基于小波变换的信号去噪论文
基于双密度小波变换的信号去噪研究

第2卷 8
第1 期
邢 台 职 业 技 术 学 院 学 报
J u n l f n t i o y e h i l g o r a Xi ga lt c n c Co l e o P e
作者 简介:曹世超 ( 9 3 ) 18 一 ,河北邢 台 ,邢台职业技术学院电气工程系,助教。 人
48
邢 台 职ቤተ መጻሕፍቲ ባይዱ业 技术 学 院学 报
21 年 第 l 01 期
和 h 分 别表 示低 通滤 波器和 高通 滤波 器 ,信 号分 别通过 低 通滤波 器 h 和高通 滤 波器 1 解 为低频 和 i o 分
移不变 性 ,其 尺度和 小 波方程 为 :
(= f ∑h (-) ) 0)2 ( r
f= ( ∑h Ot力 ( l f ) )2 ) f , (一 , =2 )
H
g( l_. t, ( 0) 2) f 5
原始信号通过三通道的滤波器系统 () 1 ) h () , ,h( 和 2 进行分解和重构 。图2 DD WT ̄ . 2 是1 DD I 层递
种基于双密度 小波变换 的去噪算法。双密度小波有 两个小波函数,同一个尺度 内相邻的小波问 的频带间隔更小,有效 的克服 了离 小波变换时移性的缺点,有近似 的平移不变性,更能描述 散 信号的真实特征。将该算法用于不同噪声强度下的信号去噪 ,实验结果表 明:基于双密度小波 变换的去噪算法优于基于 离 散小波变换的去噪算法,是一种有效的信号去噪新算法。 关键 词 :信 号去噪 ;双 密度 小波 变换 ; 阈值 ;信噪 比 中图分类号 :T 1 . N9 4 1 文献标 识码 :A 文 章编 号: 10 -619 ( 0 )O —O 4 —0 08- 2 21 - 1 l 08 4
小波变换在电能质量信号去噪中的研究

it ga e e df r n h r c e sis o o n a d t r s od v le mo h d ,a d u e ef a a t g p r mee n e r ts t i e e tc a a t r t fs f a d h r h e h l au t e s n s s s l — d p i a a tr h i c t n
g ra a tb l y f cie y a o d h r b e ta h mo t a st n o o h e h l au t o a s s s a e d p a i t ,e f t l v i st e p o lm h t e s o h t n i o f f t r s o d v le me h d c u e i l i e v t r i st n g
了更多 的原始信号信息 。为 了改善电能质量信号的去噪效果 , 出了一种改进的小 波软 阈值 电能质量信号 去噪算法 。采用 提 融合软 、 硬阈值法的不 同特点 , 通过 自适应调整参数方式获得最优 的小波系数 的阈值 , 使得改进的 阈值 函数适应 性更强 , 有 效克服 了采用 软阈值法过渡光滑导致信号失真 , 而采用硬 阈值法去噪效果不佳 的缺 陷。仿 真结果表明 , 算法 补传 统软阙值 算法的缺陷 , 该方法消除信号中的噪声效果和还能保留突变点 的信息能力都优 于传统 的去噪方法 , 为消 噪设计提供参考。 关键词 : 电能质量 ; 小波变换 ; 去噪 ; 阈值 软
s s t sd f c l t n lz o r q ai e ,i i i iu t o a ay e p we u l y,t eeo e h o e u l y sg a e o sn r c s ig i n e e .T e f t h r fr ,te p w rq ai in ld n ii g p o e sn s e d d t h t d t n l e osn to a n t ov ec n rd c in o e vn o s n ea nn tt g if r t n a e r i o a n i g meh d c n o le t o ta it f mo i g n ie a d r ti i gmuai o mai t a i d i s h o r n n o h t
基于小波变换对GPS信号去噪的分析

5 结
语
t n tew vltrpeettn[ ] IE Tas 18 n i , ae ersna o J . E E r ,9 9 O o h e i n
2 1 年 4月 0 1 第2 I
城
勘
测
Ap . 01 r2 1 No. 2
Ur a oe hnc lI v siain & Su v yng b n Ge tc ia n e tg t o re i
文 章 编 号 :6 2 8 6 (0 )2 6 — 3 17 — 2 2 2 1 0 — 5 0 1
作者简介 :t , (9 5 ) 女 , I  ̄ 18 一 , 硕 研究生 , J 土要研究 G S高精度数据处理 啦月 P j J
基 金项 目: 西研 究 生 教 育 创 新 计 划 资 助 项 目 (00 0 9 0 1 M 7 广 2 115 6 86 3 )
第 2期
利 等 .基 于 小 波 变 换 对 G S 号去 噪 的 分析 P信
结果如 图 6所示 。
把握 尺度 函数 , 往往 不是 很容 易 的。 因此 , 要 我们 通 需
过不 断 的具 体调 试 , 总结 出一些 经验 性 的可靠 判 据 , 才
能收 到较好 的效 果 , 以达 到解决 问题 的 目的 。
参 考 文 献
[ ] 程 正兴 , 守 志 , 晓 霞. 小波 分 析 的 理 论 、 法 、 展 和 1 杨 冯 算 进 应 用 [ .北 京 : 防 工 业 出版 社 ,0 7 7 ,9~8 ,0 M] 国 20 :2 7 034
毕业设计(论文)-基于小波图像去噪的方法研究[管理资料]
![毕业设计(论文)-基于小波图像去噪的方法研究[管理资料]](https://img.taocdn.com/s3/m/d66abed458fb770bf68a5511.png)
毕业论文基于小波变换的图像去噪方法的研究学生姓名: 学号:学系 专 指导教师:2011年 5 月基于小波变换的图像去噪方法的研究摘要图像是人类传递信息的主要媒介。
然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。
寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。
小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。
它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。
随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。
本文对基于小波变换的图像去噪方法进行了深入的研究分析,首先详细介绍了几种经典的小波变换去噪方法。
对于小波变换模极大值去噪法,详细介绍了其去噪原理和算法,分析了去噪过程中参数的选取问题,并给出了一些选取依据;详细介绍了小波系数相关性去噪方法的原理和算法;对小波变换阈值去噪方法的原理和几个关键问题进行了详细讨论。
最后对这些方法进行了分析比较,讨论了它们各自的优缺点和适用条件,并给出了仿真实验结果。
在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。
传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。
但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。
鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。
该方法利用小波阈值去噪基本原理,在基于最小均方误差算法LMS和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。
如何使用小波变换进行信号去噪处理

如何使用小波变换进行信号去噪处理信号去噪是信号处理领域中的一个重要问题,而小波变换是一种常用的信号去噪方法。
本文将介绍小波变换的原理和应用,以及如何使用小波变换进行信号去噪处理。
一、小波变换的原理小波变换是一种时频分析方法,它可以将信号分解成不同频率和时间尺度的成分。
与傅里叶变换相比,小波变换具有更好的时域分辨率和频域分辨率。
小波变换的基本思想是通过选择不同的小波函数,将信号分解成不同尺度的波形,并通过对这些波形的加权叠加来重构信号。
二、小波变换的应用小波变换在信号处理中有着广泛的应用,其中之一就是信号去噪处理。
信号中的噪声会影响信号的质量和准确性,因此去除噪声是信号处理的重要任务之一。
小波变换可以通过将信号分解为不同尺度的波形,利用小波系数的特性来区分信号和噪声,并通过滤波的方式去除噪声。
三、小波变换的步骤使用小波变换进行信号去噪处理的一般步骤如下:1. 选择合适的小波函数:不同的小波函数适用于不同类型的信号。
选择合适的小波函数可以提高去噪效果。
2. 对信号进行小波分解:将信号分解成不同尺度的小波系数。
3. 去除噪声:通过对小波系数进行阈值处理,将小于一定阈值的小波系数置零,从而去除噪声成分。
4. 重构信号:将去噪后的小波系数进行逆变换,得到去噪后的信号。
四、小波阈值去噪方法小波阈值去噪是小波变换中常用的去噪方法之一。
它的基本思想是通过设置一个阈值,将小于该阈值的小波系数置零,从而去除噪声。
常用的阈值去噪方法有软阈值和硬阈值。
软阈值将小于阈值的小波系数按照一定比例进行缩小,而硬阈值将小于阈值的小波系数直接置零。
软阈值可以更好地保留信号的平滑性,而硬阈值可以更好地保留信号的尖锐性。
五、小波变换的优缺点小波变换作为一种信号处理方法,具有以下优点:1. 可以提供更好的时域分辨率和频域分辨率,能够更准确地描述信号的时频特性。
2. 可以通过选择不同的小波函数适用于不同类型的信号,提高去噪效果。
3. 可以通过调整阈值的大小来控制去噪的程度,灵活性较高。
基于小波变换的脉搏信号去噪方法研究

基于小波变换的脉搏信号去噪方法研究下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!基于小波变换的脉搏信号去噪方法研究1. 引言脉搏信号作为医学诊断中重要的生理信号之一,其精确的提取和分析对于诊断疾病具有重要意义。
小波变换在信号去噪中的应用

小波变换在信号去噪中的应用随着数字化技术的不断发展,各行业的数据量也在不断增加,因此如何对高噪声的数据进行可靠处理变得尤为重要。
在信号处理领域中,小波变换已经成为一种非常有效的信号去噪方法。
接下来将对小波变换在信号去噪中的应用进行深入探讨。
一、小波变换的原理和特点小波变换是一种将函数分解为不同频率组成部分的数学方法。
和传统傅里叶变换不同,小波变换具有更好的时间-频率局限性,能够有效的提取出不同频率成分的信号。
同时,小波变换能够处理非平稳信号,也就是信号的频率随时间的变化。
小波变换能够将信号分解为低频和高频两部分,其中低频部分表示信号的整体趋势,高频部分表示信号的细节部分。
二、小波去噪的实现过程小波去噪是通过去掉信号中的高频部分来达到减少噪声的目的,实现的具体步骤如下:1. 对信号进行一次小波变换,得到低频部分和高频部分;2. 计算高频部分的标准差,并通过阈值处理去掉低于阈值的高频部分;3. 将处理后的低频部分和高频部分进行反变换,得到去噪后的信号。
三、小波去噪的优点和适用范围小波去噪相比传统方法具有以下优点:1. 处理效果更好:小波变换能够更好地提取信号的不同频率成分,而传统方法只能处理平稳的信号;2. 处理速度更快:小波去噪具有并行处理能力,可以在相同时间内处理更多的数据;3. 阈值处理更加方便:小波去噪阈值处理的方法相对于传统方法更加方便。
小波去噪主要适用于以下信号:1. 高噪声信号:高噪声的信号难以处理,而小波变换能够有效提取信号的不同成分,因此小波去噪在处理高噪声信号时效果更佳;2. 非平稳信号:信号的频率随时间变化的情况下,小波去噪将比传统方法更为有效。
四、小波去噪在实际应用中的意义小波去噪在实际应用中的意义主要体现在以下方面:1. 信号传输:在信号传输中,噪声会对传输信号造成影响,而小波去噪能够降低信号噪声,提高传输质量。
2. 图像处理:小波去噪也可以应用于图像处理领域。
在图像处理中,噪声也会对图像造成影响,而小波去噪能够去除图像中的噪声,提高图像质量。
基于小波变换在语音信号处理中的研究

科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON 2008NO .27SC I ENCE &TECH NO LOG Y I NFOR M A TI O N 学术论坛在过去,我们曾用短时傅立叶变换(SFFT )在频域内对语音信号进行分析去噪,但它有一定的局限性。
小波变换是传统傅立叶变换的继承和发展。
由于小波的多分辨率分析具有良好的空间域和频率域局部化特性,对高频采用逐渐精细的时域或空域步长,可以聚焦分析对象的任意细节,因此特别适合于非平稳信源的处理,已经成为应用于语音信号处理的一种新手段。
1语音信号去噪问题描述由于语音信号可以被分为浊音段和清音段两部分,而这两部分又有很大区别;浊音呈现出准周期性,其周期为该段的基因周期,且含有较多的低频成分。
清音的信号波形类似于白噪声,与浊音相比,频率较高且无周期性。
若语音中参入了含高频成分的噪声,对浊音和清音段应采用不同的阈值方案,才能获得最佳的去噪效果。
因此,在阈值处理之前,必须把清音段识别分割处理,然后对浊音和清音段应采用不同的阈值处理方法。
阈值去噪的原理就是将小波变换后的小波系数低于阈值的部分置零,从而去除噪声,从原则上讲,阈值去噪时希望尽可能地将噪声对应的小波系数都置零,同时尽量保留信号对应的小波系数,其中最关键的问题就是如何有效的选定合适的阈值。
下来我们就来研究一下几种阈值选取规则。
2阈值的选取规则①通用阈值(s qt w ol og 规则)设含噪信号f (t )在尺度1—j (1<j <J )上通过小波分解的到的小波系数的个数综合为n,J 为二进尺度参数,噪声的标准偏差为s ,则通用阈值为:(1)该方法的原理依据是N 个具有独立分布的标准高斯变量中的最大值小于t 1的概率随着N 的增大而趋于1。
若被测信号含有独立同分布的噪声,经小波变换后,其噪声的小波变换系数也是独立同分布的。
如果具有独立同分布的噪声经小波分解后,它的系数序列长度很大,则根据上述理论可知:该小波系数中小于最大值t 1的概率接近1,即存在一个阈值使得该序列的所有小波系数都小于它。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南农业大学本科生毕业论文题目基于小波变换的信号去噪研究学院理学院专业班级信安3班学生姓名秦学珍指导教师吴莉莉撰写日期:年月日基于小波变换的信号去噪研究秦学珍摘要小波变换是一种新型的数学分析工具,是80年代后期迅速发展起来的新兴学科。
小波变换具有多分辨率的特点,在时域和频域都具有表征信号局部特征能力,适合分析非平稳信号,可以由粗及精地逐步观察信号。
小波分析的理论和方法在信号处理、图像处理、语音处理、模式识别、量子物理等领域得到越来越广泛的应用,它被认为是近年来在工具及方法上的重大突破。
信号的采集与传输过程中,不可避免会受到大量噪声信号的干扰,对信号进行去噪,提取出原始信号是一个重要的课题。
那么究竟应该如何从含噪声的信号中提取出原始的信号,这就成了最重要的问题。
经过长期的探索与努力、实验仿真,对比于加窗傅里叶对信号去噪,提取原始信号的方法,终于找到了一种全新的信号处理方法——小波分析。
它将信号中各种不同的频率成分分解到互不重叠的频带上,为信号滤波、信噪分离和特征提取提供了有效途径,特别在信号去噪方面显出了独特的优势。
本文从小波变换的定义和信号与噪声的不同特性出发,在对比分析了各种去噪方法的优缺点基础上,运用了对小波分解系数进行阈值化的方法来对一维信号去噪,该方法对去除一维平稳信号含有的白噪声有非常满意的效果,具有有效性和通用性,能提高信号的信噪比。
与此同时,本文还补充介绍了强制消噪处理、默认阈值处理、给定软阈值处理等对信号消噪的方法。
在对含噪信号运用阈值进行消噪的过程中,对比了用不同分解层数进行处理的去噪效果。
本文采用的是用传感器采集的微弱生物信号。
生物信号通常是噪声背景小的低频信号,而噪声信号通常集中在信号的高频部分。
因此,应用小波分解,把信号分解成不同频率的波形信号,并对高频波进行相关的处理,处理后的高频信号在和分离出的低频信号进行重构,竟而,就得到了含少量噪声的原始信号。
而且,随着分解层数的不同,小波去噪的效果也是不同的。
并对此进行了深入的分析。
关键词:小波变换;声信号;默认阈值处理;降噪小波重构The signal denoising based on wavelet transformQING Xue-zhenAbstractWavelet transform is a new-style mathematic analysis tool. Itis a new subjectwhich was rapidly developed inlate 1980s. The wavelet transform has the characteristicof multi-analysis and the ability to analyse partial characteristic both in the time domainand the frequency range, so it is suitable to analyze non-steady state signal and observesignal gradually from coarse to fine. The method has been used in many domains suchas signal processing, image processing, pronunciation distinction, pattern recognition,quantum physics and so on. It is considered as a great breakthrough of tools andmethods recently.It is inevitable to be interfered by a large amount of noise signal in the process of signal gathering and transmission. It’s a main topic to deniose and extract originalsignal.How should contain the noise signal from the original signal, which became a most important problem. After a long period of exploration and efforts, experimental simulation, compared to add window Fourier to signal denoising, extraction method of original signal, finally found a new signal processing method, wavelet analysis. It will signal in different frequency components of the decomposition into non-overlapping band, signal-to-noise ratio (SNR) for signal filtering, feature extraction separation and provides effective ways, especially in the aspect of signal denoising show a unique advantage.This article from the definition of wavelet transform and the different characteristics of signal and noise, the comparison and analysis the advantages and disadvantages of various denoising method, based on the use of the wavelet decomposition coefficient method for one-dimensional signal threshold denoising, the method for denoising the white noise of one dimensional steady signal contains a very satisfactory results, with the effectiveness and generality, can improve the SNR of signal. At the same time, this paper adds the compulsory treatment, the default threshold denoising, given the soft threshold processing method for signal de-noising. On noise signal using the threshold de-noising, compared with different decomposition layers for processing the denoising effect.This article USES the sensor with a weak biological signal acquisition. Biological signal is usually low frequency signal of background noise, the noise signal is usually focused on the high frequency part of signal. Wavelet decomposition, therefore, the signal is decomposed into different frequency waveform signal, and the high frequency wave are related to processing, processing of high frequency signal in low frequency signal and isolated refactoring, unexpectedly and, get the original signal containing a small amount of noise. And as the number of decomposition layers, wavelet denoising effects are also different. And carried on the thorough analysis.Key words: wavelet transform; pronunciation signal;The default threshold processing;wavelet reconstruction目录1 绪论 (1)1.1 研究背景 (1)1.2 小波分析的研究现状 (3)1.3 本文研究的内容 (3)2 小波分析概述 (5)2.1 小波分析的定义 (5)2.2 小波变化的时、频局部性 (6)2.3 小波去噪常用的算法 (7)3 实验仿真 (8)3.1 一维小波去噪原理 (8)3.1.1 小波降噪的两个准则 (8)3.1.2 小波分析用于降噪的步骤 (8)3.1.3小波去噪的基本模型 (8)3.2基于阈值对生物信号消噪的运行结果 (10)4 结论 (13)4.1 本文工作总结 (13)4.2 小波分析的发展前景 (13)参考文献 (15)附录 (17)致谢 (18)1 绪论1.1 研究背景自从1822年傅里叶(Fourier)提出非周期信号分解概念以来,傅里叶变换一直是信号处理领域中应用最广泛的分析手段和方法,傅里叶变换是一种纯频域的分析方法,在时域无任何定位性,即不能提供任何局部时间段上的频率信息。
为了研究信号在局部时间范围的频域特征,1946年Gabor 提出了著名的Gabor变换并进一步发展为短时傅里叶变换。
其基本思想是给信号加一个小窗,信号的傅里叶变换主要集中在对小窗内的信号进行变换,可以反映出信号的局部特征。
短时傅里叶变换已经在许多领域得到了广泛应用。