实验二 求线性时不变系统的输出

合集下载

信号与系统实验总结1

信号与系统实验总结1

实验总结班级:10电子班学号:1039035 姓名:田金龙这学期的实验都有:信号的时域分析、线性时不变系统的时域分析、连续时间信号系统的频域分析、连续时间在连续时间信号的频域LTI系统的复频域分析、连续时间LTI系统的频域分析。

在这学期的学习中学习了解到很多关于信号方面的处理方法加上硬件动手的实践能力,让我对课堂上所学到的知识有了更深层次的理解也加深了所学知识的印象。

下面则是对每次实验的分析和总结:实验一:信号的时域分析在第一次试验中进行信号的时域分析还有的就是学会使用MATLAB软件来利用它实现一些相关的运算并且绘制出相关的信号图。

在时域分析中掌握连续时间信号和离散时间信号的描述方法,并能够实现各种信号的时域变化和运算。

了解单位阶跃信号和单位冲激信号的拓展函数,以便于熟悉这两种函数在之后的程序中的应用。

在能够对简单信号的描述的前提下,通过一些简单的程序,实现信号的分析,时域反相,时域尺度变换和周期信号的描述。

clear,close alldt=0.01;t=-2:dt:2;x=u(t);plot(t,x)title('u signal u(t)')grid on连续时间信号的时域分析后,则是离散时间信号的仿真。

通过对连续时间信号的描述和对离散时间信号的描述,发现它们的不同之处在于对时间的定义和对函数的图形描述。

在离散时间信号的图形窗口描述时,使用的是stem(n,x)函数。

在硬件实验中,使用一些信号运算单元,加法器,减法器,倍乘器,反相器,积分器和微分器。

输入相应的简单信号,观察通过不同运算单元输出的信号。

实验二:线性时不变系统的时域分析在线性时不变系统的时域分析中主要研究的就是信号的卷积运算,学会进行信号的卷积运算和MATLAB对卷积运算的实现。

而系统则通常是由若干部件或单元组成的一个整体,根据系统所处理的信号不同,系统又有多种不同的分类。

而在学习总最常研究的则是线性时不变系统,而线性时不变系统则是形同同时满足齐次性和叠加性。

系统阶跃响应实验报告

系统阶跃响应实验报告

一、实验目的1. 了解系统阶跃响应的基本概念和特性。

2. 掌握系统阶跃响应的测试方法。

3. 分析系统阶跃响应的动态性能指标。

4. 通过实验验证理论知识,加深对系统动态特性的理解。

二、实验原理阶跃响应是指系统在单位阶跃输入信号作用下的输出响应。

对于线性时不变系统,其阶跃响应具有以下特点:1. 稳态值:系统达到稳定状态后的输出值。

2. 超调量:系统输出在稳定前达到的最大值与稳态值之差与稳态值之比。

3. 调节时间:系统输出达到并保持在稳态值的±2%范围内的持续时间。

4. 过渡过程时间:系统输出从0%达到并保持在100%稳态值范围内的持续时间。

三、实验仪器与设备1. 自动控制系统实验箱2. 计算机及实验软件3. 阶跃信号发生器4. 数据采集卡四、实验内容1. 构建实验系统,包括一阶系统和二阶系统。

2. 分别对一阶系统和二阶系统进行阶跃响应实验。

3. 测试并记录系统的稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 分析实验结果,验证理论公式。

五、实验步骤1. 构建一阶系统实验电路,包括惯性环节和比例环节。

2. 将阶跃信号发生器输出接入系统输入端,通过数据采集卡采集系统输出信号。

3. 测试一阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 构建二阶系统实验电路,包括惯性环节、比例环节和积分环节。

5. 同样地,测试二阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

6. 对比一阶系统和二阶系统的阶跃响应特性,分析实验结果。

六、实验结果与分析1. 一阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:0%- 调节时间:0.5s- 过渡过程时间:0.5s2. 二阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:10%- 调节时间:1.5s- 过渡过程时间:1.5s从实验结果可以看出,二阶系统的阶跃响应超调量较大,调节时间和过渡过程时间较长,说明二阶系统的动态性能相对较差。

电路、信号与系统(2)实验指导书

电路、信号与系统(2)实验指导书
[问题]
描述线性时不变离散系统的差分方程为
编写求解上述方程的通用程序。
[建模]
将方程变形可得(用MATLAB语言表示)
a(1)*y(n)= b(1)*u(n)+…+ b(nb)*u(n-nb+1)- a(2)*y(n-1)-…- a(na)*y(n-na+1)
令us== [u(n),…, u(n-nb+1)]; ys=[y(n-1),…, y(n-na+1)]
x(n)={2,1,-1,3,1,4,3,7}(其中加下划线的元素为第0个采样点)在MATLAB中表示为:
n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,3,1,4,3,7];
当不需要采样位置信息或这个信息是多余的时候,可以只用x向量来表示。
(一)离散信号的MATLAB表述
[问题]
实验一连续时间信号与系统分析
一、实验目的
1、了解连续时间信号的特点;
2、掌握连续时间信号的MATLAB描述;
3、掌握连续LTI系统单位冲激响应的求解方法;
4、掌握连续LTI系统的零状态响应的求解方法。
二、实验内容
严格说来,只有用符号推理的方法才能分析连续系统,用数值方法是不能表示连续信号的,因为它给出的是各个样点的数据。只有当样本点取得很密时才可看成连续信号。所谓很密,是相对于信号变化的快慢而言的。以下均假定相对于采样点密度而言,信号变化足够慢。
elseif lu<lh nh=0; nu=lh-lu;
else nu=0; nh=0;
end
dt=0.1;
lt=lmax;
u=[zeros(1, lt), uls, zeros(1, nu), zeros(1, lt)];

实验二线性系统分析

实验二线性系统分析

实验二线性系统分析一、实验目的通过实验,掌握线性系统的特性和分析方法,了解系统的幅频特性和相频特性。

二、实验原理1.线性系统线性系统是指遵循叠加原理和比例原理的系统,可以表示为y(t)=h(t)⊗x(t),其中h(t)为系统的冲激响应,x(t)为输入信号,y(t)为输出信号,⊗为线性卷积操作。

2.系统的频域特性系统的频域特性可以通过离散傅里叶变换(Discrete Fourier Transform,简称DFT)来进行分析,DFT是将离散时间域信号变换到离散频域的方法。

3.系统的幅频特性系统的幅频特性描述了输出信号的幅度随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。

4.系统的相频特性系统的相频特性描述了输出信号的相位随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。

三、实验步骤1.准备工作:a.将信号发生器的频率设置为100Hz,幅度设置为5V。

b.将示波器的触发模式设置为自动,并调节水平位置使信号波形居中显示。

2.测量系统的幅频特性:a.将信号发生器的输出信号连接到线性系统的输入端口,将示波器的通道1连接到线性系统的输入端口,将示波器的通道2连接到线性系统的输出端口。

b.调节示波器的时间基准使波形显示在适当的范围内。

c.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的波形。

d.在示波器中进行幅度测量,并记录下输入信号和输出信号的幅值。

e.使用DFT算法对输入信号和输出信号进行频谱分析,得到幅频特性曲线。

f.绘制输入信号和输出信号的幅频特性曲线,并进行比较和分析。

3.测量系统的相频特性:a.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的相位差。

b.在示波器中进行相位测量,并记录下输入信号和输出信号的相位。

c.使用DFT算法对输入信号和输出信号进行频谱分析,得到相频特性曲线。

d.绘制输入信号和输出信号的相频特性曲线,并进行比较和分析。

数字信号处理实验(1-7)原始实验内容文档(含代码)

数字信号处理实验(1-7)原始实验内容文档(含代码)

实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。

实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。

实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。

实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。

(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。

(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。

3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》—实验指导数字信号处理课程组电子与信息工程学院班级:姓名:学号:综合评定:成绩:指导教师签字:实验一 典型离散信号及其MATLAB 实现一、实验目的1. 掌握MATLAB 语言的基本操作,学习基本的编程功能。

2. 掌握MATLAB 产生常用离散时间信号的编程方法。

3. 掌握MATLAB 计算卷积的方法。

二、实验原理(一)MATLAB 常用离散时间信号1. 单位抽样序列:⎩⎨⎧=01)(n δ 00≠=n n在MATLAB 中可以利用zeros()函数实现。

;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n kn2.单位阶跃序列:⎩⎨⎧01)(n u<≥n n 在MATLAB 中可以利用ones()函数实现。

);,1(N ones x =3.正弦序列:)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中:)/***2sin(*1:0fai Fs n f pi A x N n +=-=4.复正弦序列:n j e n x ϖ=)(在MATLAB 中:)**ex p(1:0n w j x N n =-=5.指数序列:na n x =)(在MATLAB 中:na x N n .^1:0=-=6.y=fliplr(x)——信号的翻转; y=square(x)——产生方波信号y=sawtooth(x)——产生锯齿波信号; y=sinc(x)——产生sinc 函数信号。

(二)离散时间信号的卷积由于系统的零状态响应是激励与系统的单位取样响应的卷积,因此卷积运算在离散时间信号处理领域被广泛应用。

离散时间信号的卷积定义为∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(可见,离散时间信号的卷积运算是求和运算,因而常称为“卷积和”。

MATLAB 求离散时间信号卷积和的命令为conv ,其语句格式为y=conv(x,h)其中,x 与h 表示离散时间信号值的向量;y 为卷积结果。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生实验报告
开课学院及实验室:电子实验楼317 2013年3月19 日
图2.1 用递推法求解差分方程的框图
图中,N 表示递推了N 步,即y (n )的长度。

如果用差分方程求系统的单位脉冲响应()h n ,也可以用上面的计算框图。

因为()h n 是系统输入
()n δ时的零状态响应,因此计算框图中全部的初始条件为0,且()()x n n δ=。

这样递推得到
()()y n h n =。

已知()h n 和输入()x n ,求系统输出()y n ,也可以用线性卷积法进行。

线性卷积法的公式如下:
()()()y n x n h n =*
()()m x m h n m ∞
=-∞
=
-∑
计算时,关键问题是根据()x n 和()h n 的特点,确定求和的上下限。

例如,()0.9()n
h n u n =,
10()()x n R n =,卷积公式为
10()()0.9()n m m y n R m u n m ∞
-=-∞
=
-∑
根据上式中的10()R n ,限制非零区间为:09m ≤≤,由()u n 限制非零区间为:m n ≤。

由上面的不等式知道m 的取值和n 有关,可以分几种情况: 当n <0时,
()0y n =
当0n ≤<9时,
()0.9n
n m m y n -==∑
当9n ≥时,
9
()0.9n m m y n -==∑
最后得到:
再用计算机计算()y n 。

如果给定的()x n 和()h n 是一些离散数据,更方便的是用MATLAB 语言的数字信号工具箱函数conv 计算两个n 的取值从零开始的有限长序列的线性卷积。

三、使用仪器、材料 PC 机 四、实验步骤
1. 已知系统的差分方程如下式:
()0.9(1)()y n y n x n =-+
(1) 输入信号=10()()x n R n =,初始条件(1)1y -=,求解输出()y n ; (2) 输入信号=10()()x n R n =,初始条件(1)0y -=,求解输出()y n 。

2. 已知系统差分方程为
()0.9(1)()y n y n x n =-+
求解系统的单位脉冲响应()h n ,并打印()~h n n 曲线。

3. 已知系统的单位脉冲响应()0.9()n
h n u n =,输入信号10()()x n R n =,试用卷积法求解系统输出
()y n ,并打印()y n ~n 曲线。

4.。

相关文档
最新文档