傅里叶级数
傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式

傅里叶级数公式傅里叶级数展开傅里叶级数收敛性的计算公式傅里叶级数公式的计算公式提供了一种将任意周期函数表示为一组正弦和余弦函数的和的方法。
这种表示方法在信号处理、图像处理等领域具有重要应用。
在本文中,将详细介绍傅里叶级数展开和收敛性的计算公式。
一、傅里叶级数展开傅里叶级数展开是将周期为T的函数f(t)表示为一组三角函数的和。
傅里叶级数展开的计算公式如下:f(t) = a0 + Σ (an*cos(nωt) + bn*sin(nωt)),其中a0、an和bn分别为系数,ω为角频率,n为正整数。
根据这个公式,我们可以将任意周期函数表示为一组正弦和余弦函数的和。
傅里叶级数展开的关键是计算系数a0、an和bn,这里不再赘述具体的推导过程。
二、傅里叶级数收敛性的计算公式傅里叶级数的收敛性是指在何种条件下,傅里叶级数能够无限接近原函数f(t)。
傅里叶级数的收敛性可以通过计算系数a0、an和bn来确定。
1. 正弦级数的收敛性对于奇函数,即满足f(-t)=-f(t)的函数,其傅里叶级数只包含正弦函数。
对于奇函数f(t),其傅里叶级数的计算公式为:f(t) = Σ (bn*sin(nωt)),其中bn的计算公式为:bn = (2/T) * ∫[0,T] {f(t)*sin(nωt)} dt。
当函数f(t)满足一定的条件时,傅里叶级数对奇函数收敛。
这些条件包括函数f(t)在一个周期内有有限个有界不连续点,并且在这些点上的左右极限存在。
2. 余弦级数的收敛性对于偶函数,即满足f(-t)=f(t)的函数,其傅里叶级数只包含余弦函数。
对于偶函数f(t),其傅里叶级数的计算公式为:f(t) = a0/2 + Σ (an*cos(nωt)),其中a0和an的计算公式为:a0 = (2/T) * ∫[0,T] {f(t)} dt,an = (2/T) * ∫[0,T] {f(t)*cos(nωt)} dt。
同样地,当函数f(t)满足一定的条件时,傅里叶级数对偶函数收敛。
傅里叶级数

− 2
n
T 2
= bn ∫ T sin nωt d t
2
− 2
T 2
2 即 bn = T
T = bn 2
∫
T 2
T − 2
fT ( t )sin nω t d t
最后可得:
a0 fT (t) = + ∑(an cos mωt + bn sin nωt) (1.1) 2 n=1 T 2 2 其 中 a0 = ∫ T fT (t) dt T −2 T 2 2 an = ∫T fT (t) cos nωt dt (n =1,2,L ) T −2 T 2 2 bn = ∫T fT (t) sin nωt dt (n =1,2,L ) T −2
1= 12 dt = T ∫T
− 2 T 2 T 2 T 2
1+ cos 2nωt T cos nωt = ∫T cos nωt dt = ∫T dt = − − 2 2 2 2
2
1− cos 2nωt T sin nωt = ∫T sin nωt dt = ∫T dt = − − 2 2 2 2
T 2
f4 (t) =
n=−∞
∑ f (t + 4n),
+∞
2π 2π π nπ = = , ωn = nω = ω= T 4 2 2
f4(t)
−1
T=4
1
3
t
则
1 T 2 − jωnt cn = ∫ T fT (t )e dt T −2 1 2 1 1 − jωnt − jωnt = ∫ f4 (t )e dt = ∫ e dt T −2 T −1 1 1 1 − jωnt jωn − jωn = e = e −e −Tjωn Tjωn −1 2 sinωn 1 = ⋅ Sa(ωn ) (n = 0, ±1, ±2,L ) T =4 = T ωn 2
《傅里叶级数》课件

FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。
什么是傅里叶傅里叶级数和傅里叶变换,并说明两者的区别与联系

什么是傅里叶级数和傅里叶变换,两者的区别与联系傅里叶级数和傅里叶变换都是将信号从时域转换到频域的数学工具。
傅里叶级数:傅里叶级数是针对周期函数的,它用一组正交函数将周期信号表示出来。
具体来说,所有周期信号都可以分解为不同频率的各次谐波分量。
这意味着周期波都可分解为n次谐波之和。
傅里叶变换:傅里叶变换则是用来处理非周期函数的,它可以用一组正交函数将非周期信号表示出来。
与傅里叶级数不同的是,非周期信号可以看作不同频率的余弦分量叠加,其中频率分量可以是从0到无穷大任意频率,而不是像傅里叶级数一样由离散的频率分量组成。
傅里叶级数和傅里叶变换都是数学工具,用于将信号从时域转换到频域。
但它们之间存在明显的区别和联系:1. 本质不同:傅里叶级数是周期信号的另一种时域表达方式,可以看作是正交级数,即不同频率的波形的叠加。
而傅里叶变换是完全的频域分析,它可以将非周期信号转换为频域表示。
简而言之,傅里叶级数是用一组正交函数将周期信号表示出来,而傅里叶变换是用一组正交函数将非周期信号表示出来。
2. 适用范围不同:傅里叶级数主要适用于对周期性现象做数学上的分析。
而傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。
3. 周期性不同:傅里叶级数是一种周期变换,它以三角函数为基对周期信号的无穷级数展开。
而傅里叶变换是一种非周期变换,它可以将非周期信号转换为频域表示。
4. 联系:傅里叶级数可以视作傅里叶变换的特例。
当周期信号的周期趋于无穷大时,傅里叶级数可以取极限得到傅里叶变换。
此外,无论是傅里叶级数还是傅里叶变换,都是为了将信号从时域转到频域。
傅里叶级数和傅里叶变换都是强大的数学工具,用于分析和处理信号,但它们的应用范围和性质有所不同。
傅里叶数的定义式

傅里叶数的定义式
傅里叶级数是一种非常重要的数学概念,它能准确描述事物的细微特征,一般
用来表达平滑的自变量函数。
傅里叶数,是指任意一个实函数f(x),当它可以展
开成一系列正弦函数和余弦函数的无穷级数形式,即
f(x) = a_0 + \sum_{k=1}^{\infty}\left(a_k \cos kx+b_k\sin kx \right),
称为这个函数的Fourier级数。
a_0为常数项,a_k和b_k称为系数,用来表
示正弦函数和余弦函数的幅度,k称为频率,表示周期的数量。
它不仅能准确的表
示出一个函数及它的特征,而且具有十分优美的美学感受。
傅里叶级数的准确度在各个研究领域都有着广泛的运用,在科学技术上准确性、廉价性、可靠性和多领域性都是值得它被广泛使用的补充。
比如经典力学1中引入了不惯性系统的分析和计算,2亚贝拉计算可以通过傅里叶级数来实现,有着重要
的创新意义;从基本物理装潢到地理、几何图形等,甚至医学诊断都是它的可实现的应用场景。
此外,傅立叶级数的可容纳量大,内容全面,支持大幅度计算,准确率高,可以作为大量、复杂功能的基础性计算工具。
总之,傅里叶级数是一种重要的数学概念,无论从准确性、廉价性、可靠性和
多领域性来讲,它都可以作为一种用于研究各种函数的表征。
它的实用性已经被成功的应用在科学计算领域,推荐给更多的读者快速和有效的理解、掌握傅里叶级数,发展自己的专业特长,让这种数学概念在我们的实践中实现更大的潜力。
傅里叶级数

∫πcos nxdx = 0,
π
π
∫πsin nxdx = 0,
π
( n = 1,2,3,L)
0, m ≠ n ∫ πsin mx sin nxdx = π, m = n, 0, m ≠ n ∫ πcos mx cos nxdx = π, m = n,
π
∫π
π
sin mx cos nxdx = 0.
右端级数收敛吗?若收敛是否收敛于 右端级数收敛吗?若收敛是否收敛于f(x)?
f ( x)在 a, b]光滑: f ′( x )在[a , b]连续. [ 光滑: 连续. f ( x)在 a, b]按段光滑: [ 按段光滑:
f ( x )在[a , b]有定义,且至多有有限 个第一类 有定义, 间断点, 间断点, f ′( x )在 [a , b] 除有限个点外有定义且 连续,在这有限个点上 f ′( x ) 左右极限存在. 左右极限存在. 连续,
第, 古今往来,众多数学家一直在寻找用简单函数较好 地近似代替复杂函数的途径,除了理论上的需要外, 地近似代替复杂函数的途径,除了理论上的需要外, 它对实际应用的领域的意义更是不可估量. 它对实际应用的领域的意义更是不可估量. 在微积分发明之前,这个问题一直没有本质上的 在微积分发明之前, 突破. 突破. 熟知的简单函数:幂函数,三角函数. 熟知的简单函数:幂函数,三角函数.
π π
1 π bn = ∫π f ( x)sinnxdx π
( n = 1,2,3,L)
f(x)的傅里叶系数 的傅里叶系数
1 π ) an = π ∫π f ( x)cos nxdx, (n = 0,1,2,L 1 π bn = ∫π f ( x)sinnxdx, (n = 1,2,L) π 1 2π ) an = π ∫0 f ( x)cos nxdx, (n = 0,1,2,L 或 2 bn = 1 π f ( x)sin nxdx, (n = 1,2,L ) ∫0 π
《傅里叶级数》课件

傅里叶系数: a_n和b_n,可 以通过积分计算 得到
傅里叶级数的收 敛性:对于满足 一定条件的函数, 傅里叶级数收敛 于该函数
傅里叶级数的计算步骤
傅里叶级数的计算实例
实例:计算正弦函数的傅里 叶级数
计算步骤:确定周期、确定 频率、确定振幅、确定相位
傅里叶级数的定义:将周期函 数分解为无穷多个正弦和余弦 函数的和
傅里叶级数未来的研究方向与挑战
傅里叶级数的快速算法研究 傅里叶级数的应用领域拓展 傅里叶级数的理论研究与证明 傅里叶级数的计算复杂性与优化
感谢您的观看
汇报人:PPT
实例:计算余弦函数的傅里 叶级数
实例:计算三角函数的傅里 叶级数
实例:计算复杂函数的傅里 叶级数
傅里叶级数的应 用实例
信号处理中的应用
滤波器设计:傅里叶级数可以用于设计各种滤波器,如低通滤波器、高通滤波器等。 信号分析:傅里叶级数可以用于分析信号的频率成分,如分析信号的频谱、功率谱 等。
信号处理:傅里叶级数可以用于处理信号,如信号的压缩、增强、去噪等。
傅里叶级数的周期性
傅里叶级数是一种周期函数 周期性是傅里叶级数的基本性质之一 周期性是指函数在一定区间内重复出现 周期性是傅里叶级数在信号处理、图像处理等领域里叶级数的展开式
傅里叶级数的定 义:将周期函数 分解为无穷多个 正弦函数和余弦 函数的线性组合
傅里叶级数的展 开式:f(x) = a_0 + Σ[a_n * cos(nωx) + b_n * sin(nωx)]
数值分析中的应用
傅里叶级数在信号处理中的应用 傅里叶级数在图像处理中的应用 傅里叶级数在音频处理中的应用 傅里叶级数在金融数据分析中的应用
其他应用领域
傅里叶级数

2. 三角级数的一般形式
一般的三角级数为
取 1, 由于
A A i n ( n x ) 0 ns n
n 1
s i n c o s n x c o s s i n n x s i n ( n x ) n n n
a0 设 A0 , 2
A s i n a , A c o s b n n n n n n
最简单的周期运动,可用正弦函数
y A s i n ( x )
( 1 )
来描写。 由(1)所表达的周期运动称为简谐振动
初 相 角 , 其 中 A 振 幅 , 角 频 率 ,
简谐振动(1)的周期为
2 T
对于较为复杂的周期运动,常可以用几个 简谐振动
f ( x )cos nxdx ,
1
n0,1,2,
f ( x )sin nxdx
1
, n 1 , 2 ,
2. Fourier系数和Fourier级数 Euler―Fourier公式:
如 f 是以2 为周期 的函数 , 则
可换为
c 2
c
设函数 f ( x ) 在区间[ , ] 上可积,称公式
1 , s i n k x sinkxdx 0 ,
k 1 , 2 , ;
k , h 1 , 2 ,
s i n k x c o s h x d x s i n, k x c o s h x 1 s i n ( kh ) x s i n ( kh ) x d x 0, 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.5 傅里叶级数9.5.1 三角级数 三角函数系的正交性在自然界和工程技术中周期现象是经常出现的,如振动、电磁波等,当用函数来描述这些现象时出现的就是周期函数.描述简谐振动的正弦函数)sin(ϕω+=t A y 是一种简单而又为人们所熟悉的周期函数,其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相.周期为ωπ2.现在类似于将函数展开成幂级数,我们也想将周期函数展开成由简单的三角函数组成的级数.具体的说,希望将以⎪⎭⎫⎝⎛=ωπ2T 的周期函数)(t f 表示为∑∞=++=10),sin()(n n nt n AA t f ϕω(1)其中),3,2,1(,,0 =n A A n n ϕ都是常数. 在利用三角恒等式,变形为∑∞=++=10);sin cos cos sin ()(n n n n nt n A t n AA t f ωϕωϕ令x t A b A a A a n n n n n n ====ωϕϕ,cos ,sin ,200,则得到级数∑∞=++10).sin cos (2n n nnx b nx aa(2)称(2)式的级数为三角级数,其中),3,2,1(,,0 =n b a a n n 都是常数.称三角函数系 ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x(3)在区间],[ππ-上正交,就是指在三角函数系(3)中任何不同的两个函数的乘积在区间],[ππ-上的积分等于零,即⎰-==ππ),3,2,1(0cos n nxdx, ⎰-==ππ),3,2,1(0sin n nxdx, ⎰-==ππ),3,2,1,(0cos sin n k nxdxkx ,⎰-≠==ππ),,3,2,1,(0cos cos n k n k nxdxkx ,⎰-≠==ππ),,3,2,1,(0sin sin n k n k nxdxkx .,2),3,2,1(cos,sin222πππππππππ⎰⎰⎰---====dx n nxdx nxdx 19.5.2 以2π为周期的函数的傅里叶级数设)(x f 是周期为π2的周期函数,且能展开成三角级数:∑∞=++=10).sin cos (2)(n k kkx b kx aa x f(4)我们进一步假设级数(4)可以逐项积分.在此假设条件下我们讨论 ,,,,,,,1100n n b a b a b a 与)(x f 的关系. 由三角函数系的正交性,有0022)(a a dx x f ππππ=⋅=⎰-即得.)(10⎰-=πππdx x f a以nx cos 乘(4)两端,再从π-到π逐项积分,同样由三角函数系的正交性我们得到,,2,1,cos )( ==⎰-n a nxdx x f n πππ即,,2,1,cos )(1==⎰-n nxdx x f a n πππ同理可得,,2,1,sin )(1==⎰-n nxdx x f b n πππ由于当0=n 时,n a 的表达式正好给出0a ,因此,已得结果可以合并写成⎪⎪⎩⎪⎪⎨⎧====⎰⎰--,,2,1,sin )(1,,2,1,0,cos )(1 n nxdx x f b n nxdx x f a n n ππππππ(5)这样,不论)(x f 能否表示为三角函数,只要)(x f 在]-ππ,[上可积,就可按公式(5)计算出n a 和n b ,称n a 和n b 为函数)(x f 的傅里叶(Fourier)系数,将这些系数代入(4)式右端,所得的三角级数∑∞=++10).sin cos (2n n nnx b nx aa(6)叫做函数)(x f 的傅里叶级数. 那么,)(x f 在怎样的条件下,它的傅里叶级数不仅收敛,而且收敛于)(x f ?定理(收敛定理,狄利克雷(Dirichlet)充分条件) 设)(x f 是周期为π2的周期函数,如果它满足:(1) 在一个周期内连续或只有有限个第一类间断点, (2) 在一个周期内至多只有有限个极值点, 则)(x f 的傅里叶级数收敛,并且 当x 是)(x f 的连续点时,级数收敛于)(x f ;当x 是)(x f 的间断点时,级数收敛于)]()([21+-+x f x f .⎭⎬⎫⎩⎨⎧+==+-)]()([21)(|x f x f x f x C ,在C 上就成立)(x f 的傅里叶级数展开式)(x f =∑∞=++10)sin cos (2n n nnx b nx aa ,.C x ∈(7)例1 设)(x f 是周期为π2的周期函数,它在),[ππ-上的表达式为⎩⎨⎧<≤<≤--=.0,1,0,1)(ππx x x f将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件,它在点),2,1,0( ±±==k k x π处不连续,在其他点处连续,从而由收敛定理知道)(x f 的傅里叶级数收敛,并且当πk x =时级数收敛于,0211=+-当πk x ≠时级数收敛于)(x f .和函数的图形如图9-1所示图9-1计算傅里叶级数如下:⎪⎩⎪⎨⎧===--=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=⋅+-====⋅+-==-----⎰⎰⎰⎰⎰⎰.,6,4,2,0,,5,3,1,4])1(1[1cos 1cos 1sin 11sin)1(1sin )(1);,2,1,0(0cos 11cos )1(1cos )(10000n n n n n nx x nx nxdxnxdx nxdxx f b n nxdxnxdx nxdx x f a nn n ππππππππππππππππππππ将求得的系数代入(7)式,就得到)(x f 的傅里叶级数的展开式为).,2,.0;()12sin(1213sin 31sin 4)( πππ±±≠+∞<<-∞⎥⎦⎤⎢⎣⎡+--++=x x x k k x x x f 例2 设)(x f 是周期为π2的周期函数,它在],[ππ-上的表达式为⎩⎨⎧<≤<≤-=.0,0,0,)(ππx x x x f将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件,它在点),2,1,0()12( ±±=+=k k x π处不连续,在其他点处连续,从而由收敛定理知道)(x f 的傅里叶级数收敛,并且当π)12(+=k x 时级数收敛于.2202)()(ππππ-=-=-++-f f在连续点))12((π+≠k x x 处收敛于)(x f .和函数的图形如图9-2所示.图9-2⎪⎩⎪⎨⎧===-=⎥⎦⎤⎢⎣⎡+===---⎰⎰;,6,4,2,0,,5,3,1,2)cos 1(1cos sin 1cos 1cos )(12220n n n n n n nx n nx x nxdxx nxdx x f a n ππππππππππ;2211)(120ππππππππ-=⎥⎦⎤⎢⎣⎡===---⎰⎰x xdx dx x f a.)1(cos sin cos 1sin1sin )(1120nnn n nx n nx x nxdxx nxdx x f b n n +----=-=⎥⎦⎤⎢⎣⎡+-===⎰⎰ππππππππ将求得的系数代入(7)式,得到)(x f 的傅里叶级数展开式为).,3,;(5sin 515cos 524sin 413sin 313cos 322sin 21sin cos 24)(22 ππππππ±±≠+∞<<-∞-⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-=x x x x x x x x x x x f如果函数)(x f 只定义在],[ππ-且满足收敛定理的条件,则)(x f 也可以展开成傅里叶级数,只要在),[ππ-或],(ππ-外补充函数的定义,使它拓广成周期为π2的周期函数)(x F .按这种方式拓广函数的定义域的过程称为周期延拓.再将)(x F 展开成傅里叶级数.最后限制x 在),(ππ-内,此时)()(x f x F ≡,这样便得到)(x f 的傅里叶级数展开式.根据收敛定理,这级数在区间端点π±=x 处收敛于2)()(+-+ππf f .例3 将函数⎩⎨⎧≤≤<≤--=ππx x x x x f 0,,0,)(展开成傅里叶级数.解 所给函数在区间],[ππ-上满足收敛定理的条件,并且拓广成周期函数时,它在每一点x 处都连续(图9-3),因此拓广的周期函数的傅里叶级数在],[ππ-上收敛于)(x f .πππππππππππ2020cos sin 1cos sin 1cos 1cos )(1cos )(1⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+-=+-==---⎰⎰⎰n nx n nx x n nx n nx x nxdxx nxdx x nxdx x f a n⎪⎩⎪⎨⎧==-=-=;,6,4,2,0,,5,3,1,4)1(c o s 222n n n n n πππ图9-3 ;21211)(1)(12200ππππππππππππ=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=+-==---⎰⎰⎰x x xdxdx x dx x f a).,3,2,1(0sin cos 1sin cos 1sin 1sin)(1sin )(120200 ==⎥⎦⎤⎢⎣⎡+-+⎥⎦⎤⎢⎣⎡+--=+-==---⎰⎰⎰n n nx n nxx n nx n nx x nxdxx nxdx x nxdxx f b n πππππππππππ将求得的系数代入(6)式,得到)(x f 的傅里叶级数展开式为)(5cos 513cos 31cos 2)(22ππππ≤≤-⎪⎭⎫ ⎝⎛+++4-=x x x x x f .利用这个展开式,我们可以求出几个特殊级数的和.当0=x 时,0)0(=f ,于是又这个展开式得出.513118222+++=π设,4131211222++++=σ,4131211,614121,851311222322222221 +-+-=+++=⎪⎪⎭⎫⎝⎛=+++=σσπσ因为.44212σσσσ+==所以.243212πσσ==,624822221πππσσσ=+=+=又.1264222213πππσσσ=-=-=正弦级数和余弦级数当)(x f 为奇函数时,nx x f cos )(是奇函数,nx x f sin )(是偶函数,故).,3,2,1(sin )(2),,2,1,0(0====⎰n nxdxx f b n a n n ππ(8)即知奇函数的傅里叶级数是只含有正弦项的正弦级数.sin 1∑∞=n nnx b(9)当)(x f 为偶函数时,nx x f cos )(是偶函数,nx x f sin )(是奇函数,故).,3,2,1(0),,2,1,0(cos )(2====⎰n b n nxdx x f a n n ππ(10)即知偶函数的傅里叶级数是只含有余弦项的余弦级数.cos 210∑∞=+n nnx ba (11)例 4 设)(x f 是周期为π2的周期函数,它在),[ππ-上的表达式为x x f =)(.将)(x f 展开成傅里叶级数. 解 首先所给函数满足收敛定理的条件,它在点),2,1,0()12( ±±=+=k k x π处不连续,因此)(x f 的傅里叶级数在点π)12(+=k x 处收敛于,02)(2)()(=-+=-++-ππππf f在连续点))12((π+≠k x x 处收敛于)(x f .和函数的图形如图9-4所示图9-4其次若不计),2,1,0()12( ±±=+=k k x π,则)(x f 是周期为π2的奇函数.显然,此时(8)式仍成立.按公式(8)有),2,1,0(0 ==n a n ,而ππππππ20sin cos sin sin )(⎥⎦⎤⎢⎣⎡+-2=2=2=⎰⎰n nx n nx x nxdxx nxdx x f b n).,3,2,1()1(2cos 21=-=-=+n n n nn π将求得的n b 代入正弦级数(9),得)(x f 的傅里叶级数展开式为).,3,;(sin )1(3sin 312sin 21sin 2)(1ππ±±≠∞<<-∞⎪⎪⎭⎫ ⎝⎛+-+-+-=+x x nx n x x x x f n 对于定义在区间],0[π上并且满足收敛定理的条件的函数)(x f ,我们在开区间)0,(π-内补充函数)(x f 的定义,得到定义在],(ππ-上的函数)(x F ,使它在),(ππ-上成为奇函数(偶函数).按这种方式拓广函数定义域的过程称为奇延拓(偶延拓).然后将奇延拓(偶延拓)后的函数展开成傅里叶级数,这个级数必定是正弦级数(余弦级数).再限制x 在],0(π上,此时)()(x f x F ≡,这样便得到)(x f 的正弦级数(余弦级数)展开式.例6 将函数1)(+=x x f )0(π≤≤x 分别展开成正弦级数和余弦级数.解 先求正弦级数.为此对函数)(x f 进行奇延拓(图9-5).按公式(8)有图9-5 图9-6⎪⎪⎩⎪⎪⎨⎧=-=+⋅=+-=⎥⎦⎤⎢⎣⎡++-=+==⎰⎰.,6,4,2,2,,5,3,1,22)cos )1(1(2sin cos )1(2sin )1(2sin )(220n nn nn n n nx n nx x nxdxx nxdx x f b n πππππππππππ将求得的n b 代入正弦级数(9),得⎥⎦⎤⎢⎣⎡+-++-+=+ x x x x x 4sin 43sin )2(312sin 2sin )2(21πππππ)0(π<<x 在端点0=x 及π=x 处,级数的和显然为零,它不代表原来函数)(x f 的值.再求余弦级数,为此对对函数)(x f 进行偶延拓(图9-6).按公式(10)有⎪⎩⎪⎨⎧=-==-=⎥⎦⎤⎢⎣⎡++=+=⎰.,5,3,1,4,,6,4,2,0)1(cos 2cos sin )1(2cos )1(22230n n n n n n nx n nx x nxdxx a n πππππππ222)1(220+=⎥⎦⎤⎢⎣⎡+=+=⎰πππππx xdx x a ;将求得的n a 代入余弦级数(11),得⎪⎭⎫⎝⎛+++-+=+ x x x x 5cos 513cos 31cos 412122ππ)0(π≤≤x .9.5.3 周期为l 2的周期函数的傅里叶级数定理 设周期为l 2的周期函数)(x f 满足收敛定理的条件,则它的傅里叶级数展开式为∑∞=∈⎪⎭⎫ ⎝⎛++=10)(,sin cos 2)(n nn C x l x n b l x n a a x f ππ (1)其中⎪⎪⎭⎪⎪⎬⎫====⎰⎰--).,3,2,1(sin )(1),2,1,0(cos)(1lln ll n n dx l xn x f lb n dx lxn x f l a ππ(2))]}()([21)(|{+-+==x f x f x f x C当)(x f 为奇函数时,∑∞=∈=1),(sin)(n n C x lx n b x f π (3)其中).,3,2,1(sin)(20⎰==l n n dx lx n x f lb π (4)当)(x f 为偶函数时,∑∞=∈+=10),(cos2)(n n C x lx n a a x f π (5)其中).,2,1,0(cos)(20⎰==l n n dx lx n x f la π (6)证 作变量代换lxz π=,于是区间l x l ≤≤-就变换成ππ≤≤-z .设函数)()()(z F lzf x f ==π,从而)(z F 是周期为π2的周期函数,并且它满足收敛定理的条件,将)(z F 展开成傅里叶级数:∑∞=++=10),sin cos (2)(n n nnz b nz aa z F 其中.sin)(1,cos )(1⎰⎰--==ππππππnzdz z F b nzdz z F a n n在以上式子中令lxz π=,并注意到)()(x f z F =,于是有∑∞=⎪⎭⎫ ⎝⎛++=10,sin cos 2)(n nn l x n b l x n a a x f ππ 而且⎰⎰--==lln lln dx lx n x f lb dx lx n x f la ππsin)(1,cos)(1.类似地,可以证明定理的其余部分.例7 设)(x f 是周期为4的周期函数,它在)2,2[-上的表达式为⎩⎨⎧<≤<≤-=20,,02,0)(x k x x f (常数).0≠k将)(x f 展开成傅里叶级数.解 这时2=l ,按公式(2)有;21021);0(02sin 2cos 2120202020k kdx dx a n x n n kdx xn k a n =+=≠=⎥⎦⎤⎢⎣⎡==⎰⎰⎰-πππ⎪⎩⎪⎨⎧===-=⎥⎦⎤⎢⎣⎡-==⎰.,6,4,2,0,,5,3,1,2)cos 1(2cos 2sin21220n n n kn n k x n n k dx xn k b n ππππππ 将求得的系数n n b a ,代入(1)式,得.25sin 5123sin 312sin22)(⎪⎭⎫⎝⎛++++= x x x k k x f ππππ ),4,2,0;( ±±≠+∞<<-∞x x)(x f 的傅里叶级数的和函数的图形如图9-7所示.图9-79.5.4 在[-l , l ]上有定义的函数的傅里叶展开定义在[-l , l ]上的函数f (x ),可以通过延拓而成为一个在数轴上有对于的一个以2l 为周期的函数F (x ),从而可以展开成傅立叶级数,然后再将自变量限制回(-l , l ),即得f (x )的傅立叶展开式。