盖梁计算书

合集下载

盖梁计算书

盖梁计算书

墩身、盖梁模板计算书计算基本参考文献:1、公路桥涵施工技术规范 JTJ 041-20002、公路施工计算手册(人民交通出版社)3、施工结构计算方法与设计手册第二章:盖梁模板计算一、结构形式模板面采用6mm厚钢板,大肋采用∠75×50×6角钢,最大间距为350mm,最大 跨度为1.2m,背带采用2[20b槽钢,背带最大控制高度为1.2m,拉杆采用Φ25IV 级精轧螺纹钢筋。

二、荷载分析1、混凝土对模板压力= 60.00 Kpa2、倾倒荷载= 2.0 Kpa强度验算,荷载组合为P1= 62.0 Kpa刚度验算,荷载组合为P2= 60.0 Kpa三、面板计算取10mm宽的板条作为计算单元,按五跨等跨连续梁计算。

1、计算参数q= 0.620 N/mm1= 350 mmM=kq12= 0.008 KN.mQ=kq1= 0.132 kN2、强度验算:δ=M/W= 132.91 Mpa<[δ]=170Mpaτ=QS/Ib= 5.48 Mpa<[δ]=100Mpa3、绕度验算:q= 0.600 N/mmf=kq14/100EI= 0.8 mm<1.5mm经计算,结构强度、刚度满足要求。

1、肋采用∠75×50×6角钢,面板参与受力的有效宽度取板厚的50倍,经计算, 肋截面特性为:肋按简支梁计算,跨度 I= 1200 mmq= 21.700 N/mmM= 3.91 KN.mQ= 26.04 KN2、强度验算δ=M/W= 128.43 Mpa<[δ]=170Mpaτ=QS/Ib= 64.26 Mpa<[τ]=100Mpa3、绕度验算f= 1.5 mm<L/400=3mm经计算,结构强度、刚度满足要求。

五、背带计算1、背带采用2[12,背带最大控制高度为1.05m。

背带截面特性:背带按简支梁计算。

q= 74.40 N/mm1= 1050 mmM=q12/8= 10.25 KN.mQ=q1/2= 39.06 KN2、强度验算δ=M/W= 137.50 Mpa<[δ]=170Mpaτ=QS/Ib= 99.77 Mpa<[τ]=100Mpa3、绕度计算f=5q14/384EI= 0.7 mm<L/400=2.6mm经计算,结构强度,刚度满足要求。

穿心棒法盖梁施工计算书(工字钢)(参考模板)

穿心棒法盖梁施工计算书(工字钢)(参考模板)

托担法盖梁施工计算书一、工程概况盖梁设计尺寸:双柱式盖梁设计为长11.95m,宽2.1m,高1.6m,混凝土方量为38.35方,两柱中心距6.95m。

盖梁如图所示:1预埋直径110mm 硬质PVC管,较高立柱根据高差来进行标高调整,保证两预留孔处于同一个标高,施工时把有关主筋间距和上下层箍筋间距作微调;2)插入钢棒:柱顶插入一根直径为9cm,长度为300cm的钢棒,作为主梁工字钢支撑点,钢棒外伸长度一致;3)安装固定装置和机械式千斤顶。

4)吊装主梁工字钢,利用φ25精轧螺纹钢,夹紧主梁工字钢,上铺I12.6工字钢作为分配梁;5)拆除钢棒,封堵预留孔:盖梁施工完成后把预留孔用细石混凝土封堵。

三、受力计算1、设计参数1)I12.6工字钢截面面积为:A=1810mm2截面抵抗矩:W=77×103mm3截面惯性矩:I=488×104mm4弹性模量E=2.1×105Mpa钢材采用Q235钢,抗拉、抗压、抗弯强度设计值[σ]=215Mpa。

2)主梁工字钢横向主梁采用2片45b工字钢。

截面面积为:A=11100mm2截面抵抗矩:W=1500×103mm3截面惯性矩:I=33760×104mm4弹性模量E=2.1×105Mpa3)钢棒钢棒采用φ90mm高强钢棒(A45),截面面积为:A=3.14×452=6362mm2,抗剪强度设计值[τ]=125Mpa。

2、荷载计算1) 混凝土自重荷载(考虑立柱混凝土重量)W1=38.35×26=444.3kN;2)支架、模板荷载A、2片I45b组成主梁,长12m,纵向工字钢长4.5m,间距30cm。

W2=12×0.874×2+0.142×4.5×(11/0.3)=54.3kN;B、定型钢模板,重量由厂家设计图查询得到。

W3=6800×10=68kN;3)施工人员、机械重量。

盖梁模板计算书

盖梁模板计算书

广明高速公路SG4标盖梁支架计算书中交四航局一公司广明高速公路SG4标项目经理部二零零七年二月目录一、工程概况 (3)二、荷载计算 (3)1、盖梁的自重: (3)2、施工人员和施工材料、机具行走运输或堆放荷载标准值: (3)3、振捣混凝土时产生的荷载: (4)4、新浇筑砼对模板侧面的压力: (4)5、倾倒砼时冲击产生的水平荷载: (4)三、底模的计算: (4)1、面板计算(以1m为单位): (4)(1)、强度计算 (4)(2)、跨中挠度验算 (5)2、木枋计算 (6)(1)、强度计算: (6)(2)、跨中挠度验算: (6)3、槽钢计算 (7)(1)、抗弯强度计算: (7)(2)、抗剪强度计算: (8)(3)、跨中挠度验算: (8)四、侧模计算 (8)1、面板计算 (8)(1)、强度计算 (9)(2)、挠度计算 (9)2、竖向6×60肋板的计算 (9)(1)、强度计算 (10)(2)、挠度计算 (10)3、横向∠80×8槽钢的计算 (10)(1)、强度计算 (11)(2)、挠度计算 (11)4、竖向[140a槽钢的计算 (11)(1)、强度计算 (12)(2)、挠度计算 (12)5、拉杆计算 (12)五、贝雷片计算: (13)1、标准盖梁....................................................................................... 错误!未定义书签。

2、15#墩右幅盖梁右侧悬臂4.2米........................................................ 错误!未定义书签。

3、贝雷片的强度验算 (14)4、贝雷片的挠度验算 (15)(1)、验算最大跨度的跨中挠度: (15)(2)、验算最大悬臂长度悬臂端的挠度: (16)5、贝雷插销计算: (16)6、下弦杆局部承载力验算:................................................................. 错误!未定义书签。

盖梁模板支撑受力计算书_secret

盖梁模板支撑受力计算书_secret

盖梁模板支撑受力计算书某大桥墩柱盖梁模板支撑受力计算,取左4#墩进行受力计算。

一、荷载计算1、盖梁荷载:系梁钢筋砼自重:G=61m3×25KN/m3=1525KN墩柱顶面部分的混凝土由墩柱承载,故不计算G´=1525-3.14×1²×(1.9×2.1)×25=1227偏安全考虑,以全部重量作用于底板上计算单位面积压力:F1=G´÷S=1227KN÷(2.1m×16.05m)=38.23KN/m22、施工荷载:取F2=1.5KN/m23、振捣混凝土产生荷载:取F3=2.0KN/m24、3mm厚钢模板:取F5=0.5KN/m25、方木:取F6=7.5KN/m36、45b号工字钢:取F7=0.87KN/m二、底模强度计算底模采用组合钢模板,面板厚t=3mm,肋板高h=50mm,厚b=4mm,面板及肋板总高H=53mm,验算模板强度采用宽B=300mm平面钢模板。

1、钢模板力学性能(1)弹性模量E=2.1×105MPa。

(2)截面惯性矩:I=[by23+By13-(B-b)(y1-t)3]/3 (公式1)其中:y1=[bH2+(B-b)t2]/[2(Bt+bh)]=[4×532+(300-4)×32]/[2(300×3+4×55)]=6.205mm y2=H-y1=53-6.205=46.795mm将y1=6.205mm,y2=46.795mm代入公式1得:I=[4×46.7953+300×6.2053-(300-4)(6.205-3)3]/3=15.73cm4(3)截面抵抗矩:W=I/y2=15.73/4.6795=3.36cm3(4)截面积:A=Bt+bh=300×3+4×50=11cm22、钢模板受力计算(1)底模板均布荷载:F= F1+F2+F3=38.23+2+1.5=41.73KN/m2q=F×B=41.73×0.3=12.51KN/m(2)跨中最大弯矩:M=qL2/8=12.51×0.32/8=0.14KN·m(3)弯拉应力:σ=M/W=0.14×103/3.36×10-6=41.7MPa<[σ]=140MPa 钢模板弯拉应力满足要求。

盖梁计算书

盖梁计算书

盖梁计算书一、计算说明、参数本标段盖梁累计71个,均为双柱盖梁。

总体分一般构造盖梁和框架墩盖梁(即预应力盖梁)两种。

其中一般构造盖梁种尺寸。

普通盖梁采用C35土,框架墩盖梁采用C50混凝土。

一般构造盖梁共18个;15.736*2.1*1.5个;11.2*2.2*1.6共12个;11.595*2.2*1.6共18个,适用于松林大桥5#墩;24.2*2.4*2.2个,适用于松林大桥4#、6#墩。

由于11.2*1.9*1.4(1.595*1.9*1.4为斜交)盖梁具有代表性,故以下计算按11.2*1.9*1.4盖梁进行受力计算分析。

盖梁采用大块定型钢模板施工方法。

模板设置横加劲楞,横向加劲楞直接焊接在模板上;竖向][12加劲楞则布置在外侧,间距为0.8m,且其上安装对拉螺杆。

计算参数:A3钢强度设计值:抗拉、抗压、抗弯:[σ]=12.5KN/cm2二、计算依据和参考资(1)揭阳至惠来高速公路A7标合同段两阶段施工图设计(2)公路桥涵施工技术规范(JTJ041-2000)(3)公路桥涵钢结构及木结构设计规范(JTJ025-86)(4)路桥施工计算手册.人民交通出版社.2002(5)公路桥涵施工技术规范实施手册.人民交通出版社.2002(6)机械工程师手册.机械工业出版社.2004三、模板计算荷载分项系数是在设计计算中,反映了荷载的不确定性并与结构可靠度概念相关联的揭惠高速公路A7一个数值。

对永久荷载和可变荷载,规定了不同的分项系数。

永久荷载分项系数γG:当永久荷载对结构产生的效应对结构不利时,对由可变荷载效应控制的组合取G=1.35。

当产生的效应对结构有利时,—般情况下取γG=1.0;当验算倾覆、滑移或漂浮时,取γG=0.9;对其余某些特殊情况,应按有关规范采用。

可变荷载分项系数γQ:—般情况下取γQ=1.4。

1、荷载分析:盖梁底板面积为:(11.2-2.9)m1.4m=11.62m2(最不利状态下,偏于保守计算)盖梁砼自重:G=27.1m326KN/m3=704.6KN;q1=704.611.62=60.6KN/m2注:含筋量>2%。

盖梁模板计算

盖梁模板计算

盖梁模板计算(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--盖梁模板及支架计算书砼对模板侧面最大压力Pm=*T*k1*K2*V1/2Pm=r*hPm---新浇筑砼对模板最大压力KPa=KN/m2h-----有效压头高度mT-----混凝土初凝时间hK1----外加剂添加系数,添加缓凝剂取,不加取1K2----坍落度50~90mm取;110~150取V----混凝土浇筑速度 m/hh----有效压头高度mr----混凝土容重 KN/m3本项目V取h,T取6小时初凝,K1、K2取1;混凝土容重取26可按上公式计算得Pm= KN/m2混凝土倾倒荷载取4KN/m2模板最大侧压力为Pmax=+4=m2一、侧模面板计算(面板采用5mm厚钢板)模板竖肋最大间距90cm布置,橫肋32cm间距。

橫肋采用[8#槽钢,竖肋采用80*8mm扁钢,取单块32*90cm面板采用midas civil2012建模分析如下:最大变形<320/400=,可满足要求最大应力如下图所示:最大应力58MPa<215MPa,可满足要求二、侧模橫肋验算橫肋采用[8#槽钢,间距32cm布置,则单条橫肋受力为*=m,单条橫肋以背勒为支点的简支梁分析,取单跨长橫肋采用midas civil2012建模如下:最大应力为<215MPa,满足要求,具体分析如下:最大位移如下=<1025/500=2mm满足要求三、侧模竖肋验算盖梁模板竖肋为80*8mm扁铁,90cm间距布置。

竖肋采用以橫肋为支点的简支梁分析,单条竖肋受力为*=m,采用midas civil2012建模如下:最大应力为<215MPa,满足要求,具体分析如下:最大位移为<320/500=满足要求,具体变形如下:四、侧模大背肋验算大背肋为双拼[14槽钢,间距为,则单条大背肋受力为**=,单条大背肋可看做以拉杆为支点的简支梁,橫肋位置作用的集中力(7=)进行分析,采用midas civil 2012建模如下:最大应力为<215MPa,满足要求,具体分析如下:最大位移为<2108/500=满足要求,具体变形如下:五、拉杆验算单条大背肋受力为,由2条拉杆分担,则每条拉杆承受拉力,以Ф16圆钢作为拉杆,采用midas civil 2012建模如下:最大应力为155MPa<215MPa,满足要求,具体分析如下:六、底板验算底板采用18mm后木胶板,查《公路桥涵钢结构及木结构设计规范》得木模板弹性模量为*103MPa,允许弯应力为11MPa,允许剪应力为。

盖梁计算书

盖梁计算书

盖梁计算书一、计算说明、参数段家咀互通主线左幅P38-P40、右幅P42-P44、ZK7+348.5滠口高架桥1-10#、K7+295.6滠口高架桥2/3/4/5/7/6/8/9/10#共26个墩位,墩柱直径1.8m,盖梁尺寸为15.45m*1.9m*1.8m,累计26个盖梁,均为双柱一般构造盖梁,采用C35混凝土。

盖梁采用大块定型钢模板施工方法。

侧模板设置横肋:横肋[10槽钢,间距为0.3m,横向加劲楞直接焊接在模板上;竖肋:竖肋[12槽钢,间距为1.00m,且其上安装对拉螺杆。

计算参数:Q235钢强度设计值:抗拉、抗压、抗弯:[σ]=170Mpa,抗剪[σ]=100Mpa二、计算依据和参考资(1)武汉至大悟高速公路武汉至河口段工程段家咀互通主线、ZK7+348.5滠口高架桥和K7+295.6滠口高架桥上构设计图纸;(2)公路桥涵施工技术规范(JTJ041-2011)(3)路桥施工计算手册.人民交通出版社.2002(4)公路桥涵施工技术规范实施手册.人民交通出版社.2002(5)机械工程师手册.机械工业出版社.2004(6)《建筑施工模板安全技术规范》(JGJ 162-2008)三、荷载1、混凝土对模板的侧压力(7)根据《建筑施工模板安全技术规范》(JGJ 162-2008)中提出的采用内部振捣器时,新浇筑的混凝土作用于模板的最大侧压力,可按下列二式计算,并取二式中的较小值:2/121022.0V t F ββγ=HF γ=式中F 为新浇注混凝土对模板的最大侧压力(2/m kN )γ为钢筋混凝土的重力密度(3/m kN )0t 为新浇注混凝土的初凝时间(h),可按实测确定,或采用经验公式152000+=T t 计算(T 为混凝土的温度℃),本计算0t 取10h。

V 为混凝土浇注速度(h m /),V 取0.45h m /。

H 为混凝土侧压力计算位置处到新浇注混凝土顶面的总高度(m),本计算H=1.8m。

普通钢筋混凝土桥墩盖梁计算书

普通钢筋混凝土桥墩盖梁计算书

普通钢筋混凝土桥墩盖梁计算书范本一(正式风格):1. 混凝土桥墩盖梁计算书1.1 引言此计算书旨在详细描述普通钢筋混凝土桥墩盖梁的设计和计算过程,以确保结构的安全性和稳定性。

1.2 结构概述桥墩盖梁由混凝土桥墩以及上部预应力混凝土梁组成。

计算书将分别讨论桥墩和盖梁的设计和计算。

2. 桥墩设计和计算2.1 材料特性2.1.1 混凝土特性参考标准:GB 50010《混凝土结构设计规范》参数:抗压强度、抗拉强度、弹性模量等2.1.2 钢筋特性参考标准:GB 50010《混凝土结构设计规范》参数:屈服强度、抗拉强度、弹性模量等2.2 桥墩尺寸2.2.1 基础尺寸根据设计要求和现场条件确定桥墩基础的宽度、长度和高度。

2.2.2 桥墩截面尺寸根据设计要求和荷载计算结果确定桥墩的截面尺寸和形状。

2.3 桥墩荷载计算2.3.1 水平荷载考虑车辆荷载、风荷载、温度荷载等对桥墩的影响。

2.3.2 垂直荷载考虑自重、活荷载、附加荷载等对桥墩的影响。

2.4 桥墩设计方案根据荷载计算结果,选择合适的桥墩设计方案,包括墩身形状、墩身厚度、墩台的形式等。

3. 盖梁设计和计算3.1 材料特性参考第2.1节中的混凝土特性和钢筋特性。

3.2 盖梁尺寸根据设计要求和荷载计算结果确定盖梁的宽度、长度和高度。

3.3 盖梁荷载计算考虑自重、活荷载、预应力等对盖梁的影响。

3.4 盖梁设计方案根据荷载计算结果,选择合适的盖梁设计方案,包括预应力筋的布置、截面形状等。

4. 结论经过详细设计和计算,桥墩盖梁结构满足设计要求,并具备足够的安全性和稳定性。

5. 附件本文档涉及的附件如下:- 绘图文件:包括桥墩截面图、盖梁截面图等。

6. 法律名词及注释1) 抗压强度:混凝土在受压状态下能够承受的最大应力。

2) 抗拉强度:混凝土在受拉状态下能够承受的最大应力。

3) 弹性模量:材料在弹性变形范围内,应力与应变之间的比值。

...(根据实际情况添加其他法律名词和注释)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盖梁指的是为支承、分布和传递上部结构的荷载,在排架桩墩顶部设置的横梁。

又称帽梁。

在桥墩(台)或在排桩上设置钢筋混凝土或少筋混凝土的横梁。

主要作用是支撑桥梁上部结构,并将全部荷载传到下部结构。

有桥桩直接连接盖梁的,也有桥桩接立柱后再连接盖梁的。

设计计算
桥梁设计中,柱式桥墩是普遍采用的结构型式。

对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。

在设计中的跨径、斜度、桥宽、车辆荷载标准的变化梁设计的影响很大,很难完全套用标准图和通用图。

盖梁设计的标准化程度很高,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。

计算要点
盖梁的计算要点是如何建立准确而且简化的计算模型。

3.1 盖梁的平面简化
3.1.1 关于盖梁平面基本简化的规定
《公路桥涵设计手册》中规定:多柱式墩台的盖梁可近似地按多跨连续梁计算;对于双柱式墩台,当盖梁的刚度与柱的刚度之比大于5时,可忽略桩柱对盖梁的约束作用,近似地按简支(悬臂)梁计算。

柱顶视为铰支承,柱对盖梁的嵌固作用被完全忽略,这种计算图
式是以往设计实践中用得最多、最普遍的一种。

目前一些盖梁计算程序,如“中小桥涵CAD系统”等一些平面计算的软件,基本上都是采用这种简化计算模式来分析盖梁内力的,这是一种基本的简化模式,但是对计算结果一般要作削峰处理。

3.1.2 盖梁平面基本简化模式存在的问题
上述的简化模式有些粗糙且有一定的局限性,使得计算结果偏大,按此进行的配筋设计往往过于保守。

对于独柱式盖梁,常规的计算方法是将其视为一端嵌固的单悬臂梁,该简化使得悬臂根部的弯矩计算结果偏大;对于双柱式盖梁按简支(悬臂)梁计算,使得跨中弯矩计算结果明显偏大。

而当盖梁的刚度与柱的刚度之比小于5时,《公路桥涵设计手册》并未做明确说明。

该简化模式的问题在于将墩柱与盖梁的连接等效成点支撑,将墩梁框架结构简单等效为简支(悬臂)梁来处理。

这虽然使计算得到简化,但与实际结果偏差过大。

而且无论墩柱尺寸及盖梁尺寸如何,皆按简支(悬臂)梁来处理,使得其适用范围受到限制。

多柱式盖梁也存在同样的问题。

现在有一种修正的计算方法是将单点铰支模型转化为两点铰支模型,此时墩顶负弯矩要比基本的简化模式(单点铰支模型)小,以达到削峰处理的作用。

两点铰支模型的弯矩值与所模拟的两铰支点间的距离有关,但对这个距离目前还缺乏足够的依据。

这种计算方法现在多用在独柱式盖梁的计算上,对于双柱式及多柱式盖梁,因计算结果差别很大,是不可取的。

3.1.3 平面简化的其他方法—整体图式法
本方法属于平面计算图式,但是属于超静定结构,手算比较繁琐,一般采用平面计算程序如“桥梁综合计算程序”,将墩柱及盖梁一起模拟,形成整体图式进行计算。

此时墩柱与盖梁可以看成是一个平面刚架,边界条件可以简化为固端支承,将墩柱范围的区域考虑为受力而不变形的“刚域”。

这种计算结果与空间计算结果比较接近,因为盖梁空间的计算都是整体图式的。

如果考虑了基础周围介质(土体)对基础的作用,较准确地模拟出弹性支承,则盖梁计算结果会更精确,但是计算量也会增加。

以独柱式盖梁为例,笔者经过计算比较得出:整体图式法计算出的墩顶最大负弯矩,一般相当于基本简化模式计算结果的75%左右。

但是这个结果仍然是有峰值的,峰值往往比实际值大,而如果利用墩柱边缘的数值往往又偏小。

与实际受力接近的数值应该在墩柱边缘以内,位于墩柱中心与边缘之间。

3.1.4 结论
盖梁的几何外形简单,且是以弯矩、剪力及轴力为主,受力特点明确。

将它模拟成平面杆单元比模拟成空间体单元计算要简单许多,而且能满足控制要求。

空间计算结果虽然准确,但是计算复杂,对于盖梁计算必要性不大。

采用盖梁平面基本的简化模式进行计算是最简单且比较实用的,但使用时要对局部区域的峰值如墩顶截面进行适当的折减削峰处理,因为盖梁的实际控制截面往往不在墩顶而在墩柱边缘附近,这样能避免造成较大的浪费。

盖梁的刚度与柱的刚度之比越大,简化计算结果越准确。

当相对刚度比大于10时,误差已经控制在10%以内了,在精度要求不很高的结构工程中是允许的,且偏于
安全。

此时可忽略桩柱对盖梁的弹性约束作用,把盖梁简化成简支或连续梁的型式。

当然,整体图式法是计算最为准确的平面简化计算方法,计算简单且符合实际,建议有条件时尽量采用。

3.2 盖梁荷载的分析及简化
3.2.1 盖梁荷载组成及特征
盖梁的恒载包括:盖梁自重、预应力荷载、上部主梁重量以及桥面系荷载等,这些都比较明确且易于计算。

人群荷载由于位置固定,可按均布的恒载考虑;盖梁活载为桥上车载通过主梁及支座时传递下来的,与计算主梁不同,活载作用在盖梁上的位置不是随机移动的,因为支座位置是固定的。

同时,作用于桥面的活载位置却又是随机移动的,因此,要准确算出盖梁最不利内力情况下活载引起的各支座的反力,就需要正确的方法。

归纳起来,盖梁活载布置分为纵桥向布载与横桥向布载两大步骤。

3.2.2 盖梁纵桥向布载
求出主梁的支座反力影响线,根据主梁的支座反力影响线纵桥向布置活载车队。

对于简支桥梁的桥墩盖梁采用双孔布载,桥台盖梁采用单孔布载。

纵桥向活载最大值根据桥梁计算跨径、车道数量和荷载等级的不同而不同。

以下是笔者总结的几种常见跨径简支梁板桥双车道纵向布载的计算结果。

在一些盖梁计算程序里,纵向布载数据有时需要自己手算输入,如人们常用的“桥梁综合计算程序”,在进行盖梁横向计算时,需要输入一个“横向分配系数”,用表中的数值除以2得到单车道数值,再除以加重车后轴重量即得。

3.2.3 盖梁横桥向布载
横桥向按车轮最不利位置布置活载,然后根据车轮横向位置求出相应各片主梁的荷载横向分布系数。

在盖梁横向布载计算中,一般采用杠杆法或者偏心受压法来计算活载横向分布影响线。

盖梁不同位置对应的最不利车轮横桥向的布置也不相同,活载对称布置时用杠杆法,非对称布置时用偏心受压法。

大部分盖梁计算程序都能自动计算活载横向分布影响线,原理都是一样的。

计算主梁的横向分布系数时要注意:盖梁某个位置的最不利内力,在求解各T梁的剪力横向分布系数时,车轮横桥向的位置是固定不变的,而车轮不同的横向布置对应各T梁不同的剪力横向分布系数。

相关文档
最新文档