广东省2019年高考数学一模试卷(解析版)(理科)
2019年广东省深圳市高考数学一模试卷和答案(理科)

并用圆规在垂线上截取 BC= AB,连接 AC;(2)以 C 为圆心,BC 为半径画弧,交 AC
于点 D;(3)以 A 为圆心,以 AD 为半径画弧,交 AB 于点 E.则点 E 即为线段 AB 的黄
金分割点.若在线段 AB 上随机取一点 F,则使得 BE≤AF≤AE 的概率约为( )
(参考数据:
2.236)
A.{x|0<x<2}
B.{x|0≤x<2}
C.{x|2<x<3}
D.{x|2<x≤3}
3.(5 分)设 Sn 为等差数列{an}的前 n 项和.若 S5=25,a3+a4=8,则{an}的公差为( )
A.﹣2
B.﹣1
C.1
D.2
4.(5 分)己知某产品的销售额 y 与广告费用 x 之间的关系如表:
2019 年广东省深圳市高考数学一模试卷(理科)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的.
1.(5 分)复数 z=i(2+i)的共轭复数是( )
A.1+2i
B.1﹣2i
C.﹣1+2i
D.﹣1﹣2i
2.(5 分)已知集合 A={x|y=lg(2﹣x)},B={x|x2﹣3x≤0},则 A∩B=( )
A.64 6.(5 分)己知直线
B.68 是函数 f(x)=
C.80
D.109 与的图象图象,可把函数 y=sin2x 的图象( ) A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
第 1 页(共 25 页)
C.向左平行移动 个单位长度 D.向右平行移动 个单位长度
.
14.(5 分)若
的展开式中各项系数之和为 32,则展开式中 x 的系数为
【答案】2019广州一模理科数学

1 2 2 2 ,所以 a b ab 24 .………………………………………………8 分 3 3
又 b a 2 ,解得 a 3, b 5 .…………………………………………………………………………10 分
1
所以 △ABC 的面积 S
1 1 2 2 ab sin C 15 5 2 .…………………………………………12 分 2 2 3
4 ab 24 . …………………9 分 3
所以 △ABC 的面积 S
1 1 2 2 ab sin C 15 5 2 .…………………………………………12 分 2 2 3
2 2 2
解法 2:由余弦定理得: c a b 2ab cos C ,……………………………………………………7 分 因为 c 2 6, cos C
2 3 6 , ED .………………………………8 分 3 3
由上述可知 BD 平面 AEC ,则平面 AEC 平面 BCD . 过点 A 作 AO CE ,垂足为 O ,则 AO 平面 BCD .…………………………………………9 分 连接 OD ,则 ADO 为直线 AD 与平面 BCD 所成角.………………………………………………10 分 在 Rt△AEO 中, AEO 60 ,所以 AO
3 AE 1 ,……………………………………………11 分 2
sin ADO
AO 2 2 .所以直线 AD 与平面 BCD 所成角的正弦值为 .……………………12 分 AD 2 2
解法 2:作 CE BD ,垂足为 E ,连结 AE .因为 Rt△ABD ≌ Rt△BCD ,所以 AE BD , AE CE , AEC 为二面角 A BD C 的平面角.………………………………………………5 分 由已知二面角 A BD C 为 120 ,故 AEC 120 .……………………………………………6 分 在等腰 △AEC 中,由余弦定理可得 AC
广东省2019年高考数学试卷(理科)以及答案解析

广东省2019年高考数学试卷(理科)以及答案解析绝密★启用前广东省2019年高考理科数学试卷注意事项:1.考生答卷前,必须在答题卡上填写姓名和准考证号。
2.回答选择题时,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x|-4<x<2},N={x|x^2-x-6<0},则M∩N=()A。
{x|-4<x<3}B。
{x|-4<x<-2}C。
{x|-2<x<2}D。
{x|2<x<3}2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A。
(x+1)^2+y^2=1B。
(x-1)^2+y^2=1C。
x^2+(y-1)^2=1D。
x^2+(y+1)^2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A。
a<b<cB。
a<c<bC。
c<a<bD。
b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比约为0.618,称为黄金分割比例。
某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A。
165cmB。
175cmC。
185cmD。
190cm5.函数f(x)=在[-π,π]的图像大致为()A。
B。
C。
D。
6.我国古代典籍《周易》用“卦”描述万物的变化。
每一重卦由从下到上排列的6个爻组成,爻分为阳爻“ ”和阴爻“ ”,如图为一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A。
B。
C。
D。
7.已知非零向量,满足||=2||,且(-)⊥,则与的夹角为()A。
2019年广东省佛山市高考数学一模试卷(理科)(解析版)

2019年广东省佛山市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中只有一项是符合题目要求.1.(5分)已知集合A={x|x2﹣2x<0},B={x|﹣1<x<1},则A∪B=()A.(﹣1,1)B.(﹣1,2)C.(﹣1,0)D.(0,1)2.(5分)若复数(a+i)(2+i)(i为虚数单位)在复平面内所对应的点在虚轴上,则实数a =()A.﹣2B.2C.﹣D.3.(5分)设变量x,y满足约束条件,则目标函数z=2x+y的最大值为()A.7B.8C.15D.164.(5分)已知p:“x=2”,q:“x﹣2=”,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)已知sin2α=,则cos2()=()A.B.C.D.6.(5分)已知向量=(2,1),=(﹣1,k),⊥(2+),则k=()A.﹣8B.﹣6C.6D.87.(5分)(2x﹣y)(x+2y)5展开式中x3y3的系数为()A.﹣40B.120C.160D.2008.(5分)某几何体的三视图如图所示则该几何体的体积为()A.2π+8B.π+8C.D.9.(5分)将偶函数f(x)=sin(2x+φ)﹣cos(2x+φ)(0<φ<π)的图象向右平移个单位,得到y=g(x)的图象,则g(x)的一个单调递减区间为()A.(﹣,)B.(,)C.(,)D.(,)10.(5分)已知矩形ABCD,AB=1.AD=,E为AD的中点,现分别沿BE,CE将△ABE,△DCE翻折,使点A,D重合,记为点P,则几何体P﹣BCE的外接球表面积为()A.10πB.5πC.D.11.(5分)双曲线C的左、右焦点分别为F1、F2,且F2恰为抛物线y2=4x的焦点,设双曲线C与该抛物线的个交点为A,若|AF2|=|F1F2|,则双曲线C的离心率为()A.1+B.1+C.2+D.2+12.(5分)设a为常数,函数f(x)=e x(x﹣a)+a,给出以下结论:①若a>1,则f(x)在区间(a﹣1,a)上有唯一零点;②若0<a<1,则存在实数x0,当x<x0时,f(x)>0:③若a<0,则当x<0时,f(x)<0其中正确结论的个数是()A.0B.1C.2D.3二、填空题:本大题共4小题每小题5分,满分20分.13.(5分)已知双曲线=1(a>0)的一条渐近线为y=x,则实数a=.14.(5分)不透明的布袋中有3个白球,2个黑球,5个红球共10个球(除颜色外完全相同),从中随机摸出2个球,则两个球不同色的概率为.15.(5分)已知f(x)=log2(4x+1)﹣x,则使得f(2x﹣1)+1<log25成立的x的取值范围是16.(5分)在△ABC中,角A、B、C所对边分别为a、b、c,且a=1,A =,若当b、c变化时,g(b,c)=b+λc存在最大值,则正数λ的取值范围是.三、解答题:本大题共5小题,共70分解否须写出必要的文字说明、证明过程或演算步骤. 17.(12分)数列{a n}中,a1=1,a n+a n+1=pn+1,其中p为常数.(1)若a1,a2,a4成等比数列,求P的值:(2)是否存在p,使得数列{a n}为等差数列?并说明理由.18.(12分)如表中的数据是一次阶段性考试某班的数学、物理原始成绩:用这44人的两科成绩制作如下散点图:学号为22号的A同学由于严重感冒导致物理考试发挥失常,学号为31号的B同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将A、B两同学的成绩(对应于图中A、B两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩(x)与物理成绩(y)的相关系数为γ=0.8222,回归直线l(如图所示)的方程为y=0.5006x+18.68.(Ⅰ)若不剔除A、B两同学的数据,用全部44的成绩作回归分析,设数学成绩(x)与物理成绩(y)的相关系数为γ0,回归直线为l0,试分析γ0与γ的大小关系,并在图中画出回归直线l0的大致位置.(Ⅱ)如果B同学参加了这次物理考试,估计B同学的物理分数(精确到个位):(Ⅲ)就这次考试而言,学号为16号的C同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平可按公式Z i=统一化成标准分再进行比较,其中X i为学科原始分,为学科平均分,s为学科标准差).19.(12分)如图,多面体ABCDEF中,底面ABCD为菱形,∠BAD=60°,AB=2,DF =BE=1,AF=CE=,且平面ADF⊥底面ABCD,平面BCE⊥底面ABCD.(Ⅰ)证明:EF⊥平面ADF;(Ⅱ)求二面角A﹣EF﹣C的余弦值.20.(12分)已知过点D(4,0)的直线1与椭圆C:=1交于不同的两点A(x1,y1),B(x2,y2),其中y1y2≠0,O为坐标原点.(Ⅰ)若x1=0,求△OAB的面积:(Ⅱ)在x轴上是否存在定点T,使得直线TA,TB与y轴围成的三角形始终为等腰三角形.21.(12分)已知常数a>0,函数f(x)=ln(1+x)﹣.(Ⅰ)讨论函数f(x)在区间(0,+∞)上的单调性:(Ⅱ)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数,a>0),直线l的参数方程为(t为参数).(Ⅰ)若a=2,求曲线C与l的普通方程;(Ⅱ)若C上存在点P,使得P到l的距离为,求a的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+x,a∈R.(Ⅰ)若f(1)+f(2)>5,求a的取值范围;(Ⅱ)若a,b∈N*,关于x的不等式f(x)<b的解集为(﹣∞,),求a,b的值.2019年广东省佛山市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中只有一项是符合题目要求.1.【解答】解:集合A={x|x2﹣2x<0}={x|0<x<2},B={x|﹣1<x<1},则A∪B={x|﹣1<x<2}=(﹣1,2).故选:B.2.【解答】解:∵复数(a+i)(2+i)=2a﹣1+(a+2)i在复平面内所对应的点在虚轴上,∴2a﹣1=0,即a=.故选:D.3.【解答】解:作出变量x,y满足约束条件可行域如图:由z=2x+y知,所以动直线y=﹣2x+z的纵截距z取得最大值时,目标函数取得最大值.由得A(3,2).结合可行域可知当动直线经过点A(3,2)时,目标函数取得最大值z=2×3+2=8.故选:B.4.【解答】解:由q:“x﹣2=”,解得:x=1(舍去)或x=2,由p可推出q,充分性成立,反之,由q可推出p,即必要性成立.∴p是q的充分必要条件,故选:C.5.【解答】解:∵sin2α=,∴cos2(α﹣)===.故选:C.6.【解答】由=(2,1),=(﹣1,k),得2+=(3,2+k),由⊥(2+),所以2×3+1×(2+k)=0,所以k=﹣8,故选:A.7.【解答】解:∵(x+2y)5=x5+10x4y+40x3y2+80x2y3+80xy4+32y5,∴(2x﹣y)(x+2y)5展开式中x3y3的系数为160﹣40=120,故选:B.8.【解答】解:根据三视图,转换为几何体为:左侧是一个半圆锥,右侧是一个四棱锥,如图所示:所以:V几何体=V1+V2,=+,=故选:D.9.【解答】解:函数f(x)=sin(2x+φ)﹣cos(2x+φ),=,由于函数f(x)为偶函数且0<φ<π,故:φ=,所以:函数f(x)=cos2x的图象向右平移个单位.得到:g(x)=2cos(2x﹣)的图象,令:(k∈Z),解得:(k∈Z),故函数的单调递减区间为:[](k∈Z),当k=0时,单调递减区间为:[],由于:()⊂[],故选:C.10.【解答】解:由AB=1,AD=,E为AD中点,可得PE=,PB=PC=1,得∠EPB=∠EPC=90°,∠CPB=90°,∴P﹣BCE为长方体一角,其外接球直径为其体对角线长,∴=,∴,∴外接球表面积为4πR2=,故选:C.11.【解答】解:抛物线的焦点坐标(1,0),所以双曲线中,c=1,因为双曲线C与该抛物线的一个交点为A,|AF2|=|F1F2|,由抛物线的定义可知,抛物线的准线方程过双曲线的左焦点,所以=2c,c2=a2+b2=1,解得a=﹣1,双曲线的离心率e==1+.故选:A.12.【解答】解:函数f(x)=e x(x﹣a)+a,可得f(0)=0,f(x)恒过原点,①,若a>1,由f(x)的导数为f′(x)=e x(x﹣a+1),即有x>a﹣1时,f(x)递增;x<a﹣1时,f(x)递减,可得x=a﹣1处取得最小值,且f(a﹣1)=a﹣e a﹣1,由e x≥x+1,可得a﹣e a﹣1<0,即有f(a﹣1)<0,f(a)=a>0,则f(x)在区间(a﹣1,a)上有唯一零点,故正确;②,若0<a<1,由①可得f(x)的最小值为f(a﹣1)<0,且x→+∞时,f(x)→+∞,x→﹣∞时,f(x)→a,结合图象可得x<a﹣1时存在实数x0,当x<x0时,f(x)>0,故正确;③,若a<0,由①可得f(x)的最小值为f(a﹣1)<0,且f(0)=0,x→﹣∞时,f(x)→a,结合图象可得当x<0时,f(x)<0,故正确.故选:D.二、填空题:本大题共4小题每小题5分,满分20分.13.【解答】解:双曲线=1(a>0)的一条渐近线为y=x,可得,解得a=1.故答案为:1.14.【解答】解:不透明的布袋中有3个白球,2个黑球,5个红球共10个球(除颜色外完全相同),从中随机摸出2个球,基本事件总数n==45,两个球不同色的包含的基本事件个数m==31,∴两个球不同色的概率为p=.故答案为:.15.【解答】解:根据题意,f(x)=log2(4x+1)﹣x,f(﹣x)=log2(4﹣x+1)+x=log2(4x+1)﹣x=f(x),则函数f(x)为偶函数,当x>0时,f(x)=log2(4x+1)﹣x,其导数f′(x)=﹣1=>0,故f(x)在(0,+∞)递增,f(1)=log25﹣1,故f(2x﹣1)+1<log25,即f(2x﹣1)<f(1),则有f(|2x﹣1|)<f(1),故|2x﹣1|<1,解得:0<x<1,故不等式的解集是(0,1),故答案为:(0,1).16.【解答】解:由正弦定理得:===,所以b+λc=(sin B+λsin C)=[sin B+λsin()]=[(1﹣)sin B+cos B]=sin(B+α)其中tanα=,由B),b+λc存在最大值,即B+α=有解,即α∈()即>,所以,故答案为:(,2)三、解答题:本大题共5小题,共70分解否须写出必要的文字说明、证明过程或演算步骤. 17.【解答】解:(1)∵数列{a n}中,a1=1,a n+a n+1=pn+1,其中p为常数.∴a1+a2=p+1,a2+a3=2p+1,a3+a4=3p+1,∴a2=p,a3=p+1,a4=2p,∵a1,a2,a4成等比数列,∴,∴p2=2p,∵p≠0,∴p=2.(2)当n≥2时,a n+a n+1=pn+1,a n﹣1+a n=pn﹣p+1,相减,得:a n+1﹣a n﹣1=p,∴{a2n﹣1}是首项为1,公差为p的等差数列,{a2n}是首项为p,公差为p的等差数列,∴a2n﹣1=p+(n﹣1)p=pn+1﹣p=,a2n=p+(n﹣1)p=np=,∴要使得数列{a n}为等差数列,则1﹣=0,解得p=2,∴存在p=2,使得数列{a n}为等差数列.18.【解答】解:(Ⅰ)γ0<γ,说明理由可以是:①离群的点A,B会降低变量间的线性关联程度,②44个数据点与回归直线l0的总偏差更大,回归效果更差,所以相关系数更小,③42个数据点与回归直线l的总偏差更小,回归效果更好,所以相关系数更大,④42个数据点更加贴近回归直线l,⑤44个数据点与回归直线l0更离散,或其他言之有理的理由均可;,要点:直线l0斜率须大于0且小于l的斜率,具体位置稍有出入没有关系,无需说明理由;(Ⅱ)令x=125,代入y=0.5006x+18.68≈81,故估计B同学的物理分数大约是81分;(Ⅲ)由表中知C同学的数学原始分为122,物理原始分为82,数学标准分为Z16==≈0.63,物理标准分为Z16==≈0.72,0.72>0.63,故C同学物理成绩比数学成绩要好一些.19.【解答】证明:(Ⅰ)分别过点E,F作BC,AD的垂线,垂足为N,M,连结MN,∵平面ADF⊥平面ABCD,且平面ADF∩平面ABCD=AD,∴FM⊥平面ABCD,又MN⊂平面ABCD,∴FM⊥MN,同理可证EN⊥平面ABCD,∴FM∥EN,过点B作BG⊥AD,垂足为G,在Rt△AGB中,∠BAD=60°,AB=2,则AG=1,又MD=,∴GM=BN=,又GM∥BN,∴四边形BNMG为平行四边形,则MN∥GB,∴MN⊥AD,又FM∩AD=M,∴MN⊥平面ADF,故EF⊥平面ADF.解:(Ⅱ)以M为原点,建立空间直角坐标系,由(Ⅰ)知MN=GB=,则A(,0,0),F(0,0,),E(0,),C (﹣,,0),∴=(0,,0),=(﹣),=(﹣),设平面AEF的一个法向量=(x,y,z),则,即,取x=1,得=(1,0,),设平面EFC的法向量=(x,y,z),则,即,取x=1,得=(1,0,﹣),设二面角A﹣EF﹣C的平面角为θ,则cosθ=﹣=﹣=﹣,∴二面角A﹣EF﹣C的余弦值为﹣.20.【解答】解:(Ⅰ)当x1=0时,A(0,1)或A(0,﹣1),由对称性,不妨令A(0,1),此时直线l:x+4y﹣4=0,联立,消x整理可得5y2﹣8y+3=0,解得y1=1,或y2=,故B(,),所以△OAB的面积为×1×=,(Ⅱ)显然直线l的斜率不为0,设直线l:x=my+4,联立,消去x整理得(m2+4)y2+8my+12=0,所以△=64m2﹣4×12(m2+4)>0,即m2>12,则y1+y2=﹣,y1y2=,设T(t,0),则k TA+k TB=+==,因为直线TA,TB与y轴围成的三角形始终为等腰三角形,所以k TA+k TB=0,即2my1y2+(4﹣t)(y1+y2)=+==0,解得t=1,故x轴上存在定点T(1,0),使得直线TA,TB与y轴围成的三角形始终为等腰三角形.21.【解答】解;(Ⅰ)f′(x)=,①当4a2﹣4a≥0即a≥1时,f′(x)>0,f(x)在(0,+∞)递增,②当4a2﹣4a<0即0<a<1时,由f′(x)=0,即x2+4a2﹣4a=0,解得:x1=﹣2(舍),x2=2,由f′(x)<0,解得:0<x<x2,由f′(x)>0,解得:x>x2,故f(x)在(0,2)递减,在(2,+∞)递增;(Ⅱ)由(Ⅰ)知,若f(x)的两个极值点是x1,x2,则0<a<1,且x1=﹣2,x2=2分别是f(x)的极大值点和极小值点,由f(x)的定义域知﹣2>﹣1,且﹣2≠﹣2a,解得:a≠,又f(x1)+f(x2)=ln(1+x1)﹣+ln(1+x2)﹣=ln(1+x1+x2+x1x2)﹣,将x1+x2=0,x1x2=4a2﹣4a代入得:f(x1)+f(x2)=ln(4a2﹣4a+1)﹣,令2a﹣1=t,得:f(x1)+f(x2)=lnt2+﹣2,由0<a<1且a≠知,﹣1<t<1且t≠0,记h(t)=lnt2+﹣2,①当0<t<1时,h(t)=2(lnt+)﹣2,h′(t)=2<0,故h(t)在(0,1)递减,故h(t)>h(1)=0,即当0<2a﹣1=t<1即<a<1时,f(x1)+f(x2)>0,②当﹣1<t<0时,h(t)=2(ln(﹣t)+﹣2,h′(t)=2<0,故h(t)在(﹣1,0)递减,h(t)<h(﹣1)=﹣4<0,即当﹣1<2a﹣1=t<0,即0<a<时,f(x1)+f(x2)<0,综上,满足条件的a的范围是(,1).[选修4-4:坐标系与参数方程选讲]22.【解答】解:(Ⅰ)曲线C的参数方程为(θ为参数,a>0),由于:a=2,故:(θ为参数),所以转换为直角坐标方程为:.(Ⅱ)设点P(a cosθ,sinθ),则:点P到直线的距离d==,当时,即a时,,当时,即:时,,由于:,.当a时,,解得:故:a的取值范围是:[.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由f(1)+f(2)>5得|1﹣a|+|2﹣a|>2,当a≥2时,a﹣1+a﹣2>2,解得:a>,当1≤a<2时,a﹣1+2﹣a>2,不等式无解,当a≤1时,1﹣a+2﹣a>2,解得:a<,综上,a的范围是(﹣∞,)∪(,+∞);(Ⅱ)∵f(x)<b,∴|x﹣a|+x<b,当x≥a时,x﹣a+x<b,解得:x<,当x<a时,a﹣x+x<b,得a<b,由不等式的解集是(﹣∞,),则,又a,b∈N*,故a=1,b=2.。
广东省广州市2019届高三年级第一学期调研考试(一模)理科数学试题(解析版)

2019届广州市高三年级调研测试理科数学本试卷共5页,23小题,满分150分,考试用时120分钟 一、选择题:本题共12小题,每小题5分,共60分。
1.设集合M=2{|02},{|230},x x N x x x ?=--<则集合M N Ç=( )A. {|02}x x ?B. {|03}x x ?C. {|12}x x -<<D. {|01}x x ?【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合N ,再由交集的定义即可得结果. 【详解】因为集合{}|02M x x=?,{}{}2|230|13N x x x x x =--<=-<<,{}|02M Nx x \??,故选A.【点睛】本题考查一元二次不等式的解法和集合的交集问题,属于简单题. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合. 2.若复数(1a iz i i+=-是虚数单位)为纯虚数,则实数a 的值为( ) A. -2 B. -1 C. 1 D. 2 【答案】C 【解析】 【分析】利用复数代数形式的除法运箅化简复数1a iz i+=-,再根据实部为0且虚部不为0求解即可. 【详解】()()()()i 1i i 11i 1i 1i 1i 22a a a a z +++-+===+-+-为纯虚数,1010a a ì+?ï\í-=ïî,即1a =,故选C.主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( ). A. 1 B. 53C. 2D. 3 【答案】C 【解析】试题分析:因为322123124S a a =??,所以32642d a a =-=-=,选C.考点:等差数列性质4.若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线的方程为( ) A. 230x y +-= B. 210x y -+= C. 230x y +-= D. 210x y --= 【答案】D 【解析】圆心C(3,0),k PC =12-,∵点P 是弦MN 的中点,∴PC ⊥MN , ∴k MN k PC =-1,∴k MN =2,∴弦MN 所在直线方程为y -1=2(x -1), 即2x -y -1=0.考点:圆的弦所在的直线方程.5.已知实数ln222,22ln 2,(ln 2)a b c ==+=,则,,a b c 的大小关系是 A. c b a << B. c a b << C. b a c << D. a c b << 【答案】B 【解析】 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果. 【详解】由对数函数的性质0ln21<<, 所以22ln 22,+>所以由指数函数的单调性可得,200ln 2112222,0ln 2ln 21=<<=<<=,c a b \<<,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(本题三个数分别在三个区间()()()0,1,1,2,2,+? );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用. 6.下列命题中,真命题的是( ) A. 00,0x x R e $危B. 2,2xx R x "?C. 0a b +=的充要条件是1ab=- D. 若,x y R Î,且2x y +>,则,x y 中至少有一个大于1 【答案】D 【解析】 【分析】根据指数函数的值域判断A ;根据特殊值判断B C 、;根据逆否命题与原命题的等价性判断D . 【详解】根据指数函数的性质可得x 0e >,故A 错误;2x =时,22x x >不成立,故B 错误;当0a b ==时,1ab=-不成立,故C 错误; 因为“2x y +>,则,x y 中至少有一个大于1”的逆否命题 “,x y 都小于等于1,则2x y +?”正确,所以“2x y +>,则,x y 中至少有一个大于1”正确,故选D.【点睛】本题主要考查指数函数的值域、特称命题与全称命题的定义,以及原命题与逆否命题的等价性,意在考查综合应用所学知识解答问题的能力,属于中档题. 7.由()y f x =的图象向左平移3p个单位,再把图象上所有点横坐标伸长到原来的2倍得到sin 36y x p 骣琪=-琪桫的图象,则()f x =( ) A. 3sin 26x p 骣琪+琪桫 B. sin 66x p 骣琪-琪桫 C. 3sin 23x p骣琪+琪桫D. sin 63x p 骣琪+琪桫 【答案】B 【解析】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,再把所得图象向右平移3p 个单位,即可得到()f x 的图象,根据三角函数的图象变换规律可得()f x 的解析式.【详解】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,可得函数66y sin x p骣琪=-琪桫的图象, 再把函数66y sin x p骣琪=-琪桫的图象向右平移3p 个单位,即可得到()66366f x sin x sin x p pp 轾骣骣犏琪琪=--=-琪琪犏桫桫臌的图象, 所以()f x = 66sin x p骣琪-琪桫,故选B. 【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,属于中档题. 能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8. 已知甲袋中有1个黄球和2个红球,乙袋中有2个黄球和2个红球,现随机地从甲袋中取出两个球放入乙袋中,然后从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( ) A.13 B. 12 C. 59 D. 29【答案】C 【解析】试题分析:甲取出的求有两种情况:(1)从甲取出1黄球1红球,概率为:132136213C C C ?,(2)从甲取出2红球,概率为:142136129C C C ?,故概率为125399+=.考点:1、古典概型;2、分类加法、分步乘法计数原理.9.已知抛物线22(0)y px p =>为双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个点,且AF ⊥x 轴,则双曲线的离心率为( )A.1 B. 31 C. 51 D. 22【解析】 【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A 的坐标,将A 代入抛物线方程求出双曲线的三参数,,a b c 的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,02p骣琪琪桫,双曲线的焦点坐标为(),0c ,2p c \=,点A 是两曲线的一个交点,且AF x ^轴,将x c =代入双曲线方程得到2,b A c a骣琪琪桫, 将A 的坐标代入抛物线方程可得,422222444b pc c a b a===+, 即4224440a a b b +-=,解得222ba=+ 22222222b c a a a -\==+)22232221c a=+=解得21ce a==,故选A . 【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.10.已知等比数列{}n a 的前n 项和为n S ,若367,63S S ==,则数列{}n na 的前n 项和为( ) A. 3(1)2n n -++? B. 3(1)2n n ++? C. 1(1)2n n ++? D. 1(1)2n n +-? 【答案】D 【解析】当1q = 时,不成立,当1q ¹ 时,()3161171{1a q q a q -=-- ,两式相除得3631171163q q q -==-+ ,解得:2q = ,11a = 即1112n n n a a q --== ,12n n n a n -?? ,2112232......2n n s n -=+??+? ,2n s = ()211222......122n n n n -??+-?? ,两式相减得到:21122......22n n n s n --=++++-?()12212112n nn n n -=-?-?- ,所以()112nn s n =+-? ,故选D.11.如图为一个多面体的三视图,则该多面体的体积为( )A.203 B. 7 C. 223 D. 233【答案】C 【解析】该几何体为如图所示的几何体11EFBC ABCD -,是从棱长为2的正方体中截取去两个三棱锥后的剩余部分,其体积111111131111211212273232A B C D ABCD A A EF D D BC V V V V ---=--=-创创-创创=,故选C. 12.已知过点(,0)A a 作曲线:x C y x e =?的切线有且仅有两条,则实数a 的取值范围是( ) A. ()(--4)0+ト?,,B. ()0+¥, C. ()(--1)1+ト?,, D. ()--1¥, 【答案】A 【解析】 【分析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为20x a =,整理得到方程2000x ax a --=有两个解即可,240a a D=+>解出不等式即可.【详解】设切点为()00,x x x e ,(1)x y x e =+¢,000(1)x x x y x e =\=+?¢,则切线方程为:()00000=1()x x y x e x e x x -+?,切线过点(,0)A a 代入得:()00000=1()x x x e x e a x -+?, 2001x a x \=+,即方程2000x ax a --=有两个解,则有2400a a a D=+>?或4a <-. 故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 的夹角为45°,且1,2a b ==,则a b -=__________ 【答案】1 【解析】 【分析】先利用平面向量的运算法则以及平面向量的数量积公式求出a b -平方的值,再开平方即可得结果. 【详解】因为向量,a b 的夹角为45°,1,2a b ==,()2222a b a b a b -=+-?222cos 45a b a b °=+-?21221212=+-创?,可得1a b -=,故答案为1.【点睛】本题主要考查平面向量的运算法则以及平面向量的数量积公式,属于简单题. 向量数量积的运算主要掌握两点:一是数量积的基本公式cos a ba b q ?;二是向量的平方等于向量模的平方22a a =.14.已知423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+=__________. 【答案】1令1x =,得401234(23)a a a a a +=++++; 令1x =-,得401234(23)a a a a a -+=-+-+;两式相加得22024130123402413()()()()a a a a a a a a a a a a a a a ++-+=++++?+--444(2(23)(1)1=?=-=.点睛: “赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b +++?R 的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)n ax by a b +?R 的式子求其展开式各项系数之和,只需令1x y ==即可.15.已知实数,x y 满足203500x y x y x y ì-?ïï-+?ïí>ïï>ïî,则11()()42x y z =的最小值为__________.【答案】C 【解析】试题分析:不等式组20{350x y x y -?-+?表示的平面区域如下图所示,目标函数2111()()()422x y x y z +==,设2t x y =+,令20x y +=得到如上图中的虚线,向上平移20x y +=易知在点()1,2A 处取得最小值,min 4t =,所以目标函数4min 11()216z ==. 考点:线性规划.16.在四面体P ABC -中,1PA PB PC BC ====,则该四面体体积的最大值为________. 3由于平面PBC 是边长为1的正三角形,P ABC A PBC V V --= ,底面面积固定,要使体积最大,只需高最大,故当PA ^平面PBC 时体积最大,2133113V =创?.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤,第17-21题为必考题,每个试题考生都必须作答,第22-23题为选考题,考生根据要求作答.17.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin B C A A B -=+. (1)求角C 的大小;(2)若A=6p,△ABC 的面积为43M 为BC 的中点,求AM. 【答案】(1) 2;3C p=(2) 27【解析】 【分析】(1)利用正弦定理,结合同角三角函数的关系化简已知的等式,得到三边的关系式,再利用余弦定理表示出根据cos C 的值,可求角C 的大小;(2)求得()6B AC A pp =-+==,ABC D为等腰三角形,由三角形面积公式可求出CB CM 、的值,再利用余弦定理可得出AM 的值. 【详解】(1)∵222cos cos sin sin sin B C A A B -=+∴()2221sin 1sin sin sin sin B C A A B ---=+() ∴222sin sin sin sin sin C B A A B -=+由正弦定理得:222c b a ab -=+即222a b c ab +-=-∴22211cos 222a b c C ab +-=-=-即∵C 为三角形的内角,∴23C p= (2)由(1)知23C p =,∴()6B AC A pp =-+== ∴△ABC 为等腰三角形,即CA=CB 又∵M 为CB 中点 ∴CM=BM 设CA=CB=2x 则CM=BM=x1sin 432CABSCA CB C =鬃=∴CA=4,CM=2由余弦定理得:222cos 27CA CM CM CA C +-鬃=.【点睛】本题主要考查正弦定理、余弦定理以及三角形的面积公式,属于中档题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18.某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X (单位:元),求X 得分布列和数学期望.【答案】(1) 30.2;(2)分布列见解析, 400. 【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)X 的可能取值为:240, 300,360, 420, 480,根据直方图求出样本中一、二、三等品的频率分别为111,,236,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】(1)样本的质量指标平均值为0.0417.50.162.5??????30.2=. 根据样本质量指标平均值估计总体质量指标平均值为30.2 .(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为111,,236, 故从所有产品中随机抽一件,是一、二、三等品的概率分别为111,,236, 随机变量X 的取值为:240, 300,360, 420, 480,()()12111111240;3006636369P X P X C ==?==创=;()()112211115111360;420263318233P X C P X C ==创+?==创=, ()111480224P X ==?, 所以随机变量X 的分布列为:()115112403003604204804003691834E X \=?????.【点睛】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19.如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A-CD-F 为60°,DE ∥CF ,CD ⊥DE ,AD=2,DE=DC=3,CF=6.(1)求证:BF ∥平面ADE ;(2)在线段CF 上求一点G ,使锐二面角B-EG-D 的余弦值为14. 【答案】(1)详见解析;(2)点G 满足32CG =. 【解析】 【分析】(1)先证明//BC 平面ADE ,//CF 平面ADE ,可得平面//BCF 平面ADE ,从而可得结果;(2)作AO DE ^于点O ,则AO ^平面CDEF ,以平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系,设()3,,0,15G t t-#,利用向量垂直数量积为零列方程组求得平面BEG 的法向量,结合面DEG 的一个法向量为()0,0,1n =,利用空间向量夹角余弦公式列方程解得12t =,从而可得结果.【详解】(1)因为ABCD 是矩形,所以BC ∥AD , 又因为BC 不包含于平面ADE , 所以BC ∥平面ADE ,因为DE ∥CF ,CF 不包含于平面ADE , 所以CF ∥平面ADE ,又因为BC ∩CF =C ,所以平面BCF ∥平面ADF , 而BF ⊂平面BCF ,所以BF ∥平面ADE .(2)∵CD ⊥AD ,CD ⊥DE∴∠ADE 为二面角A-CD-F 的平面角 ∴∠ADE=60° ∵CD ⊥面ADE\平面CDEF ^平面ADE ,作AO DE ^于点O ,则AO ^平面CDEF ,由2,3AD DE ==,得1,2DO EO ==,以O 为原点,平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴, 建立如图所示的空间直角坐标系O xyz -,则()()()()()3,3,1,0,0,1,0,0,2,0,3,5,0A C D E F --,()3OB OA AB OA DC =+=+=,设()3,,0,15G t t-#,则()()3,2,3,0,,3BE BG t =--=-,设平面BEG 的法向量为(),,m x y z =,则由00m BE m BG ì?ïí?ïî,得323030x y z ty z ì-+-=ïíï-=î,取233x ty z tì=-ïï=íïïî, 得平面BEG 的一个法向量为()23m t t =-, 又面DEG 的一个法向量为()0,0,1n =,23cos ,4413m n t m n m n t t ×\==-+,314t\=, 解得12t =或1322t =-(舍去),此时14CG CF =,得1342CG CF ==,即所求线段CF 上的点G 满足32CG =.【点睛】本题主要考查线面平行的判定定理、空间向量的应用,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20.已知椭圆C :22221(0,0)x y a b a b +=>>的离心率为12,点P 3(3,在C 上.(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左右焦点,过2F 的直线l 与椭圆C 交于不同的两点A 、B ,求△1F AB 的内切圆的半径的最大值.【答案】(1) 22143x y += ;(2) 最大值为34.【解析】 【分析】 (1) 根据离心率为12,点33,骣琪琪在椭圆上,结合性质222a b c =+ ,列出关于a 、b 、c 的方程组,求出a 、b ,即可得结果;(2)可设直线l 的方程为1x m y =+,与椭圆方程联立,可得()2234690m ymy ++-=,结合韦达定理、弦长公式,利用三角形面积公式可得12121221121234F ABm S F F y y m D +=-=+,换元后利用导数可得,1F ABS D 的最大值为3,再结11442F AB S a r rD =?可得结果.【详解】(1)依题意有22222123314c a a b c a bì=ïïï=+íïï+=ïî,解得231a b c ì=ïï=íï=ïî故椭圆C 的方程为22143x y +=.(2)设()()1122,,,A x y B x y ,设1F AB D 的内切圆半径为r ,1F AB D 的周长为121248AF AF BF BF a +++==,11442F AB S a rr D \=?,根据题意知,直线l 的斜率不为零, 可设直线l 的方程为1x my =+,由221431x y x my ìï+=íï=+ïî,得()2234690m y my ++-=, ()()22636340,m m m R D=++>?,由韦达定理得12122269,3434m y y y y m m --+==++, ()12212121212112142F ABm S F F y y y y y y D +\=-+-=,令t ,则1t ³,12124313F AB t S t t tD \==++, 令()13f t t t =+,则当1t ³时,()()21'10,3f t f t t=->单调递增,()()141,33F AB f t f S D \??,即当1,0t m ==时,1F AB S D 的最大值为3,此时max 34r =,故当直线l 的方程为1x =时,1F AB D 内切圆半径的最大值为34.【点睛】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题. 用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 21.已知函数21()(2ln ),x f x a x x a R x-=-+?. (1)讨论()f x 的单调性;(2)若()f x 的有两个零点,求实数a 的取值范围.【答案】(1) 当a≤0,()f x 在(0,2)上单调递增,在(2,+∞)递减;当104a <<,()f x 在(0,2)和a +?)上单调递增,在(2,aaa=14,()f x 在(0,+∞)递增;当a >14,()f x 在(02,+a 2)递减;(2) ()1,081ln2a 骣琪?琪-桫.【解析】 【分析】(1)求出()'f x ,分四种情况讨论a 的范围,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,可证明()()00022200000111112ln 0f x a x x a x x x x x =-+-?-?<,()f x 有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,可证明,当14a =时与当0a >且14a ¹时,至多一个零点,综合讨论结果可得结论.【详解】(1)()f x 的定义域为()0,+?,()()()2332122'1x ax x f x a xx x --骣-琪=-+=琪桫, (i )当0a £时,210ax -<恒成立,()0,2x Î时,()()'0,f x f x >在()0,2上单调递增; ()2,x ??时,()()'0,f x f x <在()2,+?上单调递减.(ii )当0a >时,由()'0f x =得,1232,x x x a a===-(舍去), ①当12x x =,即14a =时,()0f x ³恒成立,()f x 在()0,+?上单调递增;②当12x x >,即14a >时,x a骣琪Î琪桫或()2,x ??,()'0f x >恒成立,()f x 在(),2,a骣琪+?琪桫上单调递增;2x 骣Î时,()'0f x <恒成立,()f x 在2a骣琪琪桫上单调递减. ③当12x x <,即104a <<时,x a骣琪??琪桫或()0,2x Î时,()'0f x >恒成立,()f x 在()0,2,a骣琪+?琪桫单调递增,x 骣琪Î琪桫时,()'0f x <恒成立,()f x 在a骣琪琪桫上单调递减. 综上,当0a £时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?;当14a =时,()f x 单调递增区间为()0,+?,无单调递减区间为;当14a >时,()f x 单调递增区间为(),2,a 骣琪+?琪桫,单调递减区间为2a骣琪琪桫. (2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,令()()1212ln ,f x x x f x x =-=,则()12'10f x x=->在()2,+?成立,故()12ln f x x x =-单调递增,()()1052ln5122ln51f x ?=+->,()()0002220000111112ln 0f x a x x a x x x x x =-+-?-?<, ()f x \有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,1088ln 2a \>>--,当0a =时,()21x f x x-=,只有一个零点,不符合题意;当14a =时,()f x 在()0,+?单调递增,至多只有一个零点,不符合题意;当0a >且14a ¹时,()f x 有两个极值,()()1222ln 20,2ln 4f a f a a a a a骣琪=-+>=-琪桫, 记()2ln g x x x x x =-,()()'1ln 1ln 2g x x x xx=++-+, 令()ln h x x x=+,则()3221121'22x h x x x x -=-+, 当14x >时,()()'0,'h x g x >在1,4骣琪+?琪桫单调递增;当104x <<时,()()'0,'h x g x <在10,4骣琪琪桫单调递减, 故()()1''=22ln 20,4g x g g x 骣琪>->琪桫在()0,+?单调递增,0x ®时,()0g x ®,故2ln 0f a a a a a骣琪=->琪桫,又()()1222ln 204f a =-+>,由(1)知,()f x 至多只有一个零点,不符合题意, 综上,实数a 的取值范围为1,088ln 2骣琪-琪-桫.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.(二)选考题:共10分,请在22-23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C 的极坐标方程为23cos 2sin r q q =+,直线()1:6l R p q r =?,直线()2:3l R pq r =?,设极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求直线12,l l 的直角坐标系方程以及曲线C 的参数方程;(2)若直线1l 与曲线C 交于O 、A 两点,直线2l 与曲线C 交于O 、B 两点,求△AOB 的面积.【答案】(1)13:l y x = ; 2:3l y x ;32,12x cos y sin q q qì=ïíï=+î 为参数;(2)23【解析】 【分析】(1)利用极角的定义、直线的倾斜角的定义以及两直线过原点,可得到直线1l 与直线2l 的直角坐标方程;曲线C 的极坐标方程两边同乘以r 利用222,cos ,sin x y x y rr q r q =+== 即可得其直角坐标方程,然后化为参数方程即可;(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==,同理223OB r ==形面积公式可得结果.【详解】(1)依题意,直线1l 直角的坐标方程为3y x =, 直线2l 直角的坐标方程为3y x ,由2sin r q q =+得223cos 2sin rr q r q =+,222,cos ,x y x sin y r r q r q =+==,()()222314x y r \=-+-=,\曲线C 的参数方程为32cos (12x y sin a a aì=ïíï=+î为参数).(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==, 同理223OB r ==6AOBp?, 11142323222AOB S OA OB sin AOB D \=?创?,即AOB D 的面积为23【点睛】本题主要考查极坐标方程化为直角坐标方程与参数方程,属于中档题. 利用关系式cos sin x y r q r qì=ïí=ïî,222tan x y yxr q ì+=ïíï=ïî可以把极坐标方程与直角坐标方程互化,通过选取相应的参数可以把普通方程化为参数方程. 23.选修4-5:不等式选讲 已知函数()()13f x x a a R =-?. (1)当2a =时,解不等式()113x f x -+?; (2)设不等式()13x f x x -+?的解集为M ,若11[,]32M Í,求实数a 的取值范围.【答案】(1){|01}x x x 3或.(2)14[,]23-. 【解析】试题分析:(1)利用零点分段讨论求解.(2)利用11,32x 轾Î犏犏臌化简313x x a x -+-?得到1x a -?在区间11,32轾犏犏臌上是恒成立的,也就是11a x a -<<+是不等式11,32轾犏犏臌的子集,据此得到关于a 的不等式组,求出它的解即可.解析:(1)当2a =时,原不等式可化为3123x x -+-?.①当13x £时,原不等式可化为3123x x -++-?,解得0x £,所以0x £; ②当123x <<时,原不等式可化为3123x x --+?,解得1x ³,所以12x ?; ③当2x ³时,原不等式可化为3123x x --+?,解得32x ³,所以2x ³.综上所述,当2a =时,不等式的解集为{}|01x x x 3或. (2)不等式()13x f x x -+?可化为313x x a x -+-?,依题意不等式313x x a x -+-?在11,32轾犏犏臌恒成立,所以313x x a x -+-?,即1x a -?,即11a xa -#+,所以113112a a ì-?ïïíï+?ïî.解得1423a -#,故所求实数a 的取值范围是14,23轾-犏犏臌.。
2019年全国高考广东省数学(理)试卷及答案【精校版】

2019年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分. 1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A. {0,1}B. {1,0,2}-C. {1,0,1,2}-D. {1,0,1}-2.已知复数Z 满足(34)25i z +=,则Z=A. 34i -+B. 34i --C. 34i +D. 34i -3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值A.5B.6C.7D.84.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
10.曲线25+=-xe y 在点)3,0(处的切线方程为 。
(完整版)2019年广州市一模理科答案

2019年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭ 10.1sin 11.12.38 12.12或7213.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A>, ∴2A =. ……………1分∵()f x 的最小正周期为8, ∴28T πω==,得4πω=. ……………2分∴()2sin()44f x x ππ=+. ……………3分(2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+== ⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴OP PQ OQ ===……………8分∴222222cos 23OP OQ PQPOQ OP OQ+-+-∠===. ………10分 ∴POQ sin ∠==3……………11分∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=……………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(4,P Q .∴(4,OP OQ ==u u u r u . ……………8分∴cos cos ,3OP OQ POQ OP OQ OP OQ⋅∠=<>===u u u r u u u ru u u r u u u r u u u r u u u r . ……………10分∴POQ sin ∠==……………11分 ∴△POQ的面积为11223S OP OQ POQ sin =∠=⨯⨯⨯=……………12分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ ……………5分∴(4,P Q .∴直线OP的方程为2y x =,即0x -=. ……………7分 ∴点Q 到直线OP的距离为d ==. ……………9分∵OP =……………11分∴△POQ的面积为1122S OP d =⋅=⨯⨯=……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想) 解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知,()()()12P A P B m P C n ,,===. ……………1分(1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144P ξ-==-=. …………3分 (2)由题意知()()()()1101124P P ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====, ……………5分HF A BCA 1C 1B 1DE整理得 112mn =,712m n +=. 由m n >,解得13m =,14n =. ……………7分(3)由题意知()()()()1a P P ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, ………9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312.…………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF . ∵CD ∥1AA ,且CD 12=1AA , ∴C 为AF 的中点. ……………2分 ∵E 为AB 的中点,∴CE ∥BF . ……………3分 ∵BF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC , ∴1AA ⊥CE . ……………5分∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,2CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =I ,∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. (7)分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===∴5EH =. (9)A ∵CE ∥BF ,CE ⊥平面1A AB ,∴BF ⊥平面1A AB . ……………10分∵AB ⊂平面1A AB ,1A B ⊂平面1A AB ,∴BF ⊥AB ,BF ⊥1A B . ……………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分 在Rt △EHB中,BH ==cos 1ABA∠BH EB ==…13分 ∴平面1A BD 与平面ABC……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF .∵E 为AB 的中点,∴EF ∥1AA ,且112EF AA =. ……………1分 ∵CD ∥1AA ,且CD 12=1AA , ∴EF ∥CD ,EF =CD . ……………2分 ∴四边形EFDC 是平行四边形.∴CE ∥DF . ……………3分 ∵DF ⊂平面1A BD ,CE ⊄平面1A BD ,∴CE ∥平面1A BD 分(2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点,∴CE AB ⊥,CE AB == ∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =I ,∴CE ⊥平面1A AB . (6)分∴EHC ∠为CH 与平面1A AB 所成的角. (7)分∵CE =在Rt △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH ∠===∴5EH =. (9)在Rt △EHB中,5BH ==. ∵Rt △EHB ~Rt △1A AB ,∴1EH BHAA AB =,即1552AA =. ∴14AA =. ……………10分 以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴, 建立空间直角坐标系A xyz -.则()000A ,,,1A ()004,,,B)10,,D ()02,,2.∴1AA =u u u r ()004,,,1A B =u u ur )14,-,1A D =u u u u r()02,,-2.设平面A BD 1的法向量为n =()x y z ,,,由n 10A B u u u r ?,n 10A D u u u u r ?,得40220y z y z .ìï+-=ïíï-=ïî 令1y =,则1z x ==,∴平面A BD 1的一个法向量为n=)11,. ……………12分∵1AA ⊥平面ABC , ∴1AA u u u r=()004,,是平面ABC 的一个法向量.∴cos 111,⋅==u u u u ru u u u r u u u u r n AA n AA nAA ……………13分 ∴平面1A BD 与平面ABC……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+Q L ,∴ 当1n =时,有 11(11)2,a S =-+ 解得 12a =. ……………1分 由12323(1)2n n a a a na n S n ++++=-+L , ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++L , ② ……………2分 ② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列.∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分 当2n ≥时, 11(22)(22)2n n nn n n a S S +-=-=---=, ……………7分又12a =也满足上式,∴2nn a =. ……………8分法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ ……………4分当2n ≥时,12n n a S -=+, ⑤ ……………5分 ⑤-④得:12n n a a +=. ……………6分 由12224a a S +=+,得24a =,∴212a a =. ……………7分∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2nn a =. ……………8分(2)解:∵p q r ,,成等差数列,∴2p r q +=. ……………9分假设111p q r a a a ,,---成等比数列,则()()()2111p r q a a a --=-, ……………10分即()()()2212121prq--=-,化简得:2222prq+=⨯. (*) ……………11分 ∵p r ≠,∴2222pr q +>=⨯,这与(*)式矛盾,故假设不成立.……13分 ∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a ba b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分∴ 椭圆1C 的方程为2211612x y +=. ……………3分解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, ……………1分∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612x y +=. (3)分(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x BA --=,∵C B A ,,三点共线, ∴BC BA //u u u r u u u r. (4)分∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭, 化简得:1212212x x x x ()+-=. ① ……………5分 由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ……………8分设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x +=. ……………9分代入②得 2141x x y =, ……………10分则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上,……………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. (13)分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy =,即214y x ,=得y '=12x . ……………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x xy y -=-,即2111212x y x x y -+=. (5)分∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① ……………6分同理, 20202y x x y -=. ② ……………7分 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ……………8分∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为y x xy -=002, ……………9分∵点)3,2(A 在直线L 上, ∴300-=x y . ...............10分 ∴点P 的轨迹方程为3-=x y . (11)分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,……12分 ∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. (5)分 由24x y =,即214y x ,=得y '=12x . ……………6分∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-. ……………10分∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上. ……………11分 ∴()()2222311612k k -+=.化简得271230k k --=.(*) ……………12分 由()2124732280Δ=-⨯⨯-=>, ……………13分可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识)(1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+, ∴()2212x a m x m m ++-++=()()1x m x m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++. ∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+. ……………4分①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②当0m <时,由0Δ>,得k <-或k >若k <-1212k x ,+-=<2212k x ,++=<故x ∈()1,+∞时,()0x ϕ'>,∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点. ……………7分若k >11x ,=>21x ,=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x,有极大值点1x . ……………8分综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中122k x +-=, 222k x ++=)解法2:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211m kx x ---()()22211x k x k m x -++-+=-. ……………3分若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. (4)分 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δk k m k m =+--+=+>,(**) (5)分方程(*)的两个实根为122k x +-=, 222k x ++=.设()h x =()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k >……………7分则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m <时,k >()x ϕ有极小值点2x ,有极大值点1x .………9分(其中122k x +-=, 222k x ++=)(2)证法1:∵1m =, ∴()g x =()111x x -+-. ∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭112212111111n n n n n n n n n n n n n x C x C x C x C x x x x x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭L122412n n n nn n n C x C x C x ----=+++L . ……………10分令T 122412n n n nn n n C x C x C x ----=+++L , 则T 122412n n n n n n n n C x C x C x -----=+++L 122412n n n n n n n C x C x C x ----=+++L .∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++L ……11分≥121n n n n C C C -⋅+⋅++⋅L …12分()1212n n n nC C C -=+++L()012102n n n nn n n n n n C C C C C C C -=+++++--L()222n=-. ……………13分∴22nT ≥-,即()()1122nnng x g x ⎡⎤+-+≥-⎣⎦. ……………14分证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n≥-. ① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+……………12分 122k +=-. ……………13分 也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。
2019广州一模理科数学(解析版)

解析:圆心 P(2, 4) ,渐近线 y bx 过点 P(2, 4) ,所以 b 2 ,又 a 1,所以 c a2 b2 5 ,
c C 的离心率为 e 5 .
a
4.刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中
首创“割圆术”.所围“割圆术”,是用圆内接正多边形的面积去无限
逼近圆面积并以此求取圆周率的方法.如图所示,圆内接正十二边形的
中心为圆心 O ,圆 O 的半径为 2,现随机向圆 O 内投放 a 粒豆子, 其中有 b 粒豆子落在正十二边形内 (a, b N, b a) ,
2 O
则圆周率的近似值为( )
b
A.
a
a
B.
b
3a
C.
b
3b
D.
a
4.答案:C
解析:正十二边形的面积为12 1 2 2 sin 30 12 ,圆的面积为 22 4 ,则根据题意可得: 2
x
x
h(x) 0 在 (1, ) 上有解,则 h(1) 2 ln(1 a) 0 ,解得 a e2 1 .
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.把答案填在题中的横线上.
13.设 Sn 是等比数列{an}的前 n 项和,若 S3 3, S6 27 ,则 a1
.
3
13.答案:
则 sin C cos B sin B cos C 3sin A cos C ,所以 sin(B C) 3sin A cos C ,………………2 分
由于 A B C ,得 sin(B C) sin( A) sin A ,则 sin A 3sin Acos C .…………3 分
1
2
1
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省清远市高考数学一模试卷(理科)一、择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2≤7},Z为整数集,则集合A∩Z中元素的个数是()A.3 B.4 C.5 D.62.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.设x∈R,向量,且,则=()A.B.C.10 D.4.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第n层楼时,上下楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第n层楼时,环境不满意度为,则同学们认为最适宜的教室应在()A.2楼B.3楼C.4楼D.8楼5.函数的值域为()A.B.C.[﹣2,2]D.[﹣1,1]6.如图所示的程序框图,若f(x)=logπx,g(x)=lnx,输入x=2016,则输出的h(x)=()A.2016 B.2017 C.logπ2016 D.ln20167.在△ABC中,A,B,C所对的边分别是a,b,c,A=,且bcosC=3ccosB,则的值为()A. B. C.D.8.函数f(x)的导函数f′(x),对∀x∈R,都有f′(x)>f(x)成立,若f(2)=e2,则不等式f(x)>e x的解是()A.(2,+∞)B.(0,1)C.(1,+∞)D.(0,ln2)9.某几何体的三视图如图所示,则该几何体的表面积为()A.50 B.50.5 C.51.5 D.6010.用半径为R的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为()A. B. C. D.11.设双曲线﹣=1(a>0,b>0)的右焦点F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λμ=,则该双曲线的离心率为()A.B.C.3 D.212.对于函数f(x)=,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,f n+1(x)=f[f n(x)](n∈N*,且n≥2),令集合M={x|f2036(x)=x,x∈R},则集合M为()A.空集B.实数集C.单元素集D.二元素集一、填空题:本大题共4小题,每小题5分,满分20分13.抛物线y2=2x的焦点坐标是,准线方程是.14.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.15.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=2,C=,tanA=,则sinA=,b=.16.已知等差数列{a n}的公差为d,等比数列{b n}的公比为q,设{a n},{b n}的前n项和分别为S n,T n,若,n∈N*,则d=,q=.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,且acosC=(2b﹣c)cosA.(1)求角A的大小;(2)求cos(﹣B)﹣2sin2的取值范围.18.(12分)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.19.(12分)某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生个数,求ξ的分布列及其数学期望.20.(12分)设椭圆E的方程为+y2=1(a>1),O为坐标原点,直线l与椭圆E交于点A,B,M为线段AB的中点.(1)若A,B分别为E的左顶点和上顶点,且OM的斜率为﹣,求E的标准方程;(2)若a=2,且|OM|=1,求△AOB面积的最大值.21.(12分)已知函数f(x)=xe2x﹣lnx﹣ax.(1)当a=0时,求函数f(x)在[,1]上的最小值;(2)若∀x>0,不等式f(x)≥1恒成立,求a的取值范围;(3)若∀x>0,不等式f()﹣1≥e+恒成立,求a的取值范围.请考生在22,23两题中任选一题作答.如果都做,则按第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=2acosθ(a >0),直线l的参数方程为(t为参数),直线l与曲线C 相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|AB|=2,求a的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|+5x.(1)当a=﹣1时,求不等式f(x)≤5x+3的解集;(2)若x≥﹣1时有f(x)≥0,求a的取值范围.参考答案与试题解析一、择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2≤7},Z为整数集,则集合A∩Z中元素的个数是()A.3 B.4 C.5 D.6【考点】交集及其运算.【分析】先求出集合A,从而求出集合A∩Z,由此能求出集合A∩Z 中元素的个数.【解答】解:∵集合A={x|x2≤7}={x|﹣},Z为整数集,∴集合A∩Z={﹣2,﹣1,0,1,2},∴集合A∩Z中元素的个数是5个.故选:C.【点评】本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简复数,求出在复平面内,复数对应的点的坐标,则答案可求.【解答】解:==,在复平面内,复数对应的点的坐标为:(,),位于第二象限.故选:B . 【点评】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.设x ∈R ,向量,且,则=( )A .B .C .10D .【考点】平面向量的坐标运算.【分析】向量的数量积先求出x 的值,再求出向量的模即可.【解答】解:向量,且,∴x ﹣2=0,解得x=2,∴==,故选:A .【点评】本题考查了向量的垂直和向量的数量积和向量的模,属于基础题.4.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第n 层楼时,上下楼造成的不满意度为n,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第n层楼时,环境不满意度为,则同学们认为最适宜的教室应在()A.2楼B.3楼C.4楼D.8楼【考点】函数的值.【分析】同学们总的不满意度y=n+,由此利用基本不等式能求出同学们认为最适宜的教室应在3楼.【解答】解:由题意知同学们总的不满意度y=n+≥2=4,当且仅当n=,即2≈3时,不满意度最小,∴同学们认为最适宜的教室应在3楼.故选:B.【点评】本题考查函数在生产生活中的实际应用,是基础题,解题时要认真审题,注意基本不等式性质的合理运用.5.函数的值域为()A.B.C.[﹣2,2]D.[﹣1,1]【考点】三角函数的化简求值.【分析】通过两角差的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.【解答】解:∵f(x)=sinx﹣cos(x﹣)=sinx﹣cosx﹣sinx=sinx﹣cosx=sin(x﹣).∴函数f(x)=sinx﹣cos(x﹣)的值域为[﹣1,1].故选:D.【点评】本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力,利用两角差的正弦函数化为一个角的一个三角函数的形式是关键,属于基础题.6.如图所示的程序框图,若f(x)=logπx,g(x)=lnx,输入x=2016,则输出的h(x)=()A.2016 B.2017 C.logπ2016 D.ln2016【考点】程序框图.【分析】根据程序框图求出h(x)的解析式即可.【解答】解:x=2016时,f(x)=logπ2016<g(x)=ln2016,故h(x)=f(x),故选:C.【点评】本题考查了程序框图,考查对数函数的性质,是一道基础题.7.在△ABC中,A,B,C所对的边分别是a,b,c,A=,且bcosC=3ccosB,则的值为()A. B. C.D.【考点】正弦定理.【分析】利用余弦定理将角化边整理得出a,b,c的关系,再使用余弦定理消去a,得到关于b,c的方程,即可解出的值.【解答】解:△ABC中,A=,且bcosC=3ccosB,∴b×=3c×,即a2=2b2﹣2c2;又cosA==﹣,∴b2+c2﹣a2+bc=0,∴3c2﹣b2+bc=0,即﹣()2++3=0,解得=或(不合题意,舍去),即的值为.故选:B.【点评】本题考查了三角函数的恒等变换以及余弦定理和一元二次方程的解法问题,属于中档题.8.函数f(x)的导函数f′(x),对∀x∈R,都有f′(x)>f(x)成立,若f(2)=e2,则不等式f(x)>e x的解是()A.(2,+∞)B.(0,1)C.(1,+∞)D.(0,ln2)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=,利用导数可判断g(x)的单调性,再根据f(ln2)=2,求得g(ln2)=1,继而求出答案【解答】解:∵∀x∈R,都有f′(x)>f(x)成立,∴f′(x)﹣f(x)>0,于是有()′>0,令g(x)=,则有g(x)在R上单调递增,∵不等式f(x)>e x,∴g(x)>1,∵f(2)=e2,∴g(2)==1,∴x>2,故选:A.【点评】本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.9.某几何体的三视图如图所示,则该几何体的表面积为()A.50 B.50.5 C.51.5 D.60【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+(5+2)×4+(5+2)×5+3×5=60.故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.10.用半径为R的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为()A. B. C. D.【考点】棱柱、棱锥、棱台的体积.【分析】设圆柱的高为x,则其为内接矩形的一边长,那么另一边长为y=2,利用导数性质求出当x=时,此圆柱体积最大.由此能求出圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比.【解答】解:设圆柱的高为x,则其为内接矩形的一边长,那么另一边长为y=2,∴圆柱的体积V(X)=πy2x==π(﹣x3+4R2x),(0<x<2R),∴V′(x)=π(﹣3x2+4R2),列表如下:(∴当x=时,此圆柱体积最大.∴圆柱体体积最大时,该圆内接矩形的两条边长分别为和2=,∴圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为:=.故选:C.【点评】本题考查圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比的求法,是中档题,解题时要认真审题,注意导数性质的合理应用.11.设双曲线﹣=1(a>0,b>0)的右焦点F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λμ=,则该双曲线的离心率为()A.B.C.3 D.2【考点】双曲线的简单性质.【分析】由方程可得渐近线,可得A,B,P的坐标,由已知向量式可得λ+μ=1,λ﹣μ=,解之可得λμ的值,由λμ=,可得a,c的关系,由离心率的定义可得.【解答】解:双曲线的渐近线为:y=±x,设焦点F(c,0),则A(c,),B(c,﹣),P(c,),因为=λ+μ,所以(c,)=((λ+μ)c,(λ﹣μ)),所以λ+μ=1,λ﹣μ=,解得:λ=,μ=,又由λμ=,得:,解得=,所以,e=2.故选:D【点评】本题考查双曲线的简单性质,涉及双曲线的离心率的求解,属中档题.12.对于函数f(x)=,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,f n+1(x)=f[f n(x)](n∈N*,且n≥2),令集合M={x|f2036(x)=x,x∈R},则集合M为()A.空集B.实数集C.单元素集D.二元素集【考点】集合的表示法.【分析】根据条件可分别求出f2(x),f3(x),f4(x),f5(x),f6(x),f7(x),会得出f n(x)是以4为周期,这样即可解出方程f2036(x)=x,便可得到集合M所含元素的情况,从而找出正确选项.【解答】解:∵f(x)==1﹣,∴f2(x)=1﹣=﹣,f3(x)=,f4(x)=x,f5(x)=f(x)=,∴f n(x)是以4为周期,∴f2036(x)=f4(x)=x,∴集合M={x|f2036(x)=x,x∈R}=R.故选:B.【点评】本题考查函数的性质及应用,是基础题,解题时要认真审题,注意函数的周期性的合理运用.一、填空题:本大题共4小题,每小题5分,满分20分13.抛物线y2=2x的焦点坐标是(,0),准线方程是x=﹣.【考点】抛物线的简单性质.【分析】利用抛物线的标准方程求解焦点坐标以及准线方程即可.【解答】解:抛物线y2=2x的焦点坐标是(,0);准线方程是:x=﹣.故答案为:(,0);x=﹣.【点评】本题考查抛物线的简单性质的应用,是基础题.14.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是20+4cm2,体积是8cm3.【考点】由三视图求面积、体积.【分析】由三视图作出原图形的直观图,结合图形求出它的表面积与体积.【解答】解:由三视图作出原图形如图所示,原几何体为底面是边长为2cm、4cm的直角三角形,高为2cm的直三棱柱;其表面积为S=2××2×4+4×2+2×2+2×=20+4cm2;体积为V=×4×2×2=8cm3.故答案为:,8.【点评】本题考查了三视图与体积、表面积的计算问题,是基础题目.15.在△ABC中,内角A,B,C所对的边分别是a,b,c,若a=2,C=,tanA=,则sinA=,b=4+.【考点】正弦定理.【分析】由范围A∈(0,π),利用同角三角函数基本关系式可求sinA,利用正弦定理可求c的值,进而利用余弦定理可求b的值.【解答】解:∵tanA=,可得:cos 2A==,又∵A ∈(0,π),∴sinA==,∵a=2,C=,∴c==5,∴由余弦定理c 2=a 2+b 2﹣2abcosC ,可得:52=(2)2+b 2﹣2×,整理可得:b 2﹣2b ﹣13=0,∴解得:b=4+,或4(舍去),故答案为:,4+.【点评】本题主要考查了同角三角函数基本关系式,正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.已知等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,设{a n },{b n }的前n 项和分别为S n ,T n ,若,n ∈N *,则d= 2 ,q= 2 .【考点】等比数列的通项公式.【分析】在已知等式中分别取n=1、2、3、4,得到关于a 1,b 1,d ,q 的方程组,求解得答案.【解答】解:由,得b 1+1=2a 1,b 1+b 1q +1=2a 1+d ,,.联立以上各式解得:d=q=2.故答案为:2,2.【点评】本题考查等差数列和等比数列的通项公式及前n项和公式,考查计算求解能力,是中档题.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•淮南一模)在△ABC中,角A,B,C的对边分别是a,b,c,且acosC=(2b﹣c)cosA.(1)求角A的大小;(2)求cos(﹣B)﹣2sin2的取值范围.【考点】正弦定理.【分析】(Ⅰ)由正弦定理化简等式整理可得sinB=2sinBcosA,又sinB≠0,可求,结合A为内角即可求得A的值.(Ⅱ)由三角函数恒等变换化简已知可得sin(B﹣)﹣1,由可求B﹣的范围,从而可求,即可得解.【解答】解:(Ⅰ)由正弦定理可得,,从而可得,,即sinB=2sinBcosA,又B为三角形的内角,所以sinB≠0,于是,又A亦为三角形内角,因此,.…(6分)(Ⅱ)∵,=,=,由可知,,所以,从而,因此,,故的取值范围为.…(12分)【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于中档题.18.(12分)(2014•安徽)数列{a n}满足a1=1,na n+1=(n+1)a n+n (n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.【考点】数列的求和;等比关系的确定.【分析】(Ⅰ)将na n+1=(n+1)a n+n(n+1)的两边同除以n(n+1)得,由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出b n=3n•=n•3n,利用错位相减求出数列{b n}的前n项和S n.【解答】证明(Ⅰ)∵na n+1=(n+1)a n+n(n+1),∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅱ)由(Ⅰ)知,,∴,b n=3n•=n•3n,∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴【点评】本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.19.(12分)(2017•淮南一模)某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生个数,求ξ的分布列及其数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图.【分析】(Ⅰ)根据茎叶图可得[50,60),总共有8人,结合频率分布直方图,可求样本容量n和频率分布直方图中x、y的值;(Ⅱ)由题意可知,分数在[80,90)有5人,分数在[90,100)有2人,共7人.抽取的3名同学中得分在[80,90)的学生个数ξ的可能取值为1,2,3,求出相应的概率,即可求ξ的分布列及其数学期望.【解答】解:(Ⅰ)由题意可知,样本容量,,x=0.1﹣0.004﹣0.010﹣0.016﹣0.04=0.030.(3分)(Ⅱ)由题意可知,分数在[80,90)有5人,分数在[90,100)有2人,共7人.抽取的3名同学中得分在[80,90)的学生个数ξ的可能取值为1,2,3,则,,.所以,ξ的分布列为所以,.(12分)【点评】本题考查茎叶图、频率分布直方图,考查随机了的分布列及其数学期望,考查学生的识图能力,考查学生的计算能力,属于中档题.20.(12分)(2017•淮南一模)设椭圆E的方程为+y2=1(a>1),O为坐标原点,直线l与椭圆E交于点A,B,M为线段AB的中点.(1)若A,B分别为E的左顶点和上顶点,且OM的斜率为﹣,求E的标准方程;(2)若a=2,且|OM|=1,求△AOB面积的最大值.【考点】直线与圆锥曲线的综合问题.【分析】(1)将A和B代入椭圆方程,做差求得,由斜率公式可知k AB=,即可求得a的值,求得E的标准方程;(2)将直线方程代入椭圆方程,由韦达定理及中点坐标公式,即可求得M点坐标,由|OM|=1,可得n2=,由三角形面积公式可知:,t=m2+4(t≥4),代入由基本不等式的性质即可求得△AOB面积的最大值.【解答】解:(1)设M(x0,y0),A(x1,y1),B(x2,y2),则,两式相减,得,…(2分)即,又,代入化简,解得a=2,故E 的标准方程为;…(2)设直线l :x=my +n ,A (x 1,y 1),B (x 2,y 2),∴,整理得:(4+m 2)y 2+3mny +n 2﹣4=0①y 1+y 2=﹣,y 1•y 2=,x 1+x 2=,由中点坐标公式可知:M (,),即M (,﹣) ∵|OM |=1,∴n 2=②,…(8分)设直线l 与x 轴的交点为D (n ,0),则,令,…(10分)设t=m 2+4(t ≥4),则,当t=12时,即时, △AOB 的面积取得最大值1…(12分)【点评】本题考查椭圆的标准方程的求法,直线与椭圆的位置关系,韦达定理,基本不等式性质及三角形面积公式,考查点差法求直线斜率的方法,考查计算能力,属于中档题.21.(12分)(2017•淮南一模)已知函数f(x)=xe2x﹣lnx﹣ax.(1)当a=0时,求函数f(x)在[,1]上的最小值;(2)若∀x>0,不等式f(x)≥1恒成立,求a的取值范围;(3)若∀x>0,不等式f()﹣1≥e+恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)a=0时,,,由此利用导数性质能求出函数f(x)在[,1]上的最小值.(2),函数f(x)在区间(0,x0)上递减,在(x0,+∞)上递增,由∀x>0,不等式f(x)≥1恒成立,得lnx0+2x02≤0,由此能求出a的取值范围.(3)由f()﹣1≥,得a对任意x>0成立,令函数g(x)=xlnx﹣x﹣,则,由此利用导数性质能求出a的取值范围.【解答】解:(1)a=0时,f(x)=xe2x﹣lnx,∴,,∴函数f′(x)在(0,+∞)上是增函数,又函数f′(x)的值域为R,故∃x0>0,使得f′(x0)=(2x0+1)e﹣=0,又∵,∴,∴当x∈[]时,f′(x)>0,即函数f(x)在区间[,1]上递增,∴.(2),由(1)知函数f′(x)在(0,+∞)上是增函数,且∃x0>0,使得f′(x0)=0,进而函数f(x)在区间(0,x0)上递减,在(x0,+∞)上递增,﹣lnx0﹣ax0,由f′(x0)=0,得:(2x0+1)e﹣﹣a=0,∴,∴f(x0)=1﹣lnx0﹣2x02,∵∀x>0,不等式f(x)≥1恒成立,∴1﹣lnx0﹣2x02e≥1,∴lnx0+2x02≤0,设h(x0)=lnx0+2x e,则h(x0)为增函数,且有唯一零点,设为t,则h(t)=lnt+2t2e2t=0,则﹣lnt=2t2e2t,即,令g(x)=xe x,则g(x)单调递增,且g(2t)=g(),则2t=ln,即,∵a=(2x0+1)﹣在(0,t]为增函数,则当x0=t时,a有最大值,=,∴a≤2,∴a的取值范围是(﹣∞,2].(3)由f()﹣1≥,得,∴xlnx﹣x﹣a≥,∴a对任意x>0成立,令函数g(x)=xlnx﹣x﹣,∴,当x>1时,g′(x)>0,当0<x<1时,g′(x)<0,∴当x=1时,函数g(x)取得最小值g(1)=﹣1﹣=﹣1﹣,∴a≤﹣1﹣.∴a的取值范围是(﹣∞,﹣1﹣).【点评】本题考查函数的最小值的求法,考查实数的取值范围的求法,是中档题,注意导数性质的合理运用.请考生在22,23两题中任选一题作答.如果都做,则按第一题记分.[选修4-4:坐标系与参数方程]22.(10分)(2017•淮南一模)在平面直角坐标中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=2acosθ(a>0),直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|AB|=2,求a的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用三种方程的互化方法,可得结论;(2)直线与曲线联立,利用弦长公式,建立方程,即可求a的值.【解答】解:(1)曲线C的极坐标方程为ρsin2θ=2acosθ(a>0)可得ρ2sin2θ=2aρcosθ.可得:曲线C的普通方程为:y2=2ax;直线l的参数方程为(t为参数),普通方程为x﹣y﹣2=0;(2)直线与曲线联立可得y2﹣2ay﹣4a=0,∵|AB|=2,∴=2,解得a=﹣5或1.【点评】本题考查三种方程的互化,考查弦长公式的运用,考查学生的计算能力,属于中档题.[选修4-5:不等式选讲]23.(2017•淮南一模)设函数f(x)=|x﹣a|+5x.(1)当a=﹣1时,求不等式f(x)≤5x+3的解集;(2)若x≥﹣1时有f(x)≥0,求a的取值范围.【考点】其他不等式的解法.【分析】(1)当a=﹣1时,|x+1|+5x≤5x+3,从而解得;(2)当x≥0时,f(x)=|x﹣a|+5x≥0恒成立,从而转化为故只需使当﹣1≤x<0时,f(x)=|x﹣a|+5x≥0,从而化简可得(4x+a)(6x ﹣a)≤0,从而分类讨论解得.【解答】解:(1)当a=﹣1时,|x+1|+5x≤5x+3,故|x+1|≤3,故﹣4≤x≤2,故不等式f(x)≤5x+3的解集为[﹣4,2];(2)当x≥0时,f(x)=|x﹣a|+5x≥0恒成立,故只需使当﹣1≤x<0时,f(x)=|x﹣a|+5x≥0,即|x﹣a|≥﹣5x,即(x﹣a)2≥25x2,即(x﹣a﹣5x)(x﹣a+5x)≥0,即(4x+a)(6x﹣a)≤0,当a=0时,解4x×6x≤0得x=0,不成立;当a>0时,解(4x+a)(6x﹣a)≤0得,﹣≤x≤,故只需使﹣≤﹣1,解得,a≥4;当a<0时,解(4x+a)(6x﹣a)≤0得,≤x≤﹣,故只需使≤﹣1,解得,a≤﹣6;综上所述,a的取值范围为a≥4或a≤﹣6.【点评】本题考查了绝对值不等式的解法及分类讨论的思想应用.。