模式识别实验报告年月

合集下载

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告-贝叶斯分类

《模式识别》实验报告---最小错误率贝叶斯决策分类一、实验原理对于具有多个特征参数的样本(如本实验的iris 数据样本有4d =个参数),其正态分布的概率密度函数可定义为112211()exp ()()2(2)T d p π-⎧⎫=--∑-⎨⎬⎩⎭∑x x μx μ 式中,12,,,d x x x ⎡⎤⎣⎦=x 是d 维行向量,12,,,d μμμ⎡⎤⎣⎦=μ是d 维行向量,∑是d d ⨯维协方差矩阵,1-∑是∑的逆矩阵,∑是∑的行列式。

本实验我们采用最小错误率的贝叶斯决策,使用如下的函数作为判别函数()(|)(),1,2,3i i i g p P i ωω==x x (3个类别)其中()i P ω为类别i ω发生的先验概率,(|)i p ωx 为类别i ω的类条件概率密度函数。

由其判决规则,如果使()()i j g g >x x 对一切j i ≠成立,则将x 归为i ω类。

我们根据假设:类别i ω,i=1,2,……,N 的类条件概率密度函数(|)i p ωx ,i=1,2,……,N 服从正态分布,即有(|)i p ωx ~(,)i i N ∑μ,那么上式就可以写为1122()1()exp ()(),1,2,32(2)T i i dP g i ωπ-⎧⎫=-∑=⎨⎬⎩⎭∑x x -μx -μ对上式右端取对数,可得111()()()ln ()ln ln(2)222T i i i i dg P ωπ-=-∑+-∑-i i x x -μx -μ上式中的第二项与样本所属类别无关,将其从判别函数中消去,不会改变分类结果。

则判别函数()i g x 可简化为以下形式111()()()ln ()ln 22T i i i i g P ω-=-∑+-∑i i x x -μx -μ二、实验步骤(1)从Iris.txt 文件中读取估计参数用的样本,每一类样本抽出前40个,分别求其均值,公式如下11,2,3ii iii N ωωω∈==∑x μxclear% 原始数据导入iris = load('C:\MATLAB7\work\模式识别\iris.txt'); N=40;%每组取N=40个样本%求第一类样本均值 for i = 1:N for j = 1:4w1(i,j) = iris(i,j+1); end endsumx1 = sum(w1,1); for i=1:4meanx1(1,i)=sumx1(1,i)/N; end%求第二类样本均值 for i = 1:N for j = 1:4 w2(i,j) = iris(i+50,j+1);end endsumx2 = sum(w2,1); for i=1:4meanx2(1,i)=sumx2(1,i)/N; end%求第三类样本均值 for i = 1:N for j = 1:4w3(i,j) = iris(i+100,j+1); end endsumx3 = sum(w3,1); for i=1:4meanx3(1,i)=sumx3(1,i)/N; end(2)求每一类样本的协方差矩阵、逆矩阵1i -∑以及协方差矩阵的行列式i ∑, 协方差矩阵计算公式如下11()(),1,2,3,41i ii N i jklj j lk k l i x x j k N ωωσμμ==--=-∑其中lj x 代表i ω类的第l 个样本,第j 个特征值;ij ωμ代表i ω类的i N 个样品第j 个特征的平均值lk x 代表i ω类的第l 个样品,第k 个特征值;iw k μ代表i ω类的i N 个样品第k 个特征的平均值。

北邮信息工程模式识别实验报告

北邮信息工程模式识别实验报告

0.8514 0.4439 0.4272 0.7127 0.4129 0.7840
1.0831 0.4928 0.4353 1.0124 1.0085 0.4158
0.4164 0.5901 0.9869 0.4576 0.7676 1.0315
1.1176 1.0927 0.4841 0.8544 0.8418 0.7533
6、实验要求
1) 请把数据作为样本,根据 Fisher 选择投影方向 W 的原则,使原样本向量在 该方向上的投影能兼顾类间分布尽可能分开, 类内样本投影尽可能密集的要 求,求出评价投影方向 W 的函数,并在图形表示出来。并在实验报告中表 示出来,并求使 J F ( w) 取极大值的 w* 。用 matlab 完成 Fisher 线性分类器 的设计,程序的语句要求有注释。 2) 根据上述的结果并判断 (1, 1.5, 0.6) (1.2, 1.0, 0.55), (2.0, 0.9, 0.68), (1.2,1.5,0.89), (0.23,2.33,1.43) ,属于哪个类别,并画出数据分类 相应的结果图,要求画出其在 W 上的投影。 3) 回答如下问题,分析一下 W 的比例因子对于 Fisher 判别函数没有影响的原 因。
~ m ~ )2 (m 1 2 J F (W ) ~ 2 ~ S1 S 22
1 W * SW (m1 m2 )
上面的公式是使用 Fisher 准则求最佳法线向量的解,该式比较重要。另外,该式这种
2
形式的运算, 我们称为线性变换, 其中 m1 m2 式一个向量,SW 是 SW 的逆矩阵, 如 m1 m2
*
以上讨论了线性判别函数加权向量 W 的确定方法,并讨论了使 Fisher 准则函数极大的 d 维向量 W

模式识别实验报告(一二)

模式识别实验报告(一二)

信息与通信工程学院模式识别实验报告班级:姓名:学号:日期:2011年12月实验一、Bayes 分类器设计一、实验目的:1.对模式识别有一个初步的理解2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识3.理解二类分类器的设计原理二、实验条件:matlab 软件三、实验原理:最小风险贝叶斯决策可按下列步骤进行: 1)在已知)(i P ω,)(i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==cj iii i i P X P P X P X P 1)()()()()(ωωωωω j=1,…,x2)利用计算出的后验概率及决策表,按下面的公式计算出采取ia ,i=1,…,a 的条件风险∑==cj j jii X P a X a R 1)(),()(ωωλ,i=1,2,…,a3)对(2)中得到的a 个条件风险值)(X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的决策ka ,即()()1,min k i i aR a x R a x ==则ka 就是最小风险贝叶斯决策。

四、实验内容假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。

现有一系列待观察的细胞,其观察值为x :已知先验概率是的曲线如下图:)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果进行分类。

五、实验步骤:1.用matlab 完成分类器的设计,说明文字程序相应语句,子程序有调用过程。

2.根据例子画出后验概率的分布曲线以及分类的结果示意图。

3.最小风险贝叶斯决策,决策表如下:结果,并比较两个结果。

六、实验代码1.最小错误率贝叶斯决策 x=[] pw1=; pw2=; e1=-2; a1=; e2=2;a2=2;m=numel(x); %得到待测细胞个数pw1_x=zeros(1,m); %存放对w1的后验概率矩阵 pw2_x=zeros(1,m); %存放对w2的后验概率矩阵results=zeros(1,m); %存放比较结果矩阵for i = 1:m%计算在w1下的后验概率pw1_x(i)=(pw1*normpdf(x(i),e1,a1))/(pw1*normpdf(x(i),e1,a1)+pw2*normp df(x(i),e2,a2)) ;%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2))/(pw1*normpdf(x(i),e1,a1)+pw2*normp df(x(i),e2,a2)) ;endfor i = 1:mif pw1_x(i)>pw2_x(i) %比较两类后验概率result(i)=0; %正常细胞elseresult(i)=1; %异常细胞endenda=[-5::5]; %取样本点以画图n=numel(a);pw1_plot=zeros(1,n);pw2_plot=zeros(1,n);for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1))/(pw1*normpdf(a(j),e1,a1)+pw2*no rmpdf(a(j),e2,a2));%计算每个样本点对w1的后验概率以画图pw2_plot(j)=(pw2*normpdf(a(j),e2,a2))/(pw1*normpdf(a(j),e1,a1)+pw2*no rmpdf(a(j),e2,a2));endfigure(1);hold onplot(a,pw1_plot,'co',a,pw2_plot,'r-.');for k=1:mif result(k)==0plot(x(k),,'cp'); %正常细胞用五角星表示elseplot(x(k),,'r*'); %异常细胞用*表示end;end;legend('正常细胞后验概率曲线','异常细胞后验概率曲线','正常细胞','异常细胞');xlabel('样本细胞的观察值');ylabel('后验概率');title('后验概率分布曲线');grid onreturn%实验内容仿真:x = [, ,,, , ,, , , ,,,,,,, ,,,,,,, ]disp(x);pw1=;pw2=;[result]=bayes(x,pw1,pw2);2.最小风险贝叶斯决策x=[]pw1=; pw2=;m=numel(x); %得到待测细胞个数R1_x=zeros(1,m); %存放把样本X判为正常细胞所造成的整体损失R2_x=zeros(1,m); %存放把样本X判为异常细胞所造成的整体损失result=zeros(1,m); %存放比较结果e1=-2;a1=;e2=2;a2=2;%类条件概率分布px_w1:(-2,) px_w2(2,4)r11=0;r12=2;r21=4;r22=0;%风险决策表for i=1:m%计算两类风险值R1_x(i)=r11*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*norm pdf(x(i),e2,a2))+r21*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1) +pw2*normpdf(x(i),e2,a2));R2_x(i)=r12*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*norm pdf(x(i),e2,a2))+r22*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1) +pw2*normpdf(x(i),e2,a2));endfor i=1:mif R2_x(i)>R1_x(i) %第二类比第一类风险大result(i)=0; %判为正常细胞(损失较小),用0表示elseresult(i)=1; %判为异常细胞,用1表示endenda=[-5::5] ; %取样本点以画图n=numel(a);R1_plot=zeros(1,n);R2_plot=zeros(1,n);for j=1:nR1_plot(j)=r11*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*n ormpdf(a(j),e2,a2))+r21*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1, a1)+pw2*normpdf(a(j),e2,a2))R2_plot(j)=r12*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*n ormpdf(a(j),e2,a2))+r22*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1, a1)+pw2*normpdf(a(j),e2,a2))%计算各样本点的风险以画图endfigure(1);hold onplot(a,R1_plot,'co',a,R2_plot,'r-.');for k=1:mif result(k)==0plot(x(k),,'cp');%正常细胞用五角星表示elseplot(x(k),,'r*');%异常细胞用*表示end;end;legend('正常细胞','异常细胞','Location','Best');xlabel('细胞分类结果');ylabel('条件风险');title('风险判决曲线');grid onreturn%实验内容仿真:x = [, ,,, , ,, , , ,,,,,,, ,,,,,,, ]disp(x);pw1=;pw2=;[result]=bayes(x,pw1,pw2);七、实验结果1.最小错误率贝叶斯决策后验概率曲线与判决显示在上图中后验概率曲线:带红色虚线曲线是判决为异常细胞的后验概率曲线青色实线曲线是为判为正常细胞的后验概率曲线根据最小错误概率准则,判决结果显示在曲线下方:五角星代表判决为正常细胞,*号代表异常细胞各细胞分类结果(0为判成正常细胞,1为判成异常细胞):0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 12. 最小风险贝叶斯决策风险判决曲线如上图所示:带红色虚线曲线是异常细胞的条件风险曲线;青色圆圈曲线是正常细胞的条件风险曲线根据贝叶斯最小风险判决准则,判决结果显示在曲线下方:五角星代表判决为正常细胞,*号代表异常细胞各细胞分类结果(0为判成正常细胞,1为判成异常细胞):1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1八、实验分析由最小错误率的贝叶斯判决和基于最小风险的贝叶斯判决得出的图形中的分类结果可看出,样本、在前者中被分为“正常细胞”,在后者中被分为“异常细胞”,分类结果完全相反。

模式识别专业实践报告(2篇)

模式识别专业实践报告(2篇)

第1篇一、实践背景与目的随着信息技术的飞速发展,模式识别技术在各个领域得到了广泛应用。

作为人工智能领域的一个重要分支,模式识别技术对于图像处理、语音识别、生物识别等领域的发展具有重要意义。

为了更好地理解和掌握模式识别技术,提高实际应用能力,我们组织了一次为期一个月的模式识别专业实践。

本次实践旨在通过实际操作,加深对模式识别理论知识的理解,提高解决实际问题的能力。

二、实践内容与过程1. 实践内容本次实践主要包括以下几个方面:(1)图像识别:利用深度学习算法进行图像分类、目标检测等。

(2)语音识别:实现语音信号处理、特征提取和识别。

(3)生物识别:研究指纹识别、人脸识别等生物特征识别技术。

(4)模式分类:运用机器学习算法进行数据分类和聚类。

2. 实践过程(1)理论学习:在实践开始前,我们首先对模式识别的基本理论进行了系统学习,包括图像处理、信号处理、机器学习等相关知识。

(2)项目准备:根据实践内容,我们选取了具有代表性的项目进行实践,如基于深度学习的图像识别、基于HMM的语音识别等。

(3)实验设计与实施:在导师的指导下,我们设计了实验方案,包括数据预处理、模型选择、参数调整等。

随后,我们使用Python、C++等编程语言进行实验编程,并对实验结果进行分析。

(4)问题分析与解决:在实验过程中,我们遇到了许多问题,如数据不足、模型效果不佳等。

通过查阅文献、请教导师和团队成员,我们逐步解决了这些问题。

三、实践成果与分析1. 图像识别我们使用卷积神经网络(CNN)对CIFAR-10数据集进行了图像分类实验。

实验结果表明,经过多次迭代优化,模型在测试集上的准确率达到89.5%,优于传统机器学习方法。

2. 语音识别我们采用HMM(隐马尔可夫模型)对TIMIT语音数据集进行了语音识别实验。

实验结果表明,经过特征提取和模型训练,模型在测试集上的词错误率(WER)为16.3%,达到了较好的识别效果。

3. 生物识别我们研究了指纹识别和人脸识别技术。

模式识别实习报告

模式识别实习报告

一、实习背景随着科技的飞速发展,人工智能、机器学习等技术在各个领域得到了广泛应用。

模式识别作为人工智能的一个重要分支,具有广泛的应用前景。

为了更好地了解模式识别技术,提高自己的实践能力,我在2023年暑假期间参加了某科技有限公司的模式识别实习。

二、实习单位简介某科技有限公司是一家专注于人工智能、大数据、云计算等领域的科技创新型企业。

公司致力于为客户提供智能化的解决方案,业务涵盖智能识别、智能监控、智能分析等多个领域。

此次实习,我将在该公司模式识别部门进行实践学习。

三、实习内容1. 实习前期(1)了解模式识别的基本概念、原理和应用领域;(2)熟悉模式识别的相关算法,如神经网络、支持向量机、决策树等;(3)掌握Python编程语言,学会使用TensorFlow、Keras等深度学习框架。

2. 实习中期(1)参与实际项目,负责模式识别算法的设计与实现;(2)与团队成员协作,完成项目需求分析、算法优化和系统测试;(3)撰写项目报告,总结实习过程中的收获与不足。

3. 实习后期(1)总结实习期间的学习成果,撰写实习报告;(2)针对实习过程中遇到的问题,查找资料、请教同事,提高自己的解决问题的能力;(3)为后续实习工作做好充分准备。

四、实习收获与体会1. 理论与实践相结合通过实习,我深刻体会到理论与实践相结合的重要性。

在实习过程中,我将所学的模式识别理论知识运用到实际项目中,提高了自己的动手能力。

同时,通过解决实际问题,我更加深入地理解了模式识别算法的原理和应用。

2. 团队协作能力实习期间,我学会了与团队成员有效沟通、协作。

在项目中,我们共同面对挑战,分工合作,共同完成项目任务。

这使我认识到团队协作的重要性,为今后的工作打下了基础。

3. 解决问题的能力在实习过程中,我遇到了许多问题。

通过查阅资料、请教同事、独立思考等方式,我逐渐学会了如何分析问题、解决问题。

这种能力对我今后的学习和工作具有重要意义。

4. 深度学习框架的使用实习期间,我学会了使用TensorFlow、Keras等深度学习框架。

模式识别实习报告

模式识别实习报告

实习报告一、实习背景及目的随着科技的飞速发展,模式识别技术在众多领域发挥着越来越重要的作用。

模式识别是指对数据进行分类、识别和解释的过程,其应用范围广泛,包括图像处理、语音识别、机器学习等。

为了更好地了解模式识别技术的原理及其在实际应用中的重要性,我参加了本次模式识别实习。

本次实习的主要目的是:1. 学习模式识别的基本原理和方法;2. 掌握模式识别技术在实际应用中的技巧;3. 提高自己的动手实践能力和团队协作能力。

二、实习内容及过程实习期间,我们团队共完成了四个模式识别项目,分别为:手写数字识别、图像分类、语音识别和机器学习。

下面我将分别介绍这四个项目的具体内容和过程。

1. 手写数字识别:手写数字识别是模式识别领域的一个经典项目。

我们使用了MNIST数据集,这是一个包含大量手写数字图片的数据集。

首先,我们对数据集进行预处理,包括归一化、数据清洗等。

然后,我们采用卷积神经网络(CNN)作为模型进行训练,并使用交叉验证法对模型进行评估。

最终,我们得到了一个识别准确率较高的模型。

2. 图像分类:图像分类是模式识别领域的另一个重要应用。

我们选择了CIFAR-10数据集,这是一个包含大量彩色图像的数据集。

与手写数字识别项目类似,我们先对数据集进行预处理,然后采用CNN进行训练。

在模型训练过程中,我们尝试了不同的优化算法和网络结构,以提高模型的性能。

最终,我们得到了一个识别准确率较高的模型。

3. 语音识别:语音识别是模式识别领域的又一项挑战。

我们使用了TIMIT数据集,这是一个包含大量语音样本的数据集。

首先,我们对语音样本进行预处理,包括特征提取、去噪等。

然后,我们采用循环神经网络(RNN)作为模型进行训练。

在模型训练过程中,我们尝试了不同的优化算法和网络结构。

最后,我们通过对模型进行评估,得到了一个较为可靠的语音识别系统。

4. 机器学习:机器学习是模式识别领域的基础。

我们使用了UCI数据集,这是一个包含多个数据集的数据集。

模式识别实验报告贝叶斯分类器

模式识别实验报告贝叶斯分类器

模式识别理论与方法
课程作业实验报告
实验名称:Generating Pattern Classes
实验编号:Proj02-01
规定提交日期:2012年3月30日
实际提交日期:2012年3月24日
摘要:
在熟悉贝叶斯分类器基本原理基础上,通过对比分类特征向量维数差异而导致分类正确率发生的变化,验证了“增加特征向量维数,可以改善分类结果”。

对于类数的先验概率已知、且无须考虑代价函数的情况,贝叶斯分类器相当简单:“跟谁亲近些,就归属哪一类”。

技术论述:
1,贝叶斯分类器基本原理:多数占优,错误率最小,风险最低
在两类中,当先验概率相等时,贝叶斯分类器可以简化如下:
2,增加有效分类特征分量,可以有助于改善分类效果
实验结果讨论:
从实验的过程和结果来看,进一步熟悉了贝叶斯分类器的原理和使用,基本达到了预期目的。

实验结果:
图1 原始数据
图2 按第1 个特征分量分类结果
图3 按第2 个特征分量分类结果
图4 综合两个特征分量分类结果附录:(程序清单,参见压缩包)
%在Matlab 版本2009a 下运行通过。

《模式识别》线性分类器设计实验报告

《模式识别》线性分类器设计实验报告

《模式识别》实验报告三、线性分类器实验1.(a)产生两个都具有200 个二维向量的数据集X1 和X1 ’。

向量的前半部分来自m1=[-5;0]的正态分布,并且S1=I 。

向量的后半部分来自m2=[5;0]的正态分布,并且S1=I。

其中I是一个2×2 的单位矩阵。

(b)在上面产生的数据集上运用Fisher 线性判别、感知器算法和最小平方误差判别算法,需要初始化参数的方法使用不同的初始值。

(c)测试每一种方法在X1 和X1 ’ 上的性能(错误率)。

(d)画出数据集X1 和X1 ’,已经每种方法得到对应参数向量W 的分界线。

Fisher线性判别图1 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数向量w = [-9.9406, 0.9030]’错误率error=0,感知器算法:图2 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=2参数向量w = [-4.8925, 0.0920]’错误率error=0图3 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];迭代次数iter=2参数向量w = [-3.9925, 0.9920]’错误率error=0图4 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10; 10];迭代次数iter=122参数向量w = [-5.6569, 7.8096]’错误率error=0图5 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 50];迭代次数iter=600参数向量w = [-27.0945, 37.4194]’错误率error=0图6 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 100];迭代次数iter=1190参数向量w = [-54.0048, 74.5875]’错误率error=0最小平方误差判别算法:图7 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.1908, -0.0001]’错误率error=0图8 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.1924, 0.1492]’错误率error=0图9 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 0.5];参数向量w = [-0.1914, 0.0564]’错误率error=0图10 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];参数向量w = [-0.1943, 0.3359]’错误率error= 0.00502.重复1.中的实验内容,数据集为X2 和X2 ’。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模式识别实验报告-年月————————————————————————————————作者: ————————————————————————————————日期:学院:班级:姓名:学号:2012年3月实验一 Bay es分类器的设计一、 实验目的:1. 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识;2. 理解二类分类器的设计原理。

二、 实验条件:1. PC 微机一台和MA TL AB 软件。

三、 实验原理:最小风险贝叶斯决策可按下列步骤进行:1. 在已知)(i P ω,)|(i X P ω,c i ,,1 =及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==c j jj i i i P X P P X P X P 1)()|()()|()|(ωωωωω c j ,,1 =2. 利用计算出的后验概率及决策表,按下式计算出采取i α决策的条件风险: ∑==c j j j i i X P X R 1)|(),()|(ωωαλα a i ,,1 =3. 对2中得到的a 个条件风险值)|(X R i α(a i ,,1 =)进行比较,找出使条件风险最小的决策k α,即:)|(min )|(,,1X R X R k c i k αα ==, 则k α就是最小风险贝叶斯决策。

四、 实验内容:(以下例为模板,自己输入实验数据)假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为: 正常状态:)(1ωP =0.9;异常状态:)(2ωP =0.1。

现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532)|(1ωx P )|(2ωx P 类条件概率分布正态分布分别为(-2,0.25)(2,4)。

决策表为011=λ(11λ表示),(j i ωαλ的简写),12λ=6, 21λ=1,22λ=0。

试对观察的结果进行分类。

五、 实验程序及结果:试验程序和曲线如下,分类结果在运行后的主程序中:实验主程序如下:-4-3-2-101234500.10.20.30.40.50.60.70.80.91第一类的后验概率第二类的后验概率ﻬ实验二将此图改为自己的实验结果!基于Fisher 准则的线性分类器设计一、 实验目的:1. 进一步了解分类器的设计概念,能够根据自己的设计对线性分类器有更深刻地认识;2. 理解Fisher 准则方法确定最佳线性分界面方法的原理,以及拉格朗日乘子求解的原理。

二、 实验条件:1. PC 微机一台和MATLAB 软件。

三、 实验原理:设有一个集合包含N 个d 维样本N x x x ,,,21 ,其中1N 个属于1ω类,2N 个属于2ω类。

线性判别函数的一般形式可表示成0)(w x W x g T +=,其中T d w w W ),,(1 =。

根据Fish er 选择投影方向W 的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W 的函数为: WS W W S W W J w T b T F =)( T Wm m S W )(211*-=- 其中:∑==iN j j i i x N m 11 2,1=i j x 为i N 类中的第j 个样本 w S 为类内离散度,定义为:∑∑==--=2111))((i N j T i j j w im x m x Sb S 为类间离散度,定义为:T b m m m m S ))((2121--=上面的公式是使用Fish er准则求最佳法线向量的解,我们称这种形式的运算为线性变换,其中)(21m m -是一个向量,1-W S 是W S 的逆矩阵,如)(21m m -是d维,1-W S 和W S 都是d ×d 维,得到的*W 也是一个d 维的向量。

向量*W 就是使F isher 准则函数)(W J F 达极大值的解,也就是按F ishe r准则将d 维X 空间投影到一维Y 空间的最佳投影方向,该向量*W 的各分量值是对原d 维特征向量求加权和的权值。

以上讨论了线性判别函数加权向量W 的确定方法,并讨论了使Fis he r准则函数极大的d 维向量*W 的计算方法,但是判别函数中的另一项0w 尚未确定,一般可采用以下几种方法确定0w 如2)(21*0m m W w T +-= 或者212211*0)(N N m N m N W w T ++-= 或当)(1ωP 与)(2ωP 已知时可用]2)](/)(ln[2)([212121*0-+-+-=N N P P m m W w T ωω 当0w 确定之后,则可按以下规则分类,ﻫ10*ω∈→->x w X W T20*ω∈→-<x w X W T四、 实验内容:(以下例为模板,自己输入实验数据)已知有两类数据1ω和2ω二者的概率已知)(1ωP =0.6,)(2ωP =0.4。

1ω中数据点的坐标对应一一如下:1x =0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333-0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.51520.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099 1y =2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340 1.8704 2.2948 1.7714 2.3939 1.5648 1.9329 2.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.26041z =0.5338 0.8514 1.0831 0.4164 1.1176 0.5536 0.6071 0.4439 0.4928 0.5901 1.0927 1.07561.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.87840.9751 0.7840 0.4158 1.0315 0.7533 0.9548 2 数据点的对应的三维坐标为:2x =1.4010 1.2301 2.0814 1.1655 1.3740 1.18291.7632 1.97392.4152 2.5890 2.8472 1.95391.2500 1.2864 1.2614 2.00712.1831 1.79091.3322 1.1466 1.7087 1.5920 2.9353 1.46642.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414 2y =1.0298 0.9611 0.9154 1.4901 0.8200 0.93991.1405 1.0678 0.8050 1.2889 1.4601 1.4334 0.7091 1.2942 1.3744 0.9387 1.2266 1.1833 0.8798 0.5592 0.5150 0.9983 0.9120 0.7126 1.2833 1.1029 1.2680 0.7140 1.2446 1.33921.1808 0.5503 1.4708 1.1435 0.7679 1.1288 2z =0.6210 1.3656 0.5498 0.6708 0.8932 1.4342 0.9508 0.7324 0.5784 1.4943 1.0915 0.76441.2159 1.3049 1.1408 0.9398 0.6197 0.66031.3928 1.4084 0.6909 0.8400 0.5381 1.37290.7731 0.7319 1.3439 0.8142 0.9586 0.73790.7548 0.7393 0.6739 0.8651 1.3699 1.1458 数据的样本点分布如下图: -2-101230.511.522.50.511.52根据所得结果判断(1,1.5,0.6)(1.2,1.0,0.55),(2.0,0.9,0.68),(1.2,1.5,0.89),(0.23,2.33,1.43),属于哪个类别,并画出数据分类相应的结果图,要求画出其在W上的投影。

五、实验程序及结果:程序清单:0.511.520.511.522.5-50510第一类第二类0.511.520.511.522.50.511.5第一类第二类将这三个图改为自己的实验结果!0.511.520.511.522.5-5510第一类第二类将平面改为透明后的图形实验总结:w = -0.0798 0.2005 -0.0478W0的值是w0 =-0.1748以下是样本点,和他的类型 x=1.00001.5000 0.6000 t =0.1923此处改为自己的实验数据结果。

相关文档
最新文档