2.1.3参数方程与普通方程的互化(教学设计)

合集下载

参数方程和普通方程的互化教案

参数方程和普通方程的互化教案
教学流程:
情景引入 精讲例题 学生板演 当堂练习
情景引入:
解析:
可以通过消去参数而参数方程得到普通方程,普通方程通过引入参数转化参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。
例题讲解:
例1、把下列参数方程化为普通方程,并说明它们各表示什么曲线;
练习、将下列参数方程化为普通方程:
课后反思:把参数方程化为普通方程是学生必须掌握的基本方法。从第一节课情况来看,学生的观察能力还需提高。
讲练结合
当堂掌握
教学
后记
媒体设计思路:
激发兴趣是推动学生学习的动力。现代信息技术以其本身特有的新颖性、趣味性等特点,对激发学生学习兴趣有着不可估量的优势,利用信息技术与学科融合教学的关键是创设情境,激发学生学习兴趣,从而调动学生的学习积极性、主动性、创造性。在课前教学准备中,我按照学生的认知规律设计脚本,在情景中激发兴趣,帮助学生认知,引发学生真实的情感体验,培养学生的认知能力。
例2,参数方程
表示()
备用例题
例3、曲线的参数方程 化为普通方程。
例4、把曲线 化为普通方程,并说明它表示什么曲线。
练习 课后 P25-26
小结:1入法 2、利用三角或代数恒等式消参
2、普通方程化为参数方程一般不唯一
3、在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。
课题
参数方程和普通方程的互化
执笔人
洪林
编写日期
6.15
执行人
洪林
执行日期
6.19
三维
教学
目标
1、了解参数方程与普通方程之间的联系与区别,掌握它们的互化法则。
2、能应用代入法和代数或三角恒等变形将参数方程化为普通方程

参数方程与普通方程互化教案

参数方程与普通方程互化教案

参数方程与普通方程互化教案一、教学目标1. 让学生理解参数方程与普通方程的概念及其关系。

2. 培养学生掌握参数方程与普通方程的互化方法。

3. 提高学生运用参数方程与普通方程解决实际问题的能力。

二、教学内容1. 参数方程与普通方程的定义。

2. 参数方程与普通方程的互化方法。

3. 典型例题解析。

三、教学重点与难点1. 重点:参数方程与普通方程的概念、互化方法。

2. 难点:参数方程与普通方程互化过程中的计算。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 引导学生通过合作、探究、交流,提高解决问题的能力。

五、教学过程1. 引入新课:通过实例介绍参数方程与普通方程的概念,引导学生理解二者之间的关系。

2. 讲解与演示:讲解参数方程与普通方程的互化方法,并通过演示让学生直观地感受互化过程。

3. 练习与讨论:布置一些典型例题,让学生独立完成,进行讨论,分析解题思路和方法。

5. 布置作业:布置一些有关参数方程与普通方程互化的练习题,巩固所学知识。

六、教学评价1. 课后收集学生的练习成果,评价学生的掌握程度。

2. 在下一节课开始时,进行课堂测试,检验学生对参数方程与普通方程互化的掌握情况。

3. 关注学生在解决问题时的创新意识和运用能力,给予鼓励和指导。

七、课时安排本节课计划用2课时完成。

八、教学资源1. 多媒体课件。

2. 练习题及答案。

3. 课堂测试题及答案。

九、教学建议1. 在教学过程中,注意让学生多动手、动脑,提高学生的实践能力。

2. 针对不同学生的学习情况,给予个别辅导,提高学生的学习兴趣。

3. 课后积极与学生沟通,了解学生的学习需求,不断调整教学方法。

十、课后反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。

关注学生的学习兴趣和个性发展,为下一节课的教学做好准备。

六、教学目标1. 让学生掌握将参数方程转化为普通方程的基本步骤。

参数方程与普通方程的互化教学教案

参数方程与普通方程的互化教学教案

参数方程与普通方程的互化教学教案参数方程与普通方程的互化教学教案第03时3.1.3参数方程与普通方程的互化学习目标1.明确参数方程与普通方程互化的必要性.2.掌握参数方程化为普通方程的几种基本方法,能选取适当的参数化普通方程为参数方程.学习过程一、学前准备复习:1、在解方程组中通常用的消元方法有哪些?2. 写出圆的参数方程,圆呢?二、新导学探究新知(预习教材P24~P26,找出疑惑之处)问题1:方程表示什么图形?问题2:上节例2中求出点的参数方程是,那么点的轨迹是什么?小结:1.曲线的参数方程和普通方程是曲线方程的不同形式.2.曲线的参数方程与普通方程一般可以互化.应用示例例1.把下列参数方程化为普通方程,并说明它表示什么曲线:(1)(为参数)(2)(为参数)例2 .将椭圆普通方程按以下要求化为参数方程:(1)设反馈练习1.把下列的参数方程化为普通方程,并说明它们各表示什么曲线。

(1))2.根据下列要求,把曲线的普通方程化为参数方程:1) .2)已知圆的方程,选择适当的参数将它化为参数方程.三、总结提升本节小结1. 消去参数的常用方法有:1)代入法2)利用代数或三角函数中的恒等式消去参数.2.互化中必须使的取值范围保持一致.3.同一个普通方程可以有不同形式的参数方程.学习评价一、自我评价你完成本节导学案的情况为()A.很好 B.较好 C.一般 D.较差二、当堂检测1.曲线的一种参数方程是().2.在曲线上的点为()A.(2,7) B. C. D.(1,0)3. 曲线的轨迹是()A.一条直线 B.一条射线C.一个圆 D.一条线段4.方程表示的曲线是()A.余弦曲线 B.与x轴平行的线段C.直线 D.与y轴平行的线段后作业. 1. 已知圆方程,选择适当的参数将它化为参数方程.2.把下列的参数方程化为普通方程,并说明它们各表示什么曲线。

(1)(2)3.(选做)化下列普通方程为参数方程:反思小结:几何体的表面积与体积学案1 集合的概念与运算一、前准备:【自主梳理】1.侧面积公式:,,,,,.2.体积公式: = ,,,.3.球:,.4.简单的组合体:⑴正方体和球正方体的边长为,则其外接球的半径为.正方体的边长为,则其内切球的半径为.⑵正四面体和球正四面的边长为,则其外接球的半径为.【自我检测】1.若一个球的体积为,则它的表面积为_______.2.已知圆锥的母线长为2,高为,则该圆锥的侧面积是.3.若圆锥的母线长为3cm,侧面展开所得扇形圆心角为,则圆锥的体积为.4.在中,若,则的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体中,若两两垂直,,则四面体的外接球半径 _____________________.5.一个长方体共一顶点的三个面的面积分别是,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是.6.如图,已知正三棱柱的底面边长为2 ,高位5 ,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为.二、堂活动:【例1】题:(1)一个圆台的母线长为12 cm,两底面面积分别为4π cm 和25π cm ,则(1)圆台的高为 (2)截得此圆台的圆锥的母线长为.(2)若三棱锥的三个侧棱两两垂直,且侧棱长均为,则其外接球的表面积是 .(3)三棱柱的一个侧面面积为,此侧面所对的棱与此面的距离为,则此棱柱的体积为.(4)已知三棱锥O-ABC中,OA、OB、OC两两互相垂直,OC =1,OA=x,OB=y,若x+y=4,则已知三棱锥O-ABC体积的最大值是.【例2】如图所示,在棱长为2的正方体中,、分别为、的中点.(1)求证: //平面;(2)求证:;(3)求三棱锥的体积.【例3】如图,棱锥P-ABCD的底面ABCD是矩形,PA 平面ABCD,PA=AD=2,BD= 。

2.1.3 参数方程和普通方程的互化 课件(人教A选修4-4)

2.1.3 参数方程和普通方程的互化 课件(人教A选修4-4)
数f(t)和g(t)的值域,即x和y的取值范围.
返回
1 x=t+ , t 2.方程 表示的曲线是( y=2 A.一条直线 C.一条线段 B.两条射线
)
解析:t>0 时
D.抛物线的一部分 1 x=t+ t ≥2
1 1 当 t<0,x=t+ t =-(-t+ )≤-2. -t 即曲线方程为 y=2(|x|≥2),表示两条射线.
答案:y=-x2+1(- 2≤x≤ 2)
返回
点击下图进入
返回
(θ 为参数).
t+1 (1)可采用代入法,由 x= 解出 t 代入 t-1
(2)采用三角恒等变换求解. Nhomakorabea返回[解]
t+1 x+1 (1)由 x= ,得 t= . t-1 x-1
2
x+1x-1 2t 代入 y= 3 化简得 y= (x≠1). t -1 3x2+1 x x=5cos θ cos θ=5 (2)由 得 y=4sin θ-1 sin θ=y+1 4 y+12 x 2 2 ① +② 得 + =1. 25 16
答案:B
返回
x=sin θ-cos 3. 把参数方程 y=sin 2θ
θ,
(θ 为参数)化成普通方程
是________.
解析:将 x=sin θ-cos θ 两边平方得 x2=1-sin 2θ, 即 sin 2θ=1-x2,代入 y=sin 2θ,得 y=-x2+1. π 又 x=sin θ-cos θ= 2sin(θ- ),∴- 2≤x≤ 2, 4 故普通方程为 y=-x2+1(- 2≤x≤ 2).
x-12 y-22 (1) + =1,x= 3cos θ+1.(θ 为参数) 3 5 (2)x2-y+x-1=0,x=t+1.(t 为参数)

最新参数方程和普通方程的互化教案

最新参数方程和普通方程的互化教案
这部分过(–D)抛物线的一部分,(
备用例题1txt为参数t曲线的参数方程化为普通方程。例3、1tytcossinx化为普通方程,并说明它表示什么曲例4、把曲线为参数12siny线。P25-26
练习课后、参数方程化为普通方程的基本思想是消参。1小结:、利用三角或代数恒等式消参、代入法消参有两种基本方法:1 2
教法教具
电子白板讲练结合幻灯片
教学过程
特色教案
设计思想:在进行本教学设计时,我所教的是高三的一个理科班,但是基础相对较差,有学好数学的热情,有个性,能提出自己独到的见解。理性思维加之对信息技术的了解,让他们更倾向于从多媒体教学中获取信息。我一直对信息技术与数学教学的融合很感兴趣。本教学设计旨在利用网络的庞大资源中的有效信息,让学生进行积累感悟与讨论分析,释放学生的内在潜质,学好数学。媒体设计思路:激发兴趣是推动学生学习的动力。现代信息技术以其本身特有的新颖性、趣味性等特点,对激发学生学习兴趣有着不可估量的优势,利用信息技术与学科融合教学的关键是创设情境,激发学生学习兴趣,从而调动学生的学习积极性、主动性、创造性。在课前教学准备中,我按照学生的认知规律设计脚本,在情景中激发兴趣,帮助学生认知,引发学生真实的情感体验,培养学生的认知能力。教学流程:当堂练习精讲例题学生板演情景引入情景引入:3,cosx由参数方程的轨迹的直接判断点(M为参数)siny曲线类型并不容易,但如果将参数方程转化为熟悉的普通
精品文档
课题
参数方程和普通方程的互15
执行人
洪林
执行日期
6.19
三维教学目标
了解参数方程与普通方程之间的联系与区别,掌握它们的互化法则。、1能应用代入法和代数或三角恒等变形将参数方程化为普通方程、2能在给出参数的条件下,把普通方程化为参数方程、3

参数方程与普通方程互化教案

参数方程与普通方程互化教案

参数方程与普通方程互化教学目标:1、知识与技能:掌握参数方程化为普通方程几种基本方法2、过程与方法:选取适当的参数化普通方程为参数方程3、情感态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

重点难点:教学重点:参数方程与普通方程的互化教学难点:参数方程与普通方程的等价性教学模式:启发、诱导发现教学.教学过程:一、前置作业1、你能直接说出由参数方程表示的动点M的轨迹吗?2、将下列曲线的参数方程化为普通方程,并说明它们各表示什么曲线3、从上题转化过程中,你能归纳出其一般步骤吗?采用了什么处理手法?二、教学过程1、展示前置作业,学生小组合作、探究前置作业中的问题。

2、学生分组展示探究成果。

1)在解方程组中通常用的消元方法有哪些?2)写出圆222x y r+=的参数方程学生展示前置作业问题1解:由11x=≥有1x=-,代入1y=-23(1)y x x=-+≥,这是以(1,1)为端点的一条射线。

注意:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致。

否则,互化就是不等价的.12(1)()2x tty t=+⎧⎨=-⎩为参数)(sin4cos5为参数θθθ⎩⎨⎧==yx1.1xty⎧=⎪⎨=-⎪⎩是参数)小结:1.曲线的参数方程和普通方程是曲线方程的不同形式.2.曲线的参数方程与普通方程一般可以互化.探究新知(预习教材P 24~P 26,找出疑惑之处)[读教材·填要点]参数方程和普通方程的互化(1)将曲线的参数方程化为普通方程,有利于识别曲线类型,曲线的参数方程和普通方程是 的不同形式,一般地,可以通过 而从参数方程得到普通方程.(2)在参数方程与普通方程的互化中,必须使保持一致.学生展示前置作业问题2强调注意三角函数法:利用一些三角函数恒等式来消去参数,注意等价变形小结: 参数方程化为普通方程的过程就是消参过程常见方法有三种:1.代入法:利用解方程的技巧求出参数t,然后代入消去参数。

参数方程及普通方程的互化教学设计

参数方程及普通方程的互化教学设计

参数方程及普通方程的互化教学设计一、教学目标1.了解参数方程和普通方程的基本概念;2.掌握参数方程与普通方程的互相转化方法;3.能够根据给定条件将参数方程转化为普通方程,或将普通方程转化为参数方程;4.运用所学知识解决问题。

二、教学资源1.教材《高中数学(上)》;2.教学PPT;3.课件与练习作业。

三、教学步骤步骤一:导入(10分钟)1.引入参数方程和普通方程的概念,并给出一些实际生活中的例子,如小车的运动轨迹等;2.引导学生讨论参数方程和普通方程的异同点,并总结出两者的特点。

步骤二:参数方程转化为普通方程的方法(20分钟)1.通过案例解析,引导学生分析参数方程转化为普通方程的基本思路;2.介绍常见的参数方程转化为普通方程的方法,如消元法、平方相加法等;3.通过示例演练,巩固学生的转化方法和技巧。

步骤三:普通方程转化为参数方程的方法(20分钟)1.通过案例解析,引导学生分析普通方程转化为参数方程的基本思路;2.介绍常见的普通方程转化为参数方程的方法,如参数代换法、平方差法等;3.通过示例演练,巩固学生的转化方法和技巧。

步骤四:综合应用(30分钟)1.给出一个综合应用的问题,要求学生将其转化为参数方程或普通方程,并解决问题;2.学生分组讨论解决方案,并展示他们的思路和答案;3.教师进行点评,总结问题解决的方法和技巧。

步骤五:拓展与延伸(10分钟)1.引导学生思考参数方程和普通方程的应用领域,并给出一些实际生活中的例子;2.鼓励学生拓展和延伸所学知识,尝试解决更复杂的问题。

四、教学互动方式1.导入环节可以采用提问和小组讨论的方式,激发学生的主动参与;2.参数方程和普通方程转化的讲解可以结合PPT和示例演练进行,提高学生的学习效果和兴趣;3.综合应用环节可以采用小组讨论和展示的形式,增强学生的团队协作精神和解决问题的能力;4.拓展与延伸环节可以鼓励学生自主学习和思考,进行个人或小组报告。

五、教学评估1.在课堂中通过提问、演示和讨论的形式进行即时评估,了解学生对所学知识的掌握情况;2.布置课后作业,检验学生是否能够独立解决参数方程与普通方程的转化问题;3.结合小组展示的内容,综合评价学生在解决综合应用问题中的表现。

2.1.3参数方程与普通方程的互化

2.1.3参数方程与普通方程的互化
回顾- 回顾-参数方程的概念
一般地, 在平面直角坐标系中,如果曲线上任意一点的 一般地 在平面直角坐标系中 如果曲线上任意一点的 坐标x, 都是某个变数 都是某个变数t的函数 坐标 y都是某个变数 的函数 x = f (t ), (2) y = g (t ). 并且对于t的每一个允许值 由方程组(2) 并且对于 的每一个允许值, 由方程组 所确定的点 的每一个允许值 M(x,y)都在这条曲线上 那么方程 就叫做这条曲线的 都在这条曲线上, 都在这条曲线上 那么方程(2) 参数方程, 联系变数x,y的变数 叫做参变数, 简称参数. 的变数t叫做参变数 参数方程 联系变数 的变数 叫做参变数 简称参数
如下图,圆 的半径为 的半径为2,P是圆上的动 例2:如下图 圆O的半径为 是圆上的动 如下图 轴上的定点,M是 的中点 的中点.当 点,Q(6,0)是x轴上的定点 是PQ的中点 当P 是 轴上的定点 在圆上作匀速圆周运动时,求点 求点M的轨迹的参 在圆上作匀速圆周运动时 求点 的轨迹的参 y 数方程. 数方程
2 2
x = 2 cos α 解:x + y = 4的参数方程为{ (α 为 y = 2sin α
2 2
参数) 参数)
∴ x − y = 2 cos α − 2sin α = 2 2 cos(α + ) 4 ∴最大值为2 2
π
4、P( x, y )是曲线{
2
x = 2 + cos α y = sin α
2 2
将(1)代入(2)得8 x − 16 x + 7 = 0
2
7 ∴ x1 + x2 = 2, x1 x2 = 8 由弦长公式得 d = 1+ k
2
( x1 + x2 ) − 4 x1 x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变式训练3:(1)在平面直角坐标系,
C2: (t为参数),
它们的交点坐标为________.
答:(2,1)
(2)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为:
C1: 和C2: (θ为参数),它们的交点坐标为________.
答.(1,1)
A组:
1、(课本P26习题2.1 NO:4)
解析:(1)消去t得y=2x-7,即普通方程为y=2x-7,表示直线.
(2)y=cos 2θ+1=2cos2θ-1+1=2x2,∵x=cosθ,∴-1≤x≤1.∴普通方程为y=2x2(-1≤x≤1),表示以(-1,2),(1,2)为端点的一段抛物线弧.
(3) (t为参数),∴ 两式相减得x2-y2=4,即普通方程为x2-y2-4=0,表示双曲线.
2.1.3参数方程与普通方程互化(教学设计)
教学目标:
知识与技能:掌握参数方程化为普通方程几种基本方法
过程与方法:选取适当的参数化普通方程为参数方程
情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。
教学重点:参数方程与普通方程的互化
教学难点:参数方程与普通方程的等价性
教学过程:
一、复习引入:
解析:(1)消去参数t,得到圆的普通方程为(x-1)2+(y+2)2=9,由 ρsin(θ- )=m,得ρsinθ-ρcosθ-m=0,
所以直线l的直角坐标方程为x-y-m=0.
(2)依题意,圆心C到直线l的距离等于2,即 =2,解得m=-3±2 .
(4) (φ为参数),∴cosφ= ,sinφ= ,cos2φ+sin2φ=1,∴普通方程为 + =1,表示椭圆.
2、(课本P26习题2.1 NO:5)
3.已知曲线C的参数方程为 (t为参数,t>0),求曲线C的普通方程.
解:因为x= - ,所以x2= =t+ -2,①
又y=3 且t>0,则t+ = ,②
B组:
1.在平面直角坐标系xOy中,圆C的参数方程为 (t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为 ρsin(θ- )=m,(m∈R).
(1)求圆C的普通方程及直线l的直角坐标方程;
(2)设圆心C到直线l的距离等于2,求m的值.
由①②可得x2= -2.
故曲线C的普通方程为3x2-y+6=0.
4.参数方程 (t为参数)化为普通方程为________.
解析:∵x= ,
y= = =4-3× =4-3x.
又x= = =2- ∈[0,2),∴x∈[0,2).
∴所求的普通方程为3x+y-4=0(x∈[0,2)).
答案:3x+y-4=0
例3:指出下列参数方程表示什么曲线:
(1) ;
(2) (t为参数,π≤t≤2π);
(3) (θ为参数,0≤θ<2π).
解析:(1)由 (θ为参数)得x2+y2=9.
又由0<θ< ,得0<x<3,0<y<3,
所以所求方程为x2+y2=9(0<x<3且0<y<3).
这是一段圆弧(圆x2+y2=9位于第一象限的部分).
(2)由 (t为参数)得x2+y2=4.
由π≤t≤2π,得-2≤x≤2,-2≤y≤0.
所求圆方程为x2+y2=4(-2≤x≤2,-2≤y≤0).
这是一段半圆弧(圆x2+y2=4位于y轴下方的部分,包括端点).
(3)由参数方程 (θ为参数)得(x-3)2+(y-2)2=152,由0≤θ<2π知这是一个整圆弧.
1、圆的参数方程;
(1)圆 参数方程 ( 为参数)
(2)圆 参数方程为: ( 为参数)
2、参数方程的定义
二、师生互动,新课讲解:
小结:
1、参数方程化为普通方程的过程就是消参过程常见方法有三种:
(1)代入法:利用解方程的技巧求出参数t,然后代入消去参数
(2)三角法:利用三角恒等式消去参数
(3)整体消元法:根据参数方程本身的结构特征,从整体上消去。
化参数方程为普通方程为 :在消参过程中注意变量 、 取值范围的一致性,必须根据参数的取值范围,确定 和 值域得 、 的取值范围。
2、探析常见曲线的参数方程化为普通方程的方法,体会互化过程,归纳方法。
3、理解参数方程与普通方程的区别于联系及互化要求。
答:B
变式训练2:曲线y=x2的一种参数方程是(D)
例4:在直角坐标系xOy中,曲线C1和C2的参数方程分别为 (θ为参数)和 (t为参数).以原点O为极点,x轴正半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为________.
答.
变式训练4:将下列参数方程化为普通方程.
(1) (2)
解:(1)两式相除,得k= ,将其代入得x= ,
化简得所求的普通方程是4x2+y2-6y=0(y≠6).
(2)由(sinθ+cosθ)2=1+sin 2θ=2-(1-sin 2θ)
得y2=2-x.又x=1-sin 2θ∈[0,2],
得所求的普通方程为y2=2-x,x∈[0,2].
三、课堂小结,巩固反思:
熟练理解和掌握把参数方程化为普通方程的几种方法。抓住重点题目反思归纳方法,进一步深化理解。
四、分层作业:
相关文档
最新文档