解析几何期末试卷A卷
大学解析几何考试题及答案详解

大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。
选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。
2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。
对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。
二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。
答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。
将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。
2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。
答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。
这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。
三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。
大连理工大学线性代数与解析几何A卷答案(2014.6)

姓名:__________大 连 理 工 大 学 学号:__________课 程 名 称: 线性代数与解析几何 试卷: A 考试形式: 闭卷院系:__________ 授课院(系): 数学科学学院 考试日期: 2014年6月16日 试卷共 6 页 _____ 级_____ 班装 得 分 一、(每小题4分,共40分)填空题1.已知222222222222kk k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A , 则3(6)(2)k k =+-A . 2. 设1300250000200003--⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A , 则1530021001000210003-⎡⎤⎢⎥--⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 订 3. 设123,,a a a 是一线性无关的向量组,若向量组122313,,k k -++a a a a a a 线性相关, 则k 需满足条件1-1k =或4. 矩阵111022021113-⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦A 的行最简形为1-10000100001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦5. 已知25141001k -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦A 有三个线性无关的特征向量,则=1k 线6. 设1231233,2223p k ⎡⎤⎡⎤⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A b ,方程组=Ax b 无解,则,p k 应满足关系2k p =7. 过点0(1,2,3)P ,且垂直于直线4010x y z y z +++=⎧⎨--=⎩的平面的一般式方程为230x y z -++-=8. 已知二次型10()9000T k f k k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦x x x 为正定二次型,则k 需满足条件03k <<9. 在空间直角坐标系Oxyz 中,设22a i j k =+- ,b i j =+,则a 与b 的夹角为π410. 设[]1234,,,=A a a a a ,123,,a a a 线性无关,且412323=++a a a a , 则齐次线性方程组=Ax 0的通解为[]1,2,3,1Tk -得 分 二、(每小题2分,共10分)单项选择题1.方阵A 是降秩矩阵的充要条件是( D )(A )()()r r <AB B (B )方程组=Ax b 有无穷多个解 (C )存在非零矩阵B ,使得≠AB O (D )存在非零矩阵B ,使得=AB O 2.设,A B 都是n 阶方阵,E 为n 阶单位矩阵,且,,≠≠+=+A E B E AB E A B , 则必有( A )(A ) 0,0-=-=A E B E (B ) 0,0-=-≠A E B E (C ) 0,0-≠-≠A E B E (D ) 0,0-≠-=A E B E 3.设矩阵,,A B P 都是n 阶方阵,若=B AP ,且P 可逆,则( B ) (A )矩阵A 的行向量组与矩阵B 的行向量组等价 (B )矩阵A 的列向量组与矩阵B 的列向量组等价 (C )矩阵P 的行向量组与矩阵B 的行向量组等价 (D )矩阵P 的列向量组与矩阵B 的列向量组等价4.已知123,,ηηη是齐次线性方程组=Ax 0的基础解系,则该方程组的基础解系还可选用( C )(A )122331,,ηηηηηη--- (B )与123,,ηηη等秩的向量组 (C )122331,,ηηηηηη+++ (D )与123,,ηηη等价的向量组5.设对称矩阵111111111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,200000000⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B ,则A 与B ( B ) (A )合同且相似 (B )合同但不相似(C )不合同但相似 (D )不合同且不相似得 分 三、(8分)已知210120,2,001**⎡⎤⎢⎥==+⎢⎥⎢⎥⎣⎦A ABA BA E 求.B解:由2**=+ABA BA E ,得(2),(2)*-=-=A E BA E A E B A A11(2)3-=-B A E A10100102100,(2)100001001-⎡⎤⎡⎤⎢⎥⎢⎥-=-=⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦A E A E12012103001⎡⎤⎢⎥=⎢⎥-⎢⎥⎣⎦B 得 分 四、(8分)求向量组[][][]1231,1,0,1,3,2,2,4,2,1,2,3,TTT===a a a[]41,0,2,1T=--a 的秩和一个极大无关组,并将其余向量用该极大无关组线性表示。
大一解析几何期末考试试题

是
。
x �2 y �1 z
6. 直线
�
� 与 z 轴的夹角为
1 05
7.
x2
曲面
�
y2
�
z2
� 1 是由
4
4
曲线绕
8. 曲面 z � xy 被 yoz 坐标面截得的曲线方程为
图形是
。
。 轴旋转而产生的。
,
本试卷共 4 页第 2 页
__________级 _________系 ___________专业 _____________班 姓名____________ 考号或学号_______ ——————————————密——————————————封——————————————线————————————
____________________________________________________________________________________________________________
9. 二次曲面 y2 � x2 � 2z 关于 4
轴对称。
10.二次曲线 2x2 � 5xy � 2 y2 � 6x � 3y � 5 � 0 的中心为
a � �1,�2,4�和 b � �2m,1,5�垂直,则 m =
。
�x2 � y2 � a2
3.方程组
� �
x
2
�
z2
�
a2
所表示的图形是
。
�x � y � z � 0
4. 直线 l : �
与平面� : 3x � 2y � 0 的位置关系是
。
�2x � y � z � 0
� � 5. 过 点 M a,b, c 且 与 x 轴 , y 轴 , z 轴 的 夹 角 分 别 为 �, � ,� 的 直 线 的 对 称 式 方 程
解析几何期末试卷A参考答案及评分标准.

解析几何期末试卷A 参考答案及评分标准一、(10分)写出下列方程在空间所表示的图形名称.1.1321222-=++z y x 虚椭球面 2.0222=++-z y x 二次锥面(圆锥面)3.1321222=++-z y x 单叶双曲面4.y z x 22122=+ 椭圆抛物面 5.y x 22= 抛物柱面 .二、(10分)试证:对于给定的四个向量}3,5,1{=a ,}2,4,6{--=b ,}7,5,0{-=c ,}35,27,20{--=d ,总可以确定三个实数l ,m ,n ,使得a l ,b m ,c n ,d 构成封闭折线.证明:假设a l ,b m ,c n ,d构成封闭折线,则=+++d c n b m a l (4分)于是 ⎪⎩⎪⎨⎧=-+-=+--=-+0357230275450206n m l n m l m l (6分) 解出 2=l ,3=m ,5=n所以命题成立. (10分)三、(15分)设向量a ,b ,c 两两互相垂直,1||=a ,2||||==c b ,并且向量c b a r -+=,证明:1,cos ,cos ,cos 222>=<+><+><c r b r a r. 证明:因为22)(c b a r -+=)(2222c b c a b a c b a ⋅-⋅-⋅+++=, 由题设条件可得3||=r , (5分) 于是31||||,cos =⋅>=<a r a r a r,32||||,cos =⋅>=<b r b r b r ,32||||,cos -=⋅>=<c r c r c r(12分) 所以1,cos ,cos ,cos 222>=<+><+><c r b r a r (15分) 四、(10分)试求经过点)1,2,4(-P 和x 轴的平面方程. 解:由于平面过x 轴,可设为0=+Cz By (5分)以)1,2,4(-代入,得 02=+-C B于是 B :C =1:2 (8分)故所求平面方程为02=+z y (10分)五、(10分)试求经过点)1,0,1(-P ,并且与直线1l :321z y x ==和2l :431221-=-=-z y x 都相交的直线的方程.解:过)1,0,1(-P 与直线1l 的平面方程为321010001000=-------z y x即02=+-z y x (4分) 过)1,0,1(-P 与直线2l 的平面方程为412312011321=-------z y x即 022=--+z y x (8分)∴所求直线方程为 ⎩⎨⎧=--+=+-02202z y x z y x (10分)六、(10分)证明直线1l :01123-==-z y x 与2l :10211zy x =-=+是异面直线. 证明: 1l 的方向向量 }0,1,2{, 2l 的方向向量 }1,0,1{ (4分) 取 1l , 2l 上的点 )1,0,3(, )0,2,1(- (6分)计算7110120120)1(3≠=----所以 1l 与 2l 是异面直线. (10分)七、(10分)试求到定点与定直线的距离之比等于常数0>λ的点的轨迹方程,并根据λ的取值范围,说明轨迹的形状(注:假定定点不在定直线上). 解:设定点不在定直线上,建立坐标系,使定直线为x 轴,定点为),0,0(c C ,(0≠c ). 设动点为),,(z y x P ,则由假设可知),(),(轴x P d C P d λ=, 即 22222)(z y c z y x +=-++λ 平方,得 02)1()1(222222=+--+-+c cz z y x λλ(5分)①当1=λ时,得 0222=+-c cz x即)2(22cz c x -= 此为抛物柱面. (8分)②当1≠λ时,得2222222221)1)(1()1(λλλλλ-=---+-+c c z y x , 则当1>λ时,此为单叶双曲面;当 10<<λ时,此为椭球面. (10分)八、(10分)试求单叶双曲面∑:11649222=-+z y x 上,经过点)0,2,0(M 的两条直母线方程.解:∑上两族直母线:λ族:⎪⎪⎩⎪⎪⎨⎧-=-+=+)21()43()21()43(1221y z x y z x λλλλ μ族:⎪⎪⎩⎪⎪⎨⎧+=--=+)21()43()21()43(1221y z x y z x μμμμ将 )0,2,0(M 分别代入,可得 02=λ, 01=μ (6分)分别代入,可得所求直线方程:⎪⎪⎩⎪⎪⎨⎧=-=+021043y z x⎪⎪⎩⎪⎪⎨⎧=-=-043021z x y 即 ⎩⎨⎧=-=+02034y z x⎩⎨⎧=-=-02034y z x .(10分)九、(15分)在欧氏平面上,将方程0844222=+--+-y x y xy x 化成标准型,作出其图形,说明原方程表示什么曲线.解:由 022cot 122211=-=a a a θ得4πθ=于是 0tan 121111=+='θa a a 2tan 122222=-='θa a a 22sin cos 231313-=+='θθa a a0cos sin 231323=+-='θθa a a原方程化为: 04222=+'-'x y 配方0)2(222=-'-'x y 作平移变换 ⎩⎨⎧'=''-'=''y y x x 2 原方程化为x y ''=''222. (5分) 所以原方程表示抛物线. (10分)作图 (15分)。
解析几何期末复习题

解析几何期末复习题一、选择题1、已知直线06:21=++y m x l ,023)2(:2=++-m my x m l ,m 为何值时,若1l //2l 则m 的值为( )(A )0 (B )-1 (C )0或1 (D )0或-12、直线3y kx =+与圆()()22324x y -+-=相交于M,N两点,若MN ≥k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B. []304⎡⎤-∞-+∞⎢⎥⎣⎦ ,,C.33⎡-⎢⎣⎦, D.203⎡⎤-⎢⎥⎣⎦,3、以椭圆221169144xy+=的右焦点为圆心,且与双曲线221916xy-=的渐近线相切的圆的方程是( ) A. 221090x y x +++= B. 221090x y x +--= C. 221090x y x +-+= D. 221090x y x ++-=4、椭圆22221()x y a b ab+=>>0的右焦点F ,A 点的坐标为2(,0)ac,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( ) A. 10,2⎛⎤⎥⎝⎦B.1,12⎡⎫⎪⎢⎣⎭C.02⎛ ⎝⎦D.)1,1二、填空题5、已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值是________.6、已知双曲线22221(0,0)x y a b ab-=>>的一条渐近线方程是,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为___________.7、已知P 是直线0843=++y x 上的动点,PA ,PB 是圆012222=+--+y x y x 的两条切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为 . 8、从双曲线22135xy-=的左焦点F 引圆223x y +=的切线FP 交双曲线右支于点P ,T为切点,M 为线段FP 的中点,O 为坐标原点,则||||MO MT -=_________三、解答题9、已知:以点C (t, 2t)(t∈R , t≠ 0)为圆心的圆与x轴交于点O, A,与y轴交于点O, B,其中O为原点.(Ⅰ)求证:△OAB的面积为定值;(Ⅱ)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.10、已知点(2,0),(2,0)A B-,P是平面内一动点,直线P A、P B斜率之积为3 4 -.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点1(,0)2作直线l与轨迹C交于E F、两点,线段E F的中点为M,求直线M A的斜率k的取值范围.11、已知(2, 0)B为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A-,(2, 0)∆面积的最大值为A,B的动点,且A P B(Ⅰ)求椭圆C的方程及离心率;(Ⅱ)直线A P与椭圆在点B处的切线交于点D,当直线A P绕点A转动时,试判断以B D 为直径的圆与直线P F的位置关系,并加以证明.12、如图,椭圆的中心在原点,其左焦点1F 与抛物线24y x =-的焦点重合,过1F 的直线l 与椭圆交于A 、B 两点,与抛物线交于C 、D 两点.当直线l 与x轴垂直时,C D AB=(Ⅰ)求椭圆的方程;(II )求22F A F B ⋅的最大值和最小值.答案与提示:1.D ;2. A ;3. C ;4. B ;5. 7;6. 221927xy-=7.;8. -提示:由21211||||||||22M O M F M F M F ==,及双曲线的定义,得12211||||||||(2)22M O M F M F M F a -=-=⨯-=(),又11||||||||M F M T TF M T =+= ,所以1|||3.M O M F - 9、解:(1)O C 过原点圆 ,2224tt OC+=∴.设圆C 的方程是 22224)2()(tt ty t x +=-+-令0=x ,得t y y 4,021==;令0=y ,得t x x 2,021==1142422||||O A B S O A O B t t∆∴=⋅=⨯⨯=,即:OAB ∆的面积为定值.(2),,CN CM ON OM == OC ∴垂直平分线段MN . 21,2=∴-=oc MN k k ,∴直线OC 的方程是x y 21=.t t 212=∴,解得:22-==t t 或当2=t 时,圆心C 的坐标为)1,2(,5=OC ,此时C 到直线42+-=x y 的距离559<=d ,圆C 与直线42+-=x y 相交于两点.当2-=t 时,圆心C 的坐标为)1,2(--,5=OC ,此时C 到直线42+-=x y 的距离559>=d圆C 与直线42+-=x y 不相交,2-=∴t 不符合题意舍去.∴圆C 的方程为5)1()2(22=-+-y x .10、解: (Ⅰ)设P 点的坐标为(,)x y ,依题意,有3(2)224y y x x x ⋅=-≠±-+ .化简并整理,得221(2)43xyx +=≠±.∴动点P 的轨迹C 的方程是221(2)43xyx +=≠±. …………………………4分(Ⅱ)依题意,直线l 过点1(,0)2且斜率不为零,故可设其方程为12x m y =+.由方程组2212143x m y x y ⎧=+⎪⎪⎨⎪+=⎪⎩ 消去x ,并整理得224(34)12450m y m y ++-=. 设),(),,(2211y x F y x E ,),(00y x M , 122334m y y m ∴+=-+ ,∴1202322(34)y y m y m +==-+∴00212234x m y m =+=+, 020244y m k x m ∴==-+. ………………8分① 当0=m 时,0k =; …………………………………………9分② 当0≠m 时, 144k m m=+44|4|4||8||m m mm +=+≥ 110484m m∴<≤+.10||8k ∴<≤. 1188k ∴-≤≤且0k ≠ .综合①、②可知,直线M A 的斜率k 的取值范围是1188k -≤≤. ……………………12分11、解:(Ⅰ)由题意可设椭圆C 的方程为22221(0)x y a b ab+=>>,(,0)F c .由题意知解得b =,1c =.故椭圆C 的方程为22143xy+=,离心率为12.……6分(Ⅱ)以B D 为直径的圆与直线P F 相切.证明如下:由题意可设直线A P 的方程为(2)y k x =+(0)k ≠.则点D 坐标为(2, 4)k ,B D 中点E 的坐标为(2, 2)k .由22(2),143y k x x y =+⎧⎪⎨+=⎪⎩得2222(34)1616120k x k x k +++-=.设点P 的坐标为00(,)x y ,则2021612234k x k--=+.所以2026834k x k-=+,00212(2)34k y k x k=+=+. ……………………………10分因为点F 坐标为(1, 0), 当12k =±时,点P 的坐标为3(1, )2±,点D 的坐标为(2, 2)±.直线P F x ⊥轴,此时以B D 为直径的圆22(2)(1)1x y -+= 与直线P F 相切.当12k ≠±时,则直线P F 的斜率0204114PF y k k x k==--.所以直线P F 的方程为24(1)14k y x k=--.⎧⎪⎨⎪⎩2221222, .a b a a b c ⋅⋅===+点E 到直线P F的距离d =322228142||14|14|k k k k kk +-==+-.又因为||4||BD k = ,所以1||2d B D =.故以B D 为直径的圆与直线P F 相切.综上得,当直线A P 绕点A 转动时,以B D 为直径的圆与直线P F 相切.………14分 12、解:(Ⅰ)由抛物线方程,得焦点1(1,0)F -.设椭圆的方程:)0(12222>>=+b a by ax .解方程组241y xx ⎧=-⎨=-⎩得C (-1,2),D (1,-2).由于抛物线、椭圆都关于x 轴对称,∴11||||||||F C C D F A AB ==,1||2F A =,∴(1,2A .∴221112ab +=又1222==-c b a ,因此,2211112b b+=+,解得21b =并推得22a =.故椭圆的方程为2212xy += . …………4分(Ⅱ)由12(1,0),(1,0)F F -点①若AB 垂直于x 轴,则)22,1(),22,1(---B A ,22(2,(2,)22F A F B ∴=-=--,2217422F A F B ⋅=-= …………………………………………9分②若AB 与x 轴不垂直,设直线AB 的斜率为k ,则直线AB 的方程为)1(+=x k y由⎩⎨⎧=-++=022)1(22y x x k y 得 0)1(24)21(2222=-+++k x k x k0882>+=∆k,∴方程有两个不等的实数根.设),(11y x A ,),(22y x B .2221214kkx x +-=+, 222121)1(2kkx x +-=⋅………………………………11分),1(),,1(222112y x B F y x A F -=-=∴)1)(1()1)(1()1)(1(21221212122+++--=+--=⋅x x k x x y y x x B F A F22122121))(1()1(k x x k x x k +++-++= 22222221)214)(1(21)1(2)1(k kkkkkk +++--++-+==)21(29272117222k kk +-=+-12110,121,0222≤+<≥+≥kk k]27,1[22-∈⋅∴B F A F ,所以当直线l 垂于x 轴时,B F A F 22⋅取得最大值27当直线l 与x 轴重合时,B F A F 22⋅取得最小值1-。
高中解析几何试题及答案

高中解析几何试题及答案1. 已知圆的方程为 \((x-2)^2+(y-3)^2=9\),求该圆的圆心坐标和半径。
答案:圆心坐标为 \((2, 3)\),半径为 \(3\)。
2. 求直线 \(2x + 3y - 6 = 0\) 关于点 \((1, 2)\) 对称的直线方程。
答案:对称直线的方程为 \(2x - 3y + 8 = 0\)。
3. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))经过点 \((2, 3)\),且离心率 \(e = \frac{c}{a}\) 为 \(\frac{1}{2}\),求椭圆的长轴和短轴长度。
答案:根据离心率 \(e = \frac{c}{a} = \frac{1}{2}\),我们有 \(c =\frac{a}{2}\)。
由于椭圆经过点 \((2, 3)\),代入椭圆方程得\(\frac{4}{a^2} + \frac{9}{b^2} = 1\)。
又因为 \(c^2 = a^2 -b^2\),代入 \(c = \frac{a}{2}\) 得 \(\frac{a^2}{4} = a^2 -b^2\),解得 \(b^2 = \frac{3}{4}a^2\)。
将 \(b^2\) 代入椭圆方程,解得 \(a^2 = 16\) 和 \(b^2 = 12\)。
因此,椭圆的长轴长度为\(2a = 32\),短轴长度为 \(2b = 24\)。
4. 求抛物线 \(y^2 = 4px\)(\(p > 0\))的焦点坐标。
答案:焦点坐标为 \((\frac{p}{2}, 0)\)。
5. 已知双曲线 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 的一条渐近线方程为 \(y = \frac{b}{a}x\),求双曲线的离心率。
答案:双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
大一期末解析几何考试题
4.已知矢量 的模为 且矢量 在矢量 与 的夹角平分线上。求矢量 的坐标。(10分)
2.试证明对于任意四个矢量 ,当 不共面时有
8.以下方程中,可以化为截距式的是()。
(A) (B)
(C) (D)
9.空间曲线L: 对 坐标面的射影柱面为()
(A) (B)
(C) (D)
10.柱面 的母线方向矢量为()。
(A) (B) (C) (D)
二、填空题(每小题1分,共10分)
1.方程组 所表示的图形是。
2.设 是两两垂直的右旋单位矢量组,则 。
4.已知 =1, =5, =3,则 为()。
(A)64(B)16(C)36(D)576
5.若三矢量 不共面,则与 相等的是()
(A) (B) (C) (D)
6.参数方程 ( 为参数)的普通方程是()
(A) (B)
(C) (D)
7.在空间直角坐标系下,方程 =0表示()。
(A) 轴与 轴(B)一定点(C) 轴(D)两个平面
一、单项选择题(每小题3分,共30分)
1.设 则()
(A) 共线(B) 共线
(C) 共线(D) 共线
2.对于二矢量 ,等式 成立的充要条件是()
(A) 与 垂直(B) 与 均为
(C) 与 中有一个为 (D) 与 共线
3.若点A(-2,1,3),B(-2,-1,-3),则点A与点B关于()对称。
(A) 面(B) 轴(C) 轴(D)原点
ቤተ መጻሕፍቲ ባይዱ3.设 不共线, 与 所成的角为 ,则< <。
4.已知点M 和N ,则 的单位矢量的坐标为。
大学课程《解析几何》专业期末试题A卷及答案
《解析几何》期末考试试卷A适用专业: 信息与计算科学 考试日期: 2011.7 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题(每空2分,共40分)1. 求与向量{}3,4,12a =-反方向的单位向量 .2. 向量{}1,2,3a =-与向量{}2,3,1b =-,则与a 和b 都垂直的单位向量为 .3. 设{}2,2,1a =-,向量b 与a 共线,且模为75,方向与a 相反, 则b = .4. 已知2AP PB -→-→=-,且(2,1,3)A ,(0,2,1)B -,则P 点坐标为 . 5. 一直径的两个端点坐标为(1,2,3)-, (3,0,1)的球面方程为 . 6. 在空间直角坐标系下方程221z x =+表示 .7. 二次曲线221112221323332220a x a xy a y a x a y a +++++=,当旋转角α满足 时, 方程不含交叉项.并写出曲线在直角坐标系下的三个不变量为 , , .10 222253x y z y ⎧++=⎨=⎩的圆心坐标为 .11 方程22221x y z -+=表示的曲面名称为 .12 方程2222x y z z ++=转化为球面坐标系下方程为 . 13 平面外一点(2,1,3)P 到平面221x y z -+=的距离为 . 14 写出平面240x y z -++=的法式方程 .15 平移平面直角坐标系下的坐标轴, 使新原点的坐标为(2,1)o ',则在新坐标系下坐标为(4,0)-的点在旧坐标系下的坐标为 .16 已知(1,0,1),(1,2,0),(1,2,1)a b c ==-=-,则()a b c ⨯⋅= ,()a b c ⨯⨯= .17 写出22210x y z --+=过点(2,1,-2)的直母线方程 ,.二、计算题(1,2,3每题7分,4,5每题10分, 共41分)1.求直线12340x y z --⎧=⎪⎨⎪=⎩与平面3240x y z -++=的夹角,并求交点.2.写出直线2210:220x y z L x y z +-+=⎧⎨+--=⎩的参数式方程, 并求出直线的方向余弦.3.求曲线222222x y z z x y ⎧++=⎨=+⎩在xoy 面的射影柱面方程和射影曲线方程. 4求直线11111x y z --==-在平面:210x y z π-+-=上的投影直线0l ,并求0l 绕y 轴旋转一周所成的曲面方程.5. 判断二次曲线223234440x xy y x y -+++-=是中心型,无心型还是线心型, 并化方程为标准型.三、 求证两条直线异面122:101x y z l +-==-2321:151x y z l -+-==,并求公垂线方程. (9分)四、画图题(每题5分,共10分)1.作出两个曲面z =,224z x y -=+所围立体的图形.2. 作出由三个坐标面, 曲面22z x y =+和平面1x y +=所围的立体图形.《解析几何》期末考试试卷A 答案适用专业: 信息与计算科学 考试日期: 2011.7 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分二. 填空题(每空2分,共40分)1. 求与向量{}3,4,12a =-反方向的单位向量 3412,,131313⎧⎫--⎨⎬⎩⎭.2. 向量{}1,2,3a =-与向量{}2,3,1b =-,则与a 和b 都垂直的单位向量为. 3. 设{}2,2,1a =-,向量b 与a 共线,且模为75,方向与a 相反, 则b = (-10,10,-5) .4. 已知2AP PB -→-→=-,且(2,1,3)A ,(0,2,1)B -,则P 点坐标(-2,3,-5) . 5. 一直径的两个端点坐标为(1,2,3)-, (3,0,1)的球面方程为222(2)(1)(1)6x y z -+-++= .6. 在空间直角坐标系下方程221z x =+表示 拄面 .7. 二次曲线221112221323332220a x a xy a y a x a y a +++++=,当旋转角α满足 112212cot 2a a a α-=时, 方程不含交叉项.并写出曲线在直角坐标系下的三个不变量为 1I , 2I , 3I .10 222253x y z y ⎧++=⎨=⎩的圆心坐标为 (0,3,0) .11 方程22221x y z -+=表示的曲面名称为 单叶双曲面 .12 方程2222x y z z ++=转化为球面坐标系下方程为 2sin ρϕ= . 13 平面外一点(2,1,3)P 到平面221x y z -+=的距离为 5/3 . 14 写出平面240x y z -++=的法式方程0x y +=. 15 平移平面直角坐标系下的坐标轴, 使新原点的坐标为(2,1)o ',则在新坐标系下坐标为(4,0)-的点在旧坐标系下的坐标为 (-2,1) . 16 已知(1,0,1),(1,2,0),(1,2,1)a b c ==-=-,则()a b c ⨯⋅= -2 ,()a b c ⨯⨯= (5,0,5) .17 写出22210x y z --+=过点(2,1,-2)的直母线方程0220x z x y z +=⎧⎨---=⎩,10x z y -=⎧⎨+=⎩. 二、计算题(1,2,3每题7分,4,5每题10分, 共41分)1.求直线12340x y z --⎧=⎪⎨⎪=⎩与平面3240x y z -++=的夹角,并求交点.(3,4,0)s = 2分 (3,1,2)n =- 1cos 14s n s n θ⋅== 5分 12340x y z --⎧=⎪⎨⎪=⎩与3240x y z -++=解方程组得(-2,-2,0) 7分2.写出直线2210:220x y z L x y z +-+=⎧⎨+--=⎩的参数式方程, 并求出直线的方向余弦.212121ijks =--(3,0,3)= 3分取一点45(,,0)33- 4分 参数方程为433535x t y z t ⎧=-+⎪⎪⎪=⎨⎪=-⎪⎪⎩5分方向余弦cos α=,cos 0β=,cos ν= 7分3.求曲线222222x y z z x y ⎧++=⎨=+⎩在xoy 面的射影柱面方程和射影曲线方程.2242x y z ⎧+=⎨=⎩, 224x y += 7分4求直线11111x y z --==-在平面:210x y z π-+-=上的投影直线0l ,并求0l 绕y 轴旋转一周所成的曲面方程.平面束1(1)0x y z y λ--+-+=,(1,1,)n λλ=-+,1(1,1,2)n =- 3分 10n n ⋅=, 3312913I λ-=-=-,得0l :3210210x y z x y z --+=⎧⎨-+-=⎩, 6分 2224174210x y z y -++-= 10分5. 判断二次曲线223234440x xy y x y -+++-=是中心型,无心型还是线心型, 并化方程为标准型. 23113I -=-=8 3分, 中心型 4分。
解析几何试题
解析几何试题山东财政学院2005—2006学年第一学期期末考试《解析几何》试卷(A )一、填空(40分,每题4分)1. 设向量{3,6,1},{1,4,5},{3,4,12},a b c =--=-=-a b c + 那么向量在上的射影为.2.设{2,1,1},{1,2,1},,a b e a b =-=-单位向量同时垂直于与那么e = .3.球面的中心在点(1,3,2),-而且球面通过原点,那么该球面的方程为 . 4.点(1,1,1)到平面x+3y -2=0的距离是 . 5. 点(0,0,1)到直线z y x =+=-2121的距离是 . 6.直线的与直线21123212-+=-=-=+=-z y x z -y x 距离是 .7. 过直线?=-=-113y x y x 和点(0,2,0)的平面是 .8.准线是9122x +y =z =,母线方向是(1,2,3)的柱面方程为 .(请用x,y,z 的一个方程表示) 9.直线0y z y z x -=??=?绕轴和轴旋转所生成的旋转曲面的方程分别为和 .10.中心二次曲线346843022x xy y x y -+--+=的中心为 ,线心二次曲线44632022x xy y x y -++-+=的中心直线的方程为 . 二.已知四面体的体积V =5,它的三个定点为(2,1,1),(3,0,1),(2,1,3)A B C --,又知它的第四个定点D 在y 轴上,试求点D 的坐标和从定点D 所引出的高的长h.三.,,a b c d设是三个两两垂直的非零向量,试证明任意向量可表示成222a d b d c d d a b c a b c=++四试求通过点(1,0,4)M -,垂直于平面34100,x y z π-+-=:13:312x y zl +-==且与直线平行的平面方程。
五. 求过点0(1,1,1)M 且与直线50:0x y z l x y z --=??+-=?垂直相交的直线的方程。
解析几何-期末考试试题3套卷
说明:1.试题集中填写(或打印)在方格内,字迹须工整清晰,答题纸另附;2.试题须经教研室或系(部)领导认真审核、签字;3.学生接到试卷后,应先检查是否有缺页,如有及时报告监考老师更换。
解析几何期末考试试题(A3)卷
八、(12分)已知二次曲线 化简其方程,写出相应的坐标变换公式,并作出它的图形.
七、(10分)在双曲抛物面 上求平行于平面 的直母线方程
4、平面 的法式化因子 为.
5、二次曲线 的主方向为,主直径为.
三、(8分)证明 .
题号
一
二
三
四
五
六
七
八
合计
得分
一、选择题:在每小题给出的四个选项中,只有一个正确答案,把你认为是正确答案的代号,填在题后的括号内.(每小题4分,共20分)
1、如果 , ,若 ,则k为()
A. ;B. ;C. ;D. .
2、二次曲线 属于()
A.抛物型;B.椭圆型;C.双曲型;D.不能确定.
3、直线 与平面 的相关位置为()
A.垂直;B.平行;C.相交;D.直线在平面上.
4、过点M(2,-3,-5)且与平面 垂直的直线为().
A. ;B. ;
C. ;D. .
说明:1.试题集中填写(或打印)在方格内,字迹须工整清晰,答题纸另附;2.试题须经教研室或系(部)领导认真审核、签字;3.学生接到试卷后,应先检查是否有缺页,如有及时报告监考老师更换。
解析为何值时,二次曲线 为中心直线()
A.a=1.b=4;B.a=2,b=8;C.a=3.b=10;D.a=4,b=12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州师范大学理学院2014-2015 学年第一学期期末考试
==
26
,|,
-+-=的距离为。
3)到平面10
x y z
2、 下列叙述正确的是
( )
(A )(,,)(,,)a b c c b a =;
(B )222
222+1x y z a b c
-=-是直纹曲面;
(C )三向量a 、b 、c 的混合积等于以a 、b 、c 为棱的平行六面体的体积; (D )如果0a ≠且a ∥b ,则存在数λ使得 b a λ=。
3、 向量(0,1,3),(4,2,3),αβ==若γ
与,αβ均垂直,且与z 轴所成角为锐角,
||=26γ,则向量γ的坐标为 ( )
(A )(6,24,8)-- (B)(6,24,8) (C)(6,24,8)-- (D) (6,24,8)
-
4、 直线
12
101
x y z +-==
与平面10x y +-=的夹角为 ( )
(A )
3π (B )3π或23π (C )6π (D )6
π或
56π
5、 平面12(22)(342)0x y z x y z λλ+++++-=,如在z 轴上的截距为2,则12:λλ=
( )
(A ) 2:3 (B )3:2 (C )-2:3 (D )-3:2
6、 点(2,1,1)M -和坐标原点在平面1:3210x y z π+-+=和2:31120x y z π+++=的
( )
(A )同一个二面角内; (B )相邻二面角内; (C )对顶二面角内; (D )不能确定。
7、 曲线22
2201
y z b c x -=⎧⎪⎨⎪=⎩
绕y 轴旋转所得到的曲面叫做
( )
(A )单叶双曲面 (B )双叶双曲面 (C )圆锥面 (D )圆柱面
三、计算题(共50分)
1、已知四面体ABCD 的三个顶点为(1,0,1)A ,(1,1,5)B -,
(1,3,3)C ---,(0,3,4)D ,求此四面体的体积。
(7分)
2、求通过直线5040x y z x z ++=⎧⎨-+=⎩
且与平面4820:1x y z π--+=成4π
角的平面方程。
(7
分)
3、已知向量3a b +与75a b -垂直,4a b -与72a b -垂直,求向量,a b 的夹角。
(6
分)
4、已知异面直线120
:1,00
:10
x y l z x y l z -⎧+==⎧⎨
=+-⎩⎨
=⎩,求1l 和2l 间的距离及公垂线方程。
(8分)
5、求单叶双曲面222
14916
x y z +-=的过点(2,3,4)M - 的直母线方程。
(8分)
6、过点(2,1,3)A -与直线12
10:
2
l x y z --==
-相交且垂直的直线方程。
(7分) 7、求顶点为(1,2,4)A ,轴与平面22110x y z ++-=垂直,且经过点(1,0,1)P -的圆锥
面方程(7分) 四、证明题(共14分)
1、 (本题
7分)设点O 是平面上正多边形12
n A A A 的中心,证明:
120n OA OA OA +++
=
2、 (本题7分)证明:设点M 在三角形ABC 内(包括三边),则存在非负实数
,,k l m 使得
,OM kOA lOB mOC =++ 1k l m ++=。