材料力学答案单辉祖版全部答案.pdf

合集下载

工程力学(静力学与材料力学)课后习题答案(单辉祖)

工程力学(静力学与材料力学)课后习题答案(单辉祖)

1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(aB(b(c(dA(eBA(a(bA(cA(dA A(eB (c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)(e)B(a)B(b)(c)F BF(a)W(c)AF(b)A DB(d)(e)1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)AF(b)WA(c)(d)F D(e)F Bx(a)(b)(c)(d)CD(e)W(f)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

(d)F CCD(e)B WB(f)F ABFBC(a)(c)(d)(b)解:(a)(b)(c)AF ABF ATF AF BAFCAA C’(e)(e)DD F C’B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:F 1F(2)211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o的力F ,力的大小等于20KN ,如图所示。

第四版单辉祖材料力学课后答案

第四版单辉祖材料力学课后答案

第四版单辉祖材料力学课后答案引言《材料力学》是材料科学与工程专业的一门基础课程,主要介绍了材料的力学性质和力学行为。

本文以《材料力学》第四版的单辉祖所编写的课后习题为题,给出了相应的答案。

通过对这些习题的解答,帮助学生巩固课堂所学的知识,并提供了一些解题思路和方法。

目录•第一章引言•第二章物质的内部力和应力•第三章弹性和塑性力学基础第一章引言1. 什么是材料力学?答案:材料力学是研究物质响应外力作用下的变形和破坏行为的科学。

2. 材料力学的主要内容有哪些?答案:材料力学的主要内容包括静力学、动力学、弹性力学、塑性力学、断裂力学等。

第二章物质的内部力和应力1. 什么是内力?答案:内力是物质内部分子间相互作用所产生的力。

2. 什么是应力?答案:应力是单位面积上的力,表示为单位面积上的力的矢量。

3. 应力的分类有哪些?答案:应力可分为法向应力和切应力两种,法向应力垂直于截面,切应力与截面垂直。

4. 弹性应力-应变关系有哪些?答案:弹性应力-应变关系有胡克定律,即应力与应变成正比。

第三章弹性和塑性力学基础1. 弹性和塑性的区别是什么?答案:弹性是指物体在受到外力作用下发生变形后,外力去除后恢复原状的能力;塑性是指物体在受到外力作用下发生变形后,即使外力去除,物体也不能恢复原状。

2. 什么是弹性模量?答案:弹性模量是描述物质抵抗压缩和拉伸变形能力的指标,表示为物质单位应力与应变的比值。

3. 什么是屈服强度?答案:屈服强度是材料在拉伸过程中,在产生明显塑性变形或显著应力减小时的应力值。

4. 什么是塑性应变?答案:塑性应变是指材料在超过屈服点后产生的应变。

结论本文为《材料力学》第四版单辉祖所编写的课后习题的答案,涵盖了材料力学的部分基础知识。

通过对这些习题的解答,希望能够帮助学生深入理解材料力学的概念和原理,并提供一些解题思路和方法。

通过不断练习,学生能够对材料力学有更深入和全面的认识,为日后的学习和研究打下坚实的基础。

材料力学_单祖辉_第三版课后答案_(第一章—第八章)

材料力学_单祖辉_第三版课后答案_(第一章—第八章)

第一章 绪 论1-2如图所示,在杆件的斜截面m-m 上,任一点A 处的总应力p =120MPa ,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

题1-2图解:总应力p 与截面m-m 的法线间的夹角为 10203030=-=-=θα所以, MPa 2.11810cos == p σMPa 8.2010sin == p τ1-3 已知杆内横截面上的内力主矢F R与主矩M 如图所示,且均位于x-y 平面内。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中,C 为截面形心。

题1-3图解:2,R N S F F F M M y y ===1-4 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为max σ=100MPa ,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中,C 为截面形心。

题1-4图解:由题图所示正应力分布可以看出,该杆横截面上存在轴力N F 和弯矩z M ,其大小分别为200kN N 10002m)0400m 100.0(Pa)10100(212156max N =⨯=⨯⨯⨯⨯==..A σFm kN 333m N 10333m)1000(N)10200(6161)32(33N N ⋅=⋅⨯=⨯⨯⨯==-=...h F h h F M z1-5 图a 与b 所示两个矩形微体,虚线表示其变形或位移后的情况,该二微体在A点处的切应变分别记为(γA )a 与(γA )b ,试确定其大小。

题1-5图(a)解: (γA )a =0(b)解:αααγ2)()(-=+-=b A1-6 板件变形如图中虚线所示。

试求棱边AB 与AD 的平均正应变以及A 点处直角BAD 的切应变。

题1-6图解:平均正应变为33av,1000.1m 100.0m 100.1--⨯=⨯=AB ε33av,1000.2m100.0m 102.0--⨯=⨯=ADε由转角 rad 1000.20.100m m 102.033--⨯=⨯=AD αrad 1000.10.100mm 101.033--⨯=⨯=ABα得A 点处直角BAD 的切应变为rad 1000.13-⨯=-==AB AD BAD A ααγγ第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图。

材料力学答案_单辉祖_习题答案第3版.pdf

材料力学答案_单辉祖_习题答案第3版.pdf

解:

故 因为


返回
3-12(3-23) 图示矩形截面钢杆承受一对外力偶矩
切变模量
,试求:
(1)杆内最大切应力的大小、位置和方向;
(2)横截面矩边中点处的切应力;
。已知材料的
(3)杆的单位长度扭转角。
解:


由表得
MPa
返回
第四章 弯曲应力
4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 下页 4-1(4-1) 试求图示各梁中指定截面上的剪力和弯矩。 解:(a)
解:取消 A 端的多余约束,以 用下杆产生缩短变形。
代之,则
(伸长),在外力作
因为固定端不能移动,故变形协调条件为:

故 返回
6-2 图示支架承受荷载
别为

各杆由同一材料制成,其横截面面积分

。试求各杆的轴力。
解:设想在荷载 F 作用下由于各杆的变形,节点 A 移至 。此时各杆的变形
及 充方程。
如图所示。现求它们之间的几何关系表达式以便建立求内力的补
由附录Ⅳ得
返回 5-5(5-18) 试按迭加原理求图示梁中间铰 C 处的挠度 ,并描出梁挠曲线的 大致形状。已知 EI 为常量。
解:(a)由图 5-18a-1
(b)由图 5-18b-1 = 返回
5-6(5-19)
试按迭加原理求图示平面折杆自由端截面
C 的铅垂位移和水平位移。已知杆各段的横截面面积均为 A,弯曲刚度均为 EI。
及横截面上最大弯曲
得:
由几何关系得: 于是钢尺横截面上的最大正应力为:
返回
第五章 梁弯曲时的位移
5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-1(5-13) 试按迭加原理并利用附录 IV 求解习题 5-4。

材料力学答案第三版单辉祖

材料力学答案第三版单辉祖

第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图。

题2-1图解:各杆的轴力图如图2-1所示。

图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。

图a与b所示分布载荷均沿杆轴均匀分布,集度为q。

实用文档题2-2图(a)解:由图2-2a(1)可知,=2()F-xqxqaN轴力图如图2-2a(2)所示,实用文档实用文档qa F 2m ax ,N =图2-2a (b)解:由图2-2b(2)可知,qa F =Rqa F x F ==R 1N )( 22R 2N 2)()(qx qa a x q F x F -=--=轴力图如图2-2b(2)所示,qa F =max N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。

试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与实用文档最大切应力。

题2-3图解:该拉杆横截面上的正应力为 100MPa Pa 1000.1m10500N 10508263=⨯=⨯⨯==-A F σ实用文档斜截面m -m 的方位角, 50-=α故有MPa 3.41)50(cos MPa 100cos 22=-⋅== ασσα MPa 2.49)100sin(MPa 502sin 2-=-⋅== αστα 杆内的最大正应力与最大切应力分别为MPa 100max ==σσ MPa 502max ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。

试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。

题2-5解:由题图可以近似确定所求各量。

220GPa Pa 102200.001Pa 10220ΔΔ96=⨯=⨯≈=εσE MPa 220p ≈σ, MPa 240s ≈σ实用文档MPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。

材料力学单辉祖第一章答案

材料力学单辉祖第一章答案

第一章 绪 论1-2如图所示,在杆件的斜截面m-m 上,任一点A 处的总应力p =120MPa ,其方位角θ=20°,试求该点处的正应力σ与切应力τ。

题1-2图解:总应力p 与截面m-m 的法线间的夹角为10203030=-=-=θα 所以,MPa 2.11810cos == p σ MPa 8.2010sin == p τ1-3 已知杆内横截面上的内力主矢F R与主矩M 如图所示,且均位于x-y 平面内。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中,C 为截面形心。

题1-3图解: 2 ,RN S F F F M M y y ===1-4 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为max σ=100MPa ,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中,C 为截面形心。

题1-4图解:由题图所示正应力分布可以看出,该杆横截面上存在轴力N F 和弯矩z M ,其大小分别为200kN N 10002m)0400m 100.0(Pa)10100(212156max N =⨯=⨯⨯⨯⨯==..A σFm kN 333m N 10333m)1000(N)10200(6161)32(33N N ⋅=⋅⨯=⨯⨯⨯==-=...h F h h F M z 1-5 图a 与b 所示两个矩形微体,虚线表示其变形或位移后的情况,该二微体在A 点处的切应变分别记为(γA )a 与(γA )b ,试确定其大小。

题1-5图 (a)解:(γA )a =0 (b)解: αααγ2)()(-=+-=b A1-6 板件变形如图中虚线所示。

试求棱边AB 与AD 的平均正应变以及A 点处直角BAD 的切应变。

题1-6图解:平均正应变为33av,1000.1m 100.0m 100.1--⨯=⨯=AB ε33av,1000.2m 100.0m 102.0--⨯=⨯=AD ε 由转角rad 1000.20.100m m 102.033--⨯=⨯=AD α rad 1000.10.100m m 101.033--⨯=⨯=AB α 得A 点处直角BAD 的切应变为rad 1000.13-⨯=-==AB AD BAD A ααγγ。

材料力学答案解析单辉祖版全部答案解析

材料力学答案解析单辉祖版全部答案解析

* *第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图。

题2-1图解:各杆的轴力图如图2-1所示。

图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。

图a与b所示分布载荷均沿杆轴均匀分布,集度为q。

题2-2图(a)解:由图2-2a(1)可知,qxqaxF-=2)(N轴力图如图2-2a(2)所示,qaF2m ax,N=图2-2a (b)解:由图2-2b(2)可知,qaF=Rqa F x F ==R 1N )(22R 2N 2)()(qx qa a x q F x F -=--=轴力图如图2-2b(2)所示,qa F =m ax N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。

试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N10508263=⨯=⨯⨯==-A F σ 斜截面m -m 的方位角, 50-=α故有MPa 3.41)50(cos MPa 100cos 22=-⋅== ασσαMPa 2.49)100sin(MPa 502sin 2-=-⋅== αστα杆内的最大正应力与最大切应力分别为MPa 100max ==σσMPa 502max ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。

试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。

题2-5解:由题图可以近似确定所求各量。

220GPa Pa 102200.001Pa 10220ΔΔ96=⨯=⨯≈=εσE MPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。

2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。

材料力学第二版(单辉祖著)课后习题答案下载

材料力学第二版(单辉祖著)课后习题答案下载

材料力学第二版(单辉祖著)课后习题答案下载单辉祖的著作《材料力学第二版》一般是机械工程和土木工程以及相关专业的大学生必须修读的课程。

今天要与大家分享的是材料力学第二版(单辉祖著),希望对大家有帮助!点击此处下载???材料力学第二版(单辉祖著)课后习题答案???在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。

运用材料力学知识可以分析材料的强度、刚度和稳定性。

材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化结构设计,以达到降低成本、减轻重量等目的。

在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。

但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。

材料力学的研究内容包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可缺少的依据;另一部分是对杆件进行力学分析。

杆件按受力和变形可分为拉杆、压杆(见柱和拱)、受弯曲(有时还应考虑剪切)的梁和受扭转的轴等几大类。

杆中的内力有轴力、剪力、弯矩和扭矩。

杆的变形可分为伸长、缩短、挠曲和扭转。

在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为三类:①线弹性问题。

在杆变形很小,而且材料服从胡克定律的前提下,对杆列出的所有方程都是线性方程,相应的问题就称为线性问题。

对这类问题可使用叠加原理,即为求杆件在多种外力共同作用下的变形(或内力),可先分别求出各外力单独作用下杆件的变形(或内力),然后将这些变形(或内力)叠加,从而得到最终结果。

②几何非线性问题。

若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。

这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。

③物理非线性问题。

在这类问题中,材料内的变形和内力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图。

题2-1图解:各杆的轴力图如图2-1所示。

图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。

图a与b所示分布载荷均沿杆轴均匀分布,集度为q。

题2-2图(a)解:由图2-2a(1)可知,qxqaxF−=2)(N轴力图如图2-2a(2)所示,qaF2max,N=图2-2a(b)解:由图2-2b(2)可知,qaF=RqaFxF==R1N)(22R2N2)()(qxqaaxqFxF−=−−=轴力图如图2-2b(2)所示,qa F =max N,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。

试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。

题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N10508263=⨯=⨯⨯==-A F σ 斜截面m -m 的方位角, 50−=α故有 MPa 3.41)50(cos MPa 100cos 22=−⋅== ασσαMPa 2.49)100sin(MPa 502sin 2−=−⋅== αστα杆内的最大正应力与最大切应力分别为MPa 100m ax ==σσMPa 502m ax ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。

试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。

题2-5解:由题图可以近似确定所求各量。

220GPa Pa 102200.001Pa10220ΔΔ96=⨯=⨯≈=εσEMPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。

2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。

若杆径d =10mm ,杆长 l =200mm ,杆端承受轴向拉力F = 20kN 作用,试计算拉力作用时与卸去后杆的轴向变形。

题2-6图解:255MPa Pa 1055.2m 0.010πN 102048223=⨯=⨯⨯⨯==A F σ查上述εσ−曲线,知此时的轴向应变为%39.00039.0==ε轴向变形为mm 780m 108700390m)2000(Δ4....l εl =⨯=⨯==−拉力卸去后,有00364.0e =ε, 00026.0p =ε故残留轴向变形为0.052mm m 105.2000260(0.200m)Δ5p =⨯=⨯==−.l εl2-9 图示含圆孔板件,承受轴向载荷F 作用。

已知载荷F =32kN ,板宽b=100mm ,板厚=δ15mm ,孔径d =20mm 。

试求板件横截面上的最大拉应力(考虑应力集中)。

题2-9图解:根据2.0m)100.0m/(020.0/==b d查应力集中因数曲线,得42.2≈K根据δd b Fσ)(n −=, n max σσK =得64.5MPa Pa 1045.60.015m 0.020)(0.100N 103242.2)(723n max=⨯⨯⨯⨯=−===-δd b KF K σσ2-10 图示板件,承受轴向载荷F 作用。

已知载荷F =36kN ,板宽b 1=90mm ,b 2=60mm ,板厚δ=10mm ,孔径d =10mm ,圆角半径R =12mm 。

试求板件横截面上的最大拉应力(考虑应力集中)。

题2-10图解:1.在圆孔处 根据111100.090mm 010.01.b d == 查圆孔应力集中因数曲线,得 6.21≈K故有117MPa Pa 1017.1m010.0)010.0090.0(N10366.2)(82311n 1max1=⨯=⨯⨯⨯===--δd b F K σK σ 2.在圆角处根据1.50.060mm 090.021===b b d D 2.00.060mm 012.02===b R d R 查圆角应力集中因数曲线,得 74.12≈K故有104MPa Pa 1004.10.010m0.060N 103674.182322n 2max 2=⨯=⨯⨯⨯===δb F K σK σ 3. 结论MPa 117m ax =σ(在圆孔边缘处)2-14图示桁架,承受铅垂载荷F 作用。

设各杆的横截面面积均为A ,许用应力均为[σ],试确定载荷F 的许用值[F ]。

题2-14图解:先后以节点C 与B 为研究对象,求得各杆的轴力分别为 F F 2N1=F F F ==N3N2 根据强度条件,要求][2σ≤A F由此得2][][AF σ=2-15 图示桁架,承受载荷F 作用,已知杆的许用应力为[σ]。

若在节点B和C 的位置保持不变的条件下,试确定使结构重量最轻的α值(即确定节点A 的最佳位置)。

题2-15图解:1.求各杆轴力设杆AB 和BC 的轴力分别为N1F 和N2F ,由节点B 的平衡条件求得αF F αF F ctan sin N2N1==, 2.求重量最轻的α值 由强度条件得ασFA σF A ctan ][ ]sin [21==,α结构的总体积为)ctan sin22(][ctan ][cos ]sin [2211αασFl ασFl αl ασF l A l A V +=+⋅=+=由0d d =αV得01cos 32=−α由此得使结构体积最小或重量最轻的α值为4454opt '= α2-16 图示桁架,承受载荷F 作用,已知杆的许用应力为[σ]。

若节点A 和C 间的指定距离为 l ,为使结构重量最轻,试确定θ的最佳值。

题2-16图解:1.求各杆轴力由于结构及受载左右对称,故有θFF F sin 2N2N1== 2.求θ的最佳值 由强度条件可得θσFA A ]sin [221==结构总体积为θσFlθl θσF l A V ]sin2[cos 2]sin [211=⋅== 由0d d =θV得0cos2=θ由此得θ的最佳值为45opt =θ2-17图示杆件,承受轴向载荷F 作用。

已知许用应力[σ]=120MPa ,许用切应力[τ]=90MPa ,许用挤压应力[σbs ]=240MPa ,试从强度方面考虑,建立杆径d 、墩头直径D 及其高度h 间的合理比值。

题2-17图解:根据杆件拉伸、挤压与剪切强度,得载荷F 的许用值分别为 ][4π][2t σdF =(a) ][4)(π][bs 22b σd D F −=(b)][π][s τdh F =(c) 理想的情况下,s b t ][][][F F F ==在上述条件下,由式(a )与(c )以及式(a )与(b ),分别得d h ][4][τσ=d D bs][][1σσ+= 于是得1:][4][:][][1::bs τσσσ+=d h D 由此得1:333.0:225.1::=d h D2-18 图示摇臂,承受载荷F 1与F 2作用。

已知载荷F 1=50kN ,F 2=35.4kN ,许用切应力[τ]=100MPa ,许用挤压应力][bs σ=240MPa 。

试确定轴销B 的直径d 。

题2-18图解:1. 求轴销处的支反力 由平衡方程0=∑x F 与0=∑y F ,分别得kN 25cos4521=−= F F F BxkN 25sin452== F F By由此得轴销处的总支反力为kN 435kN 252522.F B =+=2.确定轴销的直径由轴销的剪切强度条件(这里是双面剪)][π22s τd F A F τB≤==得m 0150m 10100104.352][263.τF d B =⨯⨯⨯⨯=≥ππ 由轴销的挤压强度条件][bs b bs σd F d F σB≤==δδ 得m 014750m 102400100104.35][63bs ..σδF d B =⨯⨯⨯=≥结论:取轴销直径15mm m 015.0=≥d 。

2-19图示木榫接头,承受轴向载荷F = 50 kN 作用,试求接头的剪切与挤压应力。

题2-19图解:剪应力与挤压应力分别为MPa 5)m 100.0)(m 100.0(N10503=⨯=τMPa 5.12)m 100.0)(m 040.0(N10503bs =⨯=σ2-20图示铆接接头,铆钉与板件的材料相同,许用应力[σ] =160MPa ,许用切应力[τ] = 120 MPa ,许用挤压应力[σbs ] = 340 MPa ,载荷F = 230 kN 。

试校核接头的强度。

题2-20图解:最大拉应力为MPa 3.153)m )(010.0)(020.0170.0(N1023023max=−⨯=σ 最大挤压与剪切应力则分别为MPa 2300.010m)5(0.020m)(N102303bs =⨯=σMPa 4.146π(0.020m)5N 10230423=⨯⨯⨯=τ2-21 图示两根矩形截面木杆,用两块钢板连接在一起,承受轴向载荷F =45kN 作用。

已知木杆的截面宽度b =250mm ,沿木纹方向的许用拉应力[σ]=6MPa ,许用挤压应力][bs σ=10MPa ,许用切应力[τ]=1MPa 。

试确定钢板的尺寸δ与l 以及木杆的高度h 。

题2-21图解:由拉伸强度条件 ][)2(σδh b Fσ≤−=得0.030m m 10625001045][263=⨯⨯⨯=≥−.σb F δh (a )由挤压强度条件 ][2bs bs σb δFσ≤=得mm 9m 0090m 1010250.021045][263bs ==⨯⨯⨯⨯=≥.σb F δ(b )由剪切强度条件 ][2τblFτ≤=得mm 90m 0900m 101250.021045][263==⨯⨯⨯⨯=≥.b F l τ 取m 009.0=δ代入式(a ),得48mm m 0480m )009.02030.0(==⨯+≥.h 结论:取mm 9≥δ,mm 90≥l ,mm 48≥h 。

2-22 图示接头,承受轴向载荷F 作用。

已知铆钉直径d =20mm ,许用应力[σ]=160MPa ,许用切应力[τ]=120MPa ,许用挤压应力][bs σ=340MPa 。

板件与铆钉的材料相同。

试计算接头的许用载荷。

题2-22图解:1.考虑板件的拉伸强度 由图2-22所示之轴力图可知,4/3 N2N1F F F F ==,][)(1N11σδd b FA F σ≤−==432kN N 104.32N 10160015.0)02002000(][)(56=⨯=⨯⨯⨯=−≤.-.σδd b F][)2(432N22σδd b FA F σ≤−==512kN N 105.12N 10160015.0)040.0200.0(34][)2(3456=⨯=⨯⨯⨯−=−≤σδd b F图2-222.考虑铆钉的剪切强度 8s F F = ][π842s τd F A F τ≤==302kN N 1002.3N 101200200π2][π25622=⨯=⨯⨯⨯⨯=≤.τd F3.考虑铆钉的挤压强度][ 4 4bs b bs b σδδσ≤===d F d F F FkN 408N 1008.4N 103400.0200.0154][456bs =⨯=⨯⨯⨯⨯=≤σd F δ结论:比较以上四个F 值,得kN 302][=F2-23 图a 所示钢带AB ,用三个直径与材料均相同的铆钉与接头相连接,钢带承受轴向载荷F 作用。

相关文档
最新文档