探索性因子分析
探索性因子分析

因子分析对于潜在变量的定义与估计,有一个重要
的方法学原则,称为简约原则(principle of parsimony)。简约有结构简约和模型简约双重涵 义,前者指观察变量与潜在变量之间具有最简化的 结构特性,后者指最简单的模型应被视为最佳模型。 测验所得的最佳化因子结构,称之为简化结构 (simple structure),是因子分析的最重要的基 本原则。
表3 KMO统计量的判断原理
KMO统计量 .90以上 .80以上 .70以上 .60以上 .50以上
.50以下
因子分析适切性 判别说明
极佳的(Perfect) 极适合进行因子分析(Marvelous)
良好的(Meritorious) 适合进行因子分析(Meritorious)
适中的(Middling) 尚可进行因子分析(Middling)
2 21
2 31
)
3
F2(公共因子二)
12 22 32
2 12
2 22
2 32
( 122
2 22
2 32
)
3
共同性C 特殊因子U
2 11
2 12
2 21
2 22
2 31
2 32
1 C1 1C2 1 C3
三、因子分析的几个关键问题
(二) 因子与共变结构
因子分析所处理的材料是观察变量之间的共变,亦 即利用数学原理来抽离一组观察变量之间的公共变 异成分,然后利用这个公共变异成分来反推这些变 量与此一公共部分的关系。
如有一组观察变量,以X表示,第i与第j个观察变量
探索性因子分析

• Example
• 旋转后的因子表达式可以写成:
FA1C 10.091po'p0.392sch'o0o.0l39emp' l 0.299serv'ic0.4es03hou' se FA2C 10.484po'p0.096sch'o0o.4l65emp' lo 0.138serv'ic0.0es98hou' se
• 因子旋转通常分为两类:
正交旋转
Varimax方差最大旋转,它使每个因子上的具有 最高载荷的变量数最小,可简化对因子的解释。
斜交旋转
因子旋转(二)
• 正交旋转的基本假定是,因子分析中被提 取出来的因子之间是相互独立的,因子间 并不相关。它的目的是要获得因子的简单 结构,即使每个变量在尽可能少的因子上 有较高的负载;而斜交旋转中,因子间的夹 角是任意的,也就是说斜交旋转对因子间 是否相关并无限定,这种因子旋转的结果 就会使各因子所解释的变量的方差出现一 定程度的重叠。
估计因子得分的方法
回归法
因子得分的均值为0,方差等于估计因子 得分与实际得分之间的多元相关的平方
Bartlett法
因子得分均值为0,超出变量范围的特殊 因子平方和被最小化
Anderson-Rubin法
因子得分的均值为0,标准差为1,且彼此 不相关。是为了保证因子的正交性而对 Bartlett因子的调整。
公因子的累积方差贡献率
根据累计贡献率达到的百分比确定
确定因子个数的方法(二)
• 实际上累积贡献率是一个次要指标 。主要指标是特征值, 在前一指标达 到的情况下,只要累计贡献率不是 太差都可以接受。即使70%也不是 太大的问题。实际处理中,很少碰 到累计贡献率太低的情况,如果问 卷设计和数据收集没有太大问题的 前提下。
探索性因子分析法.doc

探索性因子分析法(Exploratory Factor Analysis,EFA)目录[隐藏]∙ 1 什么是探索性因子分析法?∙ 2 探索性因子分析法的起源∙ 3 探索性因子分析法的计算∙ 4 探索性因子分析法的运用∙ 5 探索性因子分析法的步骤∙ 6 探索性因子分析法的优点∙7 探索性因子分析法的缺点∙8 探索性因子分析法的假定∙9 EFA在教育、心理领域存在的问题及建议[1]∙10 参考文献[编辑]什么是探索性因子分析法?探索性因子分析法(Exploratory Factor Analysis,EFA)是一项用来找出多元观测变量的本质结构、并进行处理降维的技术。
因而,EFA能够将将具有错综复杂关系的变量综合为少数几个核心因子。
[编辑]探索性因子分析法的起源因子分析法是两种分析形式的统一体,即验证性分析和纯粹的探索性分析。
英国的心理学家Charles Spearman在1904年的时候,提出单一化的智能因子(A Single Intellectual Factor)。
随着试验的深入,大量个体样本被分析研究,Spearman的单一智能因子理论被证明是不充分的。
同时,人们认识到有必要考虑多元因子。
20世纪30年代,瑞典心理学家Thurstone打破了流行的单因理论假设,大胆提出了多元因子分析(Multiple Factor Analysis)理论。
Thurstone 在他的《心智向量》(Vectors of Mind, 1935)一书中,阐述了多元因子分析理论的数学和逻辑基础。
[编辑]探索性因子分析法的计算在运用EFA法的时候,可以借助统计软件(如SPSS统计软件或SAS统计软件)来进行数据分析。
[编辑]探索性因子分析法的运用1、顾客满意度调查。
2、服务质量调查。
3、个性测试。
4、形象调查。
5、市场划分识别。
6、顾客、产品及行为分类。
[编辑]探索性因子分析法的步骤一个典型的EFA流程如下:1、辨认、收集观测变量。
探索性因子分析课件

探索性因子分析的理论假设
主要包括: ①所有的公共因子都相关(或都不相关); ②所有的公共因子都直接影响所有的观测变量; ③特殊(唯一性)因子之间相互独立; ④所有观测变量只受一个特殊(唯一性)因子的影响; ⑤公共因子与特殊因子(唯一性)相互独立。
探索性因子分析
探索性因子分析基本原理
探索性因子分析模型的一般表达式为
其中,Xn表示观测变量,FM代表公因子,它 是各个观测变量所共有的因子,解释变量之间的 相关;Un代表特殊因子,它是每个观测变量所特 有的因子,只对一个原始变量起作用;WM代表因 子载荷,是每个变量在公因子上的相关系数;而 en代表了每一观测变量的随机误差。
探索性因子分析
探索性因子分析
因子得分
• 因子得分就是每个观测量的公共因子的值。根 据因子得分系数和原始变量的标准化值,可以 计算每个观测量的各因子的得分数,并可以据 此对观测量进行进一步的分析。
• 计算因子得分的基本思想是将因子变量表现为 原有变量的线性组合,即通过以下的因子得分 函数计算:
F x x x x j
探索性因子分析
确定因子个数的方法(三)
➢碎石图 碎石图是按特征值大小排列因子,横轴表示因子序号,纵轴表 示特征值大小。
探索性因子分析
公因子提取方法
➢主成分分析法
假设变量是因子的纯线性组合,第一成分 有较大的方差,后续成分其可解释的方差 逐个递减。
➢最大似然法
该方法不要求多元正态分布,给出参数估 计。
j11 j22 jຫໍສະໝຸດ 3(j=1,2···p)
jp p
探索性因子分析
估计因子得分的方法
➢回归法 因子得分的均值为0,方差等于估计因子 得分与实际得分之间的多元相关的平方
SPSS探索性因子分析的过程

SPSS探索性因子分析的过程探索性因子分析(Exploratory Factor Analysis,EFA)是一种统计方法,旨在帮助研究者理解和解释大量变量之间的关系。
它可以用于数据降维、信度分析和测量模型构建等多种研究目的。
以下是SPSS中进行探索性因子分析的详细步骤:1.数据准备:-打开SPSS软件,并导入数据文件。
-确保数据变量符合连续性或有序性测量标准。
如果存在分类变量,需要进行变量转换,如使用哑变量编码。
2.确定分析目的和因变量:-确定研究目的,明确是否要进行因子分析以及预期得到的结果。
-选择用于分析的变量,这些变量应当在理论上与研究目的相关,并且在实践中已经得到应用。
3.进行初始的探索性因子分析:-在「分析」菜单中选择「数据降维」,然后选择「因子」。
-从左侧的变量列表中选择需要进行因子分析的变量,将其添加到右侧的「因子分析」框中。
-在「提取」选项卡中,选择提取的因子数量。
通常,可以通过解释方差方法选择大于1的特征根值,或者根据理论确定因子数量。
-点击「列表」按钮,查看提取出的因子信息,包括特征根值、解释方差和因子载荷。
根据因子载荷大小判断变量与因子之间的关系。
4.进行旋转:-在「提取」选项卡中,点击「旋转」按钮。
- 在旋转选项卡中,选择旋转方法。
常用的旋转方法包括方差最大化(Varimax)、直角旋转(Orthogonal rotation)和斜交旋转(Oblique rotation)。
-点击「列表」按钮,查看旋转后的因子载荷。
选择合适的旋转结果,以使因子载荷更加清晰和解释性更好。
5.进行因子得分估计:-在主对话框中,点击「因子得分」选项卡。
-选择要估计的因子得分的方法。
可选择「最大似然估计」或「预测指标法」。
-点击「存储因子得分」复选框,以将因子得分保存到数据文件中。
-点击「OK」按钮进行分析。
6.结果解读:-分析结果包括提取的因子信息、旋转后的因子载荷、因子得分和信度分析等。
-根据因子载荷和理论知识,解释每个因子代表的潜在构念。
探索性因子分析法

探索性因子分析法探索性因子分析(ExploratoryFactorAnalysis,简称EFA)是指使用相关分析的统计方法,旨在通过对一组变量之间的相关性来建立一个较小的变量集合,这些变量可以有效地表明以前未知的变量之间的相关性以及它们之间的潜在关系。
这个方法最初是由巴斯等人提出的,但现在已经成为一种常用的统计技术。
它已经广泛用于衡量政策,心理学和社会研究中的素质。
这种分析方法的基本思想是研究一组变量之间的相关性,以确定低级变量的几个组合,即因子。
这些因子可以用来解释变量之间的关系,以便更好地理解数据。
它试图理解数据中有多少潜在变量,这些变量应该占据什么位置。
EFA的统计分析流程大致如下:首先,将待分析的变量输入到统计分析软件中,然后进行因子载荷(factor loadings)分析。
据此,可以确定因子载荷矩阵,即每个变量对每个因子的影响程度。
接下来,对因子载荷进行提取,如主成分分析、因子旋转等,以达到有效的变量组合,并计算出每个因子的因子分数,以确定变量之间的关系。
有几种常用的因子旋转方法,包括oblimin旋转、varimax旋转和promax旋转。
oblimin旋转的目的是消除因子之间的相关性,当因子之间存在相关性时,这将对研究结果产生影响。
varimax旋转是另一种主要方式,使结果更加紧凑,减少被评价变量与任何单个因子的相关度,以获得更加清晰的因子分布情况。
promax旋转是varimax 旋转的一种变形,当变量之间存在同方差变换(OBL)时,可以使用promax旋转来消除这种变异。
EFA的研究可以给出关于变量结构的信息,这也可以帮助研究者更好地了解政策的作用、认知的发展及社会关系的情况。
它还可以作为一种确定一组变量之间关系的基础性方法,帮助研究者了解变量之间的相关性,以便更好地理解变量之间的关系。
此外,探索性因子分析也有一些缺点。
它需要大量的计算,运行时间可能会比较长。
另外,在角度变换时,很容易误把载荷系数反转,这会对结果产生不利影响。
因子分析中的因子结构验证方法(五)

因子分析是一种常用的数据分析方法,用于发现变量间的潜在结构和关系。
在因子分析中,因子结构验证是非常重要的一部分,它帮助研究人员确定所提取的因子是否能够合理地解释观察到的变量之间的关系。
本文将介绍因子分析中的因子结构验证方法,并探讨其在实际研究中的应用。
一、探索性因子分析探索性因子分析是一种旨在探索变量之间潜在结构的方法。
在这种分析中,研究人员首先提取潜在因子,并根据因子载荷矩阵来解释这些因子和变量之间的关系。
在因子结构验证中,研究人员通常会使用各种统计方法来确定所提取的因子是否合理。
二、验证性因子分析验证性因子分析是用于验证由探索性因子分析提取的因子结构的方法。
在这种分析中,研究人员会根据理论假设提出一个模型,并使用统计方法来检验这个模型是否与观察数据相匹配。
常用的检验方法包括卡方检验、比较拟合指数(CFI)、增量拟合指数(IFI)等。
三、因子旋转因子旋转是一种常用的因子结构验证方法,它旨在提高因子载荷的解释性和可解释性。
常用的因子旋转方法包括方差最大化旋转(VARIMAX)、等方差最小化旋转(EQUAMAX)、极大似然旋转等。
通过因子旋转,研究人员可以更清晰地解释所提取的因子结构,从而提高研究结果的可信度。
四、交叉验证交叉验证是一种常用的因子结构验证方法,它通过将样本数据随机分成两个部分,一部分用于提取因子结构,另一部分用于验证提取的因子结构。
通过交叉验证,研究人员可以确保所提取的因子结构是稳健的,并且具有较好的泛化能力。
五、拆分样本验证拆分样本验证是一种常用的因子结构验证方法,它通过将样本数据分成两个部分,一部分用于提取因子结构,另一部分用于验证提取的因子结构。
拆分样本验证可以帮助研究人员检验因子结构在不同样本中的稳定性,从而提高研究结果的可信度。
六、交叉验证因子分析交叉验证因子分析是一种结合了交叉验证和验证性因子分析的方法,它旨在提高因子结构验证的稳健性和泛化能力。
通过交叉验证因子分析,研究人员可以在保证模型的合理性的同时,确保因子结构具有较好的泛化能力,从而提高研究结果的可信度。
探索性因子分析(课堂PPT)

目录
1
因子分析介绍
2
探索性因子分析的基本理论
3
探索性因子分析的结构及步骤
4
实例演示
2
因子分析
★ 概念 用于分析影响变量、支配变量的共同因子有几
个且各因子本质为何的一种统计方法。它是一类 降维的相关分析技术,用来考察一组变量之间的 协方差或相关系数结构,并用以解释这些变量与 为数较少的因子之间的关联。
19
因子得分
• 因子得分就是每个观测量的公共因子的值。根 据因子得分系数和原始变量的标准化值,可以 计算每个观测量的各因子的得分数,并可以据 此对观测量进行进一步的分析。
• 计算因子得分的基本思想是将因子变量表现为 原有变量的线性组合,即通过以下的因子得分 函数计算:
F j j 1 x 1 j 2 x 2 jx 3 jx p (j=1,2···p)
• 因子旋转通常分为两类:
➢ 正交旋转
Varimax方差最大旋转,它使每个因子上的具有 最高载荷的变量数最小,可简化对因子的解释。
➢ 斜交旋转
18
因子旋转(二)
• 正交旋转的基本假定是,因子分析中被提 取出来的因子之间是相互独立的,因子间 并不相关。它的目的是要获得因子的简单 结构,即使每个变量在尽可能少的因子上 有较高的负载;而斜交旋转中,因子间的夹 角是任意的,也就是说斜交旋转对因子间 是否相关并无限定,这种因子旋转的结果 就会使各因子所解释的变量的方差出现一 定程度的重叠。
➢公因子的累积方差贡献率
根据累计贡献率达到的百分比确定
12
确定因子个数的方法(二)
• 实际上累积贡献率是一个次要指标 。主要指标是特征值, 在前一指标达 到的情况下,只要累计贡献率不是 太差都可以接受。即使70%也不是 太大的问题。实际处理中,很少碰 到累计贡献率太低的情况,如果问 卷设计和数据收集没有太大问题的 前提下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样本数据适当性考察
• Bartlett球度检验(Bartlett’s test of sphericity):近似 χ 2检验,Ho:“相关矩阵是单位阵”,显然,其显著性 水平要至少小于0.05,才能拒绝Ho,说明各个变量间存在 相关,适宜进行因素分析。
• 反映像相关矩阵(Anti-image correlation matrix):其 元素等于偏相关系数的负数。公因子存在时,偏相关系数 实际上是特殊因子间的相关系数估计,应当接近于零。 • KMO取样适当性度量(Kaiser-Meyer-Olkin measure of sampling adequacy):是变量间相关系数平方和占这两种 系数平方和的比率。显然,KMO值越接近1越好。一般规 定:0.9以上,极好;0.8以上,较好;0.7以上,一般。同 时,每个变量的KMO值恰好为反映像相关矩阵的对角线元 素,记为MSA(Measures of Sampling Adequacy)。
各公因子方差贡献 初始解主成分数等 可以用因素负荷平方 于变量数,三列依次 和(Sums of squared 是特征值(解释变异 loadings),因为它可 量)、因子贡献率、 以由因素负荷矩阵中 累计贡献率。应当抽 碎石图陡 列元素的平方和求得。 取2个因子 阶检验也显
示抽取2因子
2.因子解特征值及因子贡献率: 因子贡献反映的则是单个因子解释的数据总方差。所有公 因子的累计贡献等于所有变量的共同度之和;如果公因子数 等于变量数(主成分分析)则也等于原观测变量的总方差。 公因子j 的贡献记为Vj,等于所有模型/因素负荷矩阵中每列 因子负荷的平方和;更常用“贡献率” 指标(相等);主 成分特征值等于其因子贡献。
将标准化因子值作为新变量保存在当前数据 文件中,计算出的因子值均值为0,默认的 变量名为FAC1_1、FAC2_1、FAC3_1 (分别对应因子1、2、3)等,其中第二个 数字表示第一次分析过程。
SPSS中实现过程(课后作业) SPSS中实现步骤
研究问题 表所示为20名大学生关于价值观的9项测 验结果,包括合作性、对分配的看法、行为出 发点、工作投入程度、对发展机会的看法、社 会地位的看法、权力距离、对职位升迁的态度、 以及领导风格的偏好。
旋转的评价
• 对正交旋转的批评: 实际研究中,因素间的关系往往很难满足因素正交要求, 应考虑使用斜交旋转。斜交旋转因子间的夹角随意,因此理 论上说,它对于解释因子更有利。
• 斜交旋转的“高风险性”: 结果受分析者对斜交参数的定义影响,很大程度上取决 于分析者的主观经验;同时也不利于研究结果的交流。
最简单的方法就是计算变量之间的相关系 数矩阵。 如果相关系数矩阵在进行统计检验中,大 部分相关系数都小于0.3,并且未通过统计检 验,那么这些变量就不适合于进行因子分析。
1.巴特利特球形检验(Bartlett Test of Sphericity)(单位矩阵的零假设) 2.反映像相关矩阵检验(Anti-image correlation matrix)(偏相关系数) 3.KMO(Kaiser-Meyer-Olkin)检验 (0.6)是变量间相关系数的平方和除以变量 间相关系数与偏相关系数平方和
因子相关时的旋转——斜交旋转法
• 斜交旋转中的因素模式和因素结构 因素负荷是向坐标轴平行投影;因素结构是向坐标轴的垂 直投影;正交模型中,因素模式等于因素结构。 • 简单模式结构和简单因素结构 两种旋转标准,通常前者更方便。 • 阅读斜交旋转结果的注意点: — 区分模式矩阵(pattern matrix )和结构矩阵 (structure matrix); — 斜角解的因素负荷可能会超过1,计算因子贡献不能再 使用负荷平方和办法(通常不给出); — 不给因素变换矩阵而代之以因素间相关矩阵。
确定公因子数
公因子数确定牵涉到很多问题,如变量数、模型拟合度、 因子贡献等。 (2n 1) 8n 1 • 因子数边界 m 2 • 特征值准则: — Kaiser准则,特征值≥1; — Joliffe准则,特征值≥0.7; • Cattell陡阶检验,也称碎石图(Scree Plot) 检验,因子 特征值中大的陡急坡度与缓慢坡度间的明显转折点; • 累计贡献率(建议>80%,实际中40% ~ 60%也可做); • 在极大似然估计法中,使拟合度显著性水平不再减小; • 理论构想及公因子的可解释性也可作为参考
探索性因素分析及SPSS应用
因子分析的定义 SPSS中实现过程
因素分析的的作用
因子分析是将现实生活中众多相关、重叠 的信息进行合并和综合,将原始的多个变量和 指标变成较少的几个综合变量和综合指标,以 利于分析判定。 因子分析的核心作用:探索结构、简化数据
因子分析的一个降维例子 英国统计学家Moser Scott在1961年对英 国157个城镇发展水平进行调查时,原始测量 的变量有57个,而通过因子分析发现,只需要 用5个新的综合变量(它们是原始变量的线性 组合),就可以解释95%的原始信息。对问题 的研究从57维度降低到5个维度,因此可以进 行更容易的分析。
表9-2
合作性 16 18 17 17 16 20 18 16 18 17 17 16 20 18 16 18 17 17 16 20
20名大学生的9项测验结果
分 配 16 19 17 17 15 17 16 16 19 17 17 15 17 16 16 19 17 17 15 17 出发点 13 15 17 17 16 16 16 13 15 17 17 16 16 16 13 15 17 17 16 16 工作投入 18 16 14 16 16 17 20 18 16 14 16 16 17 20 18 16 14 16 16 17 发展机会 16 18 17 19 18 18 15 16 18 17 19 18 18 15 16 18 17 19 18 18 社会地位 17 18 18 18 18 18 16 17 18 18 18 18 18 16 17 18 18 18 18 18 权力距离 15 18 16 19 15 17 19 15 18 16 19 15 17 19 15 18 16 19 15 17 职位升迁 16 17 16 20 16 19 14 16 17 16 20 16 19 14 16 17 16 20 16 19 领导风格 16 19 16 19 16 18 17 16 19 16 19 16 18 17 16 19 16 19 16 18
因子值意义及应用
• 某些情况下还要获得对因子的度量,如根据各因子得分 对某个自变量或样本进行分类、评价。 • 因子得分不能简单地将变量值相加,因为各变量在因子 上的负荷不同,所以应当赋予变量不同的权值,称为因子 值(factor score)。 求因子值的过程就是求因素分析模型的逆过程,目的是 用观测变量的线性组合来表达因子。计算案例i在因子p上的 因子值是用该案例每个变量的标准化分数xji乘以相应的因子 值系数(component’s score coefficients)wpj之和。 • 对于主成分法未经旋转求得的因子解可以直接得到因子 值系数。通常是相应的因素负荷比上该因素的特征值。因 此若不计较因素值单位,此时因素负荷就是因素值的估计。 其它解法需要估计。
因子的解释和命名——因子旋转
• 因素分析的目的不仅是求公因子,更要是要知道每个因子 的意义。根据主成分法计算的因素模式解释很麻烦,因为大 多数因子都和许多变量相关。 • 因子旋转的目的:通过改变因子轴的位置,重新分配各因 子所解释的方差比例,为了获得结构因子模式的“简单结构” (simple structure): — 在各因子上只有少数变量有较高的负荷,其它变量上 的负荷(绝对值)很低; — 每个变量只在少数因子上有很高的负荷; — 任取两因子,每个变量只能在一个因子上有较高负荷。 • 简言之,就是调整因素负荷矩阵式中的行、列值向0和±1 极化,使某些变量的负荷尽可能往某个因子上集中,而另一 些变量的负荷尽可能往另一个因子上集中,使得每个因子上 仅“负载”几个变量。
因子值意义及应用
SPSS提供的三种因 回归法求解使真因子得 分和因子得分估计值的误 子值或因子值系数的 差平方和达到最小的因子 估计方法: 值系数,这样得出的因子 都基于最小二乘原理, 得分可能相关,是 SPSS 只是定义误差的方式 中默认的方法。 不同。 Bartlett法的误差是独特 法在其 基础上增加因素间相互正 交的条件。
因子的解释和命名——因子旋转
正交旋转:因子轴之间保持90度角(因子不相关) SPSS提供三种基于“正交极大准则”的正交旋转法: • 方差最大法(Varimax):使各因子(列)上与该因子有关 的负荷平方的方差最大,即拉开列上各变量的负荷差异,最常 用; • 四次方最大法(Quartimax):使各变量(行)上因子负荷 平方的方差达到最大,即拉开行上的负荷差异,易产生综合因 子,大部分变量在该因子上都有较高负荷; • 平均正交法(Equamax):上两种方法综合。 在Rotation对话框选择Varimax旋转,选中复选框因素负荷 图(Loading plot),在Options对话框选中将负荷较低(<0.3) 的值隐藏并按负荷大小排列(负荷量为0.3表示因素只解释了 该变量方差的10%,忽略 )。
输出各个变量的基本描述统计量
输出因子分析的初始解
相关系数矩阵
变量相关系数矩 阵的行列式值
反映像相关矩阵
求解初始因子解
因子分析中有多种确定因子变量的方法, 如基于主成分模型的主成分分析法和基于因子 分析模型的主轴因子法、极大似然法、最小二 乘法等。 其中基于主成分模型的主成分分析法是使 用最多的因子分析方法之一。下面以该方法为 对象进行分析。
因子相关时的旋转——斜交旋转法
SPSS斜交旋转法: • 直接斜交极小法(Direct Oblimin): 由参数δ(Delta)控制倾斜程度,该参数控制因子轴的倾 斜程度,其中δ≤0.8。一般δ取大负值时表示因子间倾斜程度 越低,越不相关。 • Promax法: Procrustes变换的一种特例,通过扩大初始简单结构中元素 的大小差距(2次方或4次方)来取得简单结构。其参数κ (Kappa)即乘方数,κ>1。此法比直接斜交旋转法的计算 速度快,因此常用于大数据集。