最值.t 的范围需要根据定义域来确定.题型一 正弦函数、余弦函数的单调性 类型一 求单调区间1.已知函数f (x )=2sin ⎝⎛⎭⎫π4+2x +1,求函数f (x )的单调递增区间.2.已知函数y =cos ⎝⎛⎭⎫π3-2x ,则它的单调减区间为________.3.函数y =1-sin 2x 的单调递增区间.4.求函数y =3sin ⎝⎛⎭⎫π3-2x 的单调递减区间.5.求下列函数的单调区间.(1)y =cos2x ;(2)y =2sin ⎝⎛⎭⎫π4-x ;(3) y =cos ⎝⎛⎭⎫x 2+π36.函数y =sin ⎝⎛⎭⎫3x +π6,x ∈⎣⎡⎦⎤-π3,π3的单调递减区间为________.7.函数y =2sin ⎝⎛⎭⎫x -π3(x ∈[-π,0])的单调递增区间是( ) A.⎣⎡⎦⎤-π,-5π6 B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,08.求函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4的单调增区间.9.函数f (x )=sin ⎝⎛⎭⎫x +π6的一个递减区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[-π,0] C.⎣⎡⎦⎤-2π3,2π3 D.⎣⎡⎦⎤π2,2π310.函数y =sin ⎝⎛⎭⎫2x +π3在区间[0,π]的一个单调递减区间是( ) A.⎣⎡⎦⎤0,5π12 B.⎣⎡⎦⎤π12,7π12 C.⎣⎡⎦⎤5π12,11π12D.⎣⎡⎦⎤π6,π2 11.求下列函数的单调递增区间.(1)y =13sin ⎝⎛⎭⎫π6-x ,x ∈[0,π];(2)y =log 12sin x .12.函数y =log 2⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π3的单调递增区间是________.13.求下列函数的单调递增区间(3)y =log 12sin ⎝⎛⎭⎫2x +π4;14.函数f (x )=⎝⎛⎭⎫13|cos x |在[-π,π]上的单调递减区间为( )A.⎣⎡⎦⎤-π2,0 B.⎣⎡⎦⎤π2,πC.⎣⎡⎦⎤-π2,0及⎣⎡⎦⎤π2,π D.⎣⎡⎦⎤-π2,0∪⎣⎡⎦⎤π2,π15.求函数y =1+sin ⎝⎛⎭⎫-12x +π4,x ∈[-4π,4π]的单调减区间.16.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin ⎝⎛⎭⎫2x +π2 B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π217.下列函数中,以π2为周期且在区间⎝⎛⎭⎫π4,π2单调递增的是( ) A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x |18.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y =cos|x |B .y =cos|-x |C .y =sin ⎝⎛⎭⎫x -π2 D .y =-sin x219.下列函数在⎣⎡⎦⎤π2,π上是增函数的是( )A .y =sin xB .y =cos xC .y =sin2xD .y =cos2x20.设函数f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4(ω>0,|φ|<π2)的最小正周期为π,且是偶函数,则( ) A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增21.函数y =2sin ⎝⎛⎭⎫ωx +π4(ω>0)的周期为π,则其单调递增区间为( ) A.⎣⎡⎦⎤k π-3π4,k π+π4(k ∈Z) B.⎣⎡⎦⎤2k π-3π4,2k π+π4(k ∈Z) C.⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z) D.⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z)22.已知函数f (x )=sin(2x +φ),其中φ为实数,且|φ|<π.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),求f (x )的单调递增区间.类型二 利用单调性求参1.函数y =cos x 在区间[-π,a ]上为增函数,则a 的取值范围是________.2.若函数f (x )=sin ωx (0<ω<2)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于___.3.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π3在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.4.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6. (1)求函数f (x )图象的对称轴方程;(2)解不等式:f ⎝⎛⎭⎫x +π12≥32.5.若函数f (x )=2sin ⎝⎛⎭⎫ωx +π3(ω>0),且f (α)=-2,f (β)=0,|α-β|的最小值是π2,则f (x )的单调递增区间是() A.⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) C.⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z )6.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)为R 上的偶函数,其图象关于点M (34π,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.题型二 利用三角函数的单调性比较大小1.sin250°与sin260°;(2)cos 15π8与cos 14π9.2.比较下列各组数的大小.(1)cos ⎝⎛⎭⎫-π8与cos 13π7;(2)sin194°与cos160°;(3) cos ⎝⎛⎭⎫-7π8与cos 6π73.利用三角函数的单调性,比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-π18与sin ⎝⎛⎭⎫-π10;(2)sin 196°与cos 156°;(3)cos ⎝⎛⎭⎫-235π与cos ⎝⎛⎭⎫-174π.4.比较下列各组数的大小:①cos 15π8,cos 14π9;②cos 1,sin 1.5.比较下列各组数的大小.(1)sin ⎝⎛⎭⎫-376π与sin ⎝⎛⎭⎫493π;(2)cos 870°与sin 980°.6.sin 2π7________sin ⎝⎛⎭⎫-15π8(填“>”或“<”).7.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°8.sin1,sin2,sin3按从小到大排列的顺序为__________.9.将cos 150°,sin 470°,cos 760°按从小到大排列为_________.10.下列不等式中成立的是( )A .sin ⎝⎛⎭⎫-π8>sin ⎝⎛⎭⎫-π10 B .sin 3>sin 2 C .sin 75π>sin ⎝⎛⎭⎫-25π D .sin 2>cos 111.(1)已知α,β为锐角三角形的两个内角,则以下结论正确的是( )A .sin α<sin βB .cos α<sin βC .cos α<cos βD .cos α >cos β12.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-4,-3]上是增函数,α,β是锐角三角形的两个内角,则f (sin α)与f (cos β)的大小关系是________.题型三 正弦函数、余弦函数的最值问题1.函数y =1-2cos π2x 的最小值,最大值分别是( )A .-1,3B .-1,1C .0,3D .0,12.函数y =2-sin x 的最大值及取最大值时x 的值分别为( )A .y max =3,x =π2B .y max =1,x =π2+2k π(k ∈Z)C .y max =3,x =-π2+2k π(k ∈Z)D .y max =3,x =π2+2k π(k ∈Z)3.y =2cos x 2的值域是( )A .[-2,2]B .[0,2]C .[-2,0]D .R4.y =a cos x +1的最大值为5,则a =________.5.设函数f (x )=A +B sin x ,当B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.6.函数f (x )=sin(π6+x )+cos(π3-x )的最大值为( )A .1 B.32C. 3 D .27.函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A.65 B .1 C.35 D.158.函数y =2sin ⎝⎛⎭⎫π3-x -cos ⎝⎛⎭⎫π6+x (x ∈R)的最小值等于( ) A .-3 B .-2 C .-1 D .- 59.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域是( )A.⎣⎡⎦⎤-32,12 B.⎣⎡⎦⎤-12,32 C.⎣⎡⎦⎤32,1D.⎣⎡⎦⎤12,110.求函数y =3-4cos ⎝⎛⎭⎫2x +π3,x ∈⎣⎡⎦⎤-π3,π6的最大值、最小值及相应的x 值.11.求下列函数的最大值和最小值. f (x )=sin ⎝⎛⎭⎫2x -π6,x ∈⎣⎡⎦⎤0,π212.求下列函数的值域:y =sin ⎝⎛⎭⎫2x -π3,x ∈⎣⎡⎦⎤0,π2;13.求函数y =3+2cos ⎝⎛⎭⎫2x +π3的最值.14.已知函数y =a -b cos ⎝⎛⎭⎫2x +π6(b >0)的最大值为32,最小值为-12. (1)求a ,b 的值;(2)求函数g (x )=-4a sin ⎝⎛⎭⎫bx -π3的最小值并求出对应x 的集合.15.已知函数f (x )=a sin ⎝⎛⎭⎫2x -π3+b (a >0).当x ∈⎣⎡⎦⎤0,π2时,f (x )的最大值为3,最小值是-2,求a 和b 的值.16.求下列函数的最值y =-sin 2x +3sin x +54.17.函数y =cos 2x +2sin x -2,x ∈R 的值域为________.18.求下列函数的最大值和最小值. y =-2cos 2x +2sin x +3,x ∈⎣⎡⎦⎤π6,5π6.19.求函数y =cos 2x -sin x 在x ∈⎣⎡⎦⎤-π4,π4上的最大值和最小值.20.求函数y =2sin 2x +2sin x -12,x ∈⎣⎡⎦⎤π6,5π6的值域.21.求下列函数的值域: y =cos 2x -4cos x +5.22.求函数y =cos 2x +4sin x 的最值及取到最大值和最小值时的x 的集合.23.若f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值是2,则ω=________.24.设函数f (x )=2sin ⎝⎛⎭⎫π2x +π5.若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .1225.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是________.26.函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的最大值是________.27.已知函数f (x )=2a sin ⎝⎛⎭⎫2x +π6+a +b 的定义域是⎣⎡⎦⎤0,π2,值域是[-5,1],求a ,b 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的最值(专题)
一、 知识要点
1、 配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最
值问题,如求函数2
s i n s i n 1y x x =++的最值,可转化为求函数[]21,1,1y t t t =++∈-上的最值问题。

2、化为一个角的三角函数(利用辅助角公式),再利用有界性求最值:
sin )a x bcox x ϕ+=+,其中tan ϕ=a b .
3、sin sin a x b y c x d +=+(或cos cos a x b y c x d
+=+)型,解出sin x (或cos x )利用|sin |1x ≤(或|cos |1x ≤)去解;或用分离常数的方法去解决.
4、 数形结合 形如:sin cos a x b y c x d +=
+(或cos sin a x b y c x d
+=+)型,可化归为sin()()x g y ϕ+=去处理;或用万能公式换元后用判别式法去处理;当a c =时,还可以利用数形结合的方法去处理.
常用到直线斜率的几何意义,例如求函数sin 2x y cox =+的最大值和最小值。

函数sin 2x y cox =+的几何意义为两点(2,0),(cos ,sin )P Q x x -连线的斜率k ,
5、 换元法求最值
对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2
x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围。

*特别说明 注意变换前后函数的等价性,正弦、余弦的有界性及函数定义域对最值确定的影响,含参数函数的最值,解题要注意参数的作用和影响。

二、题型剖析
1、化为一个角的三角函数,再利用有界性求最值。

例1:求函数2sin cos 1y x x x =+-的最值,并求取得最值时的x 值。

练习:1、已知函数2()cos 2cos 1()f x x x x x R =+-∈。

(Ⅰ)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦
上的最大值和最小值;
2.已知函数2()22sin f x x x =-.(Ⅰ)求函数()f x 的最大值;
3.已知函数()4cos sin()16f x x x π
=+-。

(Ⅰ)求()f x 的最小正周期;(Ⅱ)求
()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦
上的最大值和最小值。

2、转化为闭区间上二次函数的最值问题。

例2 已知函数(x)f 22cos 2sin 4cos x x x =+-。

(Ⅰ)求()3
f π
=的值;(Ⅱ)求(x)f 的最大值和最小值。

练习:1、求函数f (x )=cos 2x +sin x 在区间[-
4π,4π]上的最小值?
2、函数3cos 3sin 2+--=x x y 的最小值为( ).
A . 2
B . 0
C . 41-
D . 6 3、求函数y=5sinx+cos2x 的最值
4、是否存在实数a ,使得函数2385cos sin 2-++=a x a x y 在闭区间⎥⎦
⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由。

例题3。

y =x
x sin 2sin +的最大值是_________,最小值是_________.
练习:1函数y =2
sin 1sin 3+-x x 的最大值是_______,最小值是_______. 2、求函数sin (0)2sin x y x x
π=
<<+的值域________ 3、求函数1cos 21cos 2-+=x x y 的值域________
例4
求函数y =
x x cos 2sin 2--的最大值和最小值.
1、y =
x x sin cos 2-(0<x <π)的最小值是________.
2、求函数sin (0)2cos x y x x π=
<<+的最大值________.
3、换元法解决x x x x cos sin ,cos sin ±同时出现的题型。

例5.求函数()()x x y cos 34sin 34--=的最小值
练习:1、求y =1+sin x +cos x +sin x cos x 的值域.
2、函数(1sin )(1cos )y x x =++的最大值为_________最小值为__________
[思维点拨]:遇到x x cos sin +与x x cos sin 相关的问题,常采用换元法,但要注意sin cos x x +的取值范围是]2,2[-,以保证函数间的等价转化
小结:求三角函数的最值问题就是通过适当的三角变换或代数换元,化归为基本类的三角函数或代数函数,利用三角函数的有界性或常用的求函数最值的方法去处理.
基本类型
(1)2sin sin y a x b x c =++(或2cos cos y a x b x c =++)型,可令sin t x =(或
cos t x =)
,||1t ≤,化归为闭区间上二次函数的最值问题.
(2)sin cos y a x b x =+型,引入辅助角ϕ,化为)y x ϕ=
+,利用函数|sin()|1x ϕ+≤即可求解.
(3)sin sin a x b y c x d +=+(或cos cos a x b y c x d
+=+)型,解出sin x (或cos x )利用|sin |1x ≤(或|cos |1x ≤)去解;或用分离常数的方法去解决.
(4)sin cos a x b y c x d +=
+(或cos sin a x b y c x d
+=+)型,可化归为sin()()x g y ϕ+=去处理;或用万能公式换元后用判别式法去处理;当a c =时,还可以利用数形结合的方法去处理. (5)对于含有sin cos ,sin cos x x x x ±的函数的最值问题,常用的方法是令
sin cos ,||x x t t ±=≤将sin cos x x 转化为t 的关系式,从而化归为二次函数的最值问题.
(6)在解含参数的三角函数最值问题中,需对参数进行讨论.
三、巩固练习:
1、当20π
<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为 ( ) (A )2 (B )32 (C )4 (D )34
2、已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是 ( )
(A) 1 (B) -1 (C) 2k +1 (D) -2k +1
3、设0a >,对于函数()sin (0)sin x a f x x x
π+=<<,下列结论正确的是 ( ) A .有最大值而无最小值 B .有最小值而无最大值
C .有最大值且有最小值
D .既无最大值又无最小值
4、已知函数11()(sin cos )sin cos 22
f x x x x x =+--,则()f x 的值域是 ( )
(A)[]1,1- (B) ,12⎡
⎤-
⎢⎥⎣⎦ (C) 1,2⎡-⎢⎣⎦ (D) 1,2⎡--⎢⎣⎦
5、函数y=2
1sin2+4sin 2x,x R ∈的值域是 ( ) (A)[-21,23] (B)[-23,2
1] (C)[2122,2122++-] (D)[2122,2122---] 6、设函数cos (,y a x b a b =+为常数)的最大值为1,最小值为-7,那么cos sin y a x b x =+的最大值是 .
7、设实数x,y,m,n 满足m 2+n 2=a,x 2+y 2=b(a,b 是常数,且a ≠b),那么mx+ny 的最大值是 .
8、已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求:
(I) 函数()f x 的最大值及取得最大值的自变量x 的集合;(II) 函数()f x 的单调增区间.
9、求函数y =2)4cos()4cos(ππ-+
x x +x 2sin 3的值域和最小正周期.。

相关文档
最新文档