高三9月月考(数学文)
江苏省奔牛高级中学2024-2025学年高三上学期9月月考数学试题

江苏省奔牛高级中学2024-2025学年高三上学期9月月考数学试题一、单选题1.若集合{32}P x x =∈-<≤N∣,{}29Q x x =∈≤Z ∣,则P Q =I ( ) A .{}3,0,1,2- B .{|02}x x ≤≤ C .{}0,1,2 D .{|12}x x -≤≤ 2.已知复数z 满足()1i 2i z -=,且()i z a a +∈R 为实数,则a =( )A .1B .2C .1-D .−23.已知函数()e e 2x xa f x x-+=为偶函数,则a =( ) A .2 B .1 C .0 D .1-4.设向量11(1,0),,22a b ⎛⎫== ⎪⎝⎭r r ,则下列结论中正确的是( ) A .||||a b =r r B .1a b ⋅=r rC .//a b r rD .a b -r r 与b r 垂直5.已知函数()25,1,,1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是是( ) A .30a -≤≤ B .32a --≤≤ C .2a ≤- D .0a ≤6.若1sin cos 3x x +=,(0,)x π∈,则sin cos x x -的值为( ) A.BC .13 D7.已知函数()f x 的导函数()()()22f x x x x m '=+++,若函数()f x 有一极大值点为2-,则实数m 的取值范围为( )A .()2,0-B .(]4,2--C .(),4-∞-D .(),2-∞- 8.2022年12月3日,南昌市出土了东汉六棱锥体水晶珠灵摆吊坠,如图(1)所示.现在我们通过DIY 手工制作一个六棱锥吊坠模型.准备一张圆形纸片,已知圆心为O,半径为,该纸片上的正六边形ABCDEF 的中心为O ,1A ,1B ,1C ,1D ,1E ,1F 为圆O 上的点,如图(2)所示.1A AB △,1B BC V ,1C CD V ,1D DE △,1E EF △,1F FA △分别是以AB ,BC ,CD ,DE ,EF ,F A 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DE ,EF ,F A 为折痕折起1A AB △,1B BC V ,1C CD V ,1D DE △,1E EF △,1F FA △,使1A ,1B ,1C ,1D ,1E ,1F 重合,得到六棱锥,则六棱锥的体积最大时,正六边形ABCDEF 的边长为( )A .12cm 5B .25cm 4C .24cm 5D .5cm二、多选题9.下列函数中最小值为4的是( )A .4ln ln y x x =+B .222x x y -=+C .14|sin ||sin |y x x =+ D .225x y +=10.已知函数2()2cos 1f x x x =-+,下列说法正确的是( )A .()f x 的最小正周期为πB .直线5π6x =是()f x 图象的一条对称轴 C .ππ87f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .5π,06⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心11.已知四面体,A BCD AB AB -=⊥平面,BCD BE AC ⊥,垂足为,E BF AD ⊥,垂足为F ,则下列结论正确的是( )A .若BC CD ⊥,则AC EF ⊥B .若BC CD ⊥,则AD ⊥平面BEFC .若BC BD =,则EF ∥CDD .若2BC BD ==,则四面体A BEF -体积的最大值为27三、填空题12.若正数x ,y 满足221+-=x y xy ,则2x y +的最大值是.13.已知函数()()1e ,0ln ,0x x x f x x x x⎧+≤⎪=⎨>⎪⎩,函数()()()()222g x f x a f x a =-++,若函数()g x 恰有三个零点,则a 的取值范围是.14.已知在边长为2的菱形ABCD 中,60BAD ∠︒=,沿对角线BD 将ABD △折起,使平面ABD ⊥平面BCD ,则四面体ABCD 外接球的表面积为;若P 为AB 的中点,过点P 的平面截该四面体ABCD 的外接球所得截面面积为S ,则S 的最小值为.四、解答题15.已知函数()log (0a f x x a =>且1)a ≠.(1)若()f x 在区间1,164⎡⎤⎢⎥⎣⎦上的最大值为2,求实数a 的值; (2)若函数22()2x x a g x -+=的值域为[2,)+∞,求不等式log (1)1a t -≤的实数t 的取值范围. 16.平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C -是否为一个定值?若是,求出这个定值;若否,说明理由.(2)记ABD △与BCD △的面积分别为1S 和2S ,请求出2212S S +的最大值.17.如图,正四棱锥P ABCD -所有棱长为2,E ,F 分别为边AB ,BC 的中点,点M ,Q 分别在侧棱PB ,PD 上,31,,44PM PB PQ PD N ==u u u u r u u u r u u u r u u u r 为底面ABCD 内一点,且MN ⊥平面QEF .(1)证明:直线//PB 平面QEF ;(2)求直线MN 与底面ABCD 所成角的大小.18.已知函数2()e ,()ln x f x a x g x x x x =-=-.(1)判断()f x 和()g x 的单调性;(2)若对任意(1,)x ∈+∞,不等式()()f x g x <恒成立,求实数a 的取值范围.19.如图,点(),Z a b ,复数()i ,R z a b a b =+∈可用点(),Z a b 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应,反过来,复平面内的每一个点,有唯一的一个复数和它对应.一般地,任何一个复数i z a b =+都可以表示成()cos isin r θθ+的形式,即cos ,sin ,a rb r θθ=⎧⎨=⎩其中r 为复数z 的模,θ叫做复数z 的辐角(以x 非负半轴为始边,OZ u u u r 所在射线为终边的角),我们规定02πθ≤<范围内的辐角θ的值为辐角的主值,记作()arg .cos isin z r θθ+叫做复数i z a b =+的三角形式.复数三角形式的乘法公式:()()()()111222121212cos isin cos isin cos isin r r rr θθθθθθθθ⎡⎤+⋅+=+++⎣⎦.棣莫佛提出了公式:()()[cos isin ]cos isin n n r r n n θθθθ+=+,其中*0,r n >∈N .(1)已知12z w ==,求3zw zw +的三角形式; (2)已知0θ为定值,00πθ≤≤,将复数001cos isin θθ++化为三角形式;(3)设复平面上单位圆内接正二十边形的20个顶点对应的复数依次为1220,,,z z z L ,求复数2024202420241220,,,z z z L 所对应不同点的个数.。
云南2024-2025学年高三上学期9月月考数学试题含答案

数学试卷(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{13},{(2)(4)0}A xx B x x x =≤≤=--<∣∣,则A B = ()A.(2,3] B.[1,2)C.(,4)-∞ D.[1,4)【答案】A 【解析】【分析】解出集合B ,再利用交集含义即可得到答案.【详解】{(2)(4)0}{24}B xx x x x =--<=<<∣∣,而{|13}A x x =≤≤,则(2,3]A B ⋂=.故选:A.2.已知命题2:,10p z z ∃∈+<C ,则p 的否定是()A.2,10z z ∀∈+<CB.2,10z z ∀∈+≥C C.2,10z z ∃∈+<C D.2,10z z ∃∈+≥C 【答案】B 【解析】【分析】根据存在量词命题的否定形式可得.【详解】由存在量词命题的否定形式可知:2:,10p z z ∃∈+<C 的否定为2,10z z ∀∈+≥C .故选:B3.正项等差数列{}n a 的公差为d ,已知14a =,且135,2,a a a -三项成等比数列,则d =()A.7B.5C.3D.1【答案】C【解析】【分析】由等比中项的性质再结合等差数列性质列方程计算即可;【详解】由题意可得()23152a a a -=,又正项等差数列{}n a 的公差为d ,已知14a =,所以()()2111224a d a a d +-=+,即()()222444d d +=+,解得3d =或1-(舍去),故选:C.4.若sin160m ︒=,则︒=sin 40()A.2m -B.2-C.2-D.2【答案】D 【解析】【分析】利用诱导公式求出sin 20︒,然后结合平方公式和二倍角公式可得.【详解】因为()sin160sin 18020sin 20m ︒=︒-︒=︒=,所以cos 20︒==,所以sin 402sin 20cos 202︒=︒︒=故选:D5.已知向量(1,2),||a a b =+= ,若(2)b b a ⊥- ,则cos ,a b 〈〉=()A.5-B.10-C.10D.5【答案】C 【解析】【分析】联立||a b += 和(2)0b b a ⋅-=求出,b a b ⋅ 即可得解.【详解】因为(1,2)a = ,所以a =,所以222||27a b a b a b +=++⋅=,整理得222b a b +⋅=①,又(2)b b a ⊥- ,所以2(2)20b b a b a b ⋅-=-⋅=②,联立①②求解得11,2b a b =⋅= ,所以12cos ,10a b a b a b⋅〈〉=== .故选:C 6.函数)()ln f x kx =是奇函数且在R 上单调递增,则k 的取值集合为()A.{}1-B.{0}C.{1}D.{1,1}-【答案】C 【解析】【分析】根据奇函数的定义得()))()222()ln lnln 10f x f x kx kx x k x -+=-+=+-=得1k =±,即可验证单调性求解.【详解】)()lnf x kx =+是奇函数,故()))()222()ln ln ln 10f x f x kx kx x k x -+=-+=+-=,则22211x k x +-=,210k -=,解得1k =±,当1k =-时,)()lnf x x ==,由于y x =在0,+∞为单调递增函数,故()lnf x =0,+∞单调递减,不符合题意,当1k =时,)()lnf x x =+,由于y x =在0,+∞为单调递增函数且()00f =,故)()ln f x x =为0,+∞单调递增,根据奇函数的性质可得)()ln f x x =+在上单调递增,符合题意,故1k =,故选:C7.函数π()3sin ,06f x x ωω⎛⎫=+> ⎪⎝⎭,若()(2π)f x f ≤对x ∈R 恒成立,且()f x 在π13π,66⎡⎤⎢⎣⎦上有3条对称轴,则ω=()A.16 B.76C.136D.16或76【答案】B【解析】【分析】根据()2π3,2π2f T T =≤<求解即可.【详解】由题知,当2πx =时()f x 取得最大值,即π(2π)3sin 2π36f ω⎛⎫=+= ⎪⎝⎭,所以ππ2π2π,Z 62k k ω+=+∈,即1,Z 6k k ω=+∈,又()f x 在π13π,66⎡⎤⎢⎥⎣⎦上有3条对称轴,所以13ππ2π266T T ≤-=<,所以2π12T ω≤=<,所以76ω=.故选:B8.设椭圆2222:1(0)x y E a b a b +=>>的右焦点为F ,过坐标原点O 的直线与E 交于A ,B 两点,点C 满足23AF FC = ,若0,0AB OC AC BF ⋅=⋅=,则E 的离心率为()A.9B.7C.5D.3【答案】D 【解析】【分析】设(),A m n ,表示出,,,OA OC AF BF,根据0,0AB OC AC BF ⋅=⋅= 列方程,用c 表示出,m n ,然后代入椭圆方程构造齐次式求解可得.【详解】设(),A m n ,则()(),,,0B m n F c --,则()()(),,,,,OA m n AF c m n BF c m n ==--=+,因为23AF FC = ,所以()555,222n AC AF c m ⎛⎫==-- ⎪⎝⎭,所以()()55533,,,22222n c n OC OA AC m n c m m ⎛⎫⎛⎫=+=+--=-- ⎪ ⎪⎝⎭⎝⎭ ,因为0,0AB OC AC BF ⋅=⋅=,所以222253302220c OA OC m m n AF BF c m n ⎧⎛⎫⋅=--=⎪ ⎪⎝⎭⎨⎪⋅=--=⎩ ,得34,55m c n c ==,又(),A m n 在椭圆上,所以222291625251c ca b+=,即()()222222229162525c a c a c a a c -+=-,整理得4224255090a a c c -+=,即42950250e e -+=,解得259e =或25e =(舍去),所以3e =.故选:D【点睛】关键点睛:根据在于利用向量关系找到点A 坐标与c 的关系,然后代入椭圆方程构造齐次式求解.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.数列{}n a 的前n 项和为n S ,已知22()n S kn n k =-∈R ,则下列结论正确的是()A.{}n a 为等差数列B.{}n a 不可能为常数列C.若{}n a 为递增数列,则0k >D.若{}n S 为递增数列,则1k >【答案】AC 【解析】【分析】根据,n n a S 的关系求出通项n a ,然后根据公差即可判断ABC ;利用数列的函数性,分析对应二次函数的开口方向和对称轴位置即可判断D .【详解】当1n =时,112a S k ==-,当2n ≥时,()()()221212122n n n a S S kn n k n n kn k -⎡⎤=-=-----=-+⎣⎦,显然1n =时,上式也成立,所以()22n a kn k =-+.对A ,因为()()()1222122n n a a kn k k n k k -⎡⎤-=-+---+=⎣⎦,所以是以2k 为公差的等差数列,A 正确;对B ,由上可知,当0k =时,为常数列,B 错误;对C ,若为递增数列,则公差20k >,即0k >,C 正确;对D ,若{}n S 为递增数列,由函数性质可知02322k k >⎧⎪⎨<⎪⎩,解得23k >,D 错误.故选:AC10.甲、乙两班各有50位同学参加某科目考试(满分100分),考后分别以110.820y x =+、220.7525y x =+的方式赋分,其中12,x x 分别表示甲、乙两班原始考分,12,y y 分别表示甲、乙两班考后赋分.已知赋分后两班的平均分均为60分,标准差分别为16分和15分,则()A.甲班原始分数的平均数比乙班原始分数的平均数高B.甲班原始分数的标准差比乙班原始分数的标准差高C.甲班每位同学赋分后的分数不低于原始分数D.若甲班王同学赋分后的分数比乙班李同学赋分后的分数高,则王同学的原始分数比李同学的原始分数高【答案】ACD 【解析】【分析】根据期望和标准差的性质求出赋分前的期望和标准差即可判断AB ;作差比较,结合自变量范围即可判断C ;作出函数0.820,0.7525y x y x =+=+的图象,结合图象可判断D .【详解】对AB ,由题知()()1215E y E y ====,因为110.820y x =+,220.7525y x =+,所以()()120.82060,0.752515E x E x +=+===,解得()()1250,20E x E x =≈==,所以()()12E x E x >=,故A 正确,B 错误;对C ,因为111200.2y x x -=-,[]10,100x ∈,所以10200.220x ≤-≤,即110y x -≥,所以C 正确;对D ,作出函数0.820,0.7525y x y x =+=+的图象,如图所示:由图可知,当12100y y =<时,有21x x <,又因为0.820y x =+单调递增,所以当12y y >时必有12x x >,D 正确.故选:ACD11.已知函数()f x 及其导函数()f x '的定义域为R ,若(1)f x +与()f x '均为偶函数,且(1)(1)2f f -+=,则下列结论正确的是()A.(1)0f '=B.4是()f x '的一个周期C.(2024)0f =D.()f x 的图象关于点(2,1)对称【答案】ABD 【解析】【分析】注意到()f x '为偶函数则()()2f x f x -+=,由()(1)1f x f x -+=+两边求导,令0x =可判断A ;()()11f x f x --='+'结合导函数的奇偶性可判断B ;利用()f x 的周期性和奇偶性可判断C ;根据()()2f x f x -+=和()(1)1f x f x -+=+可判断D .【详解】因为()f x '为偶函数,所以()()f x f x -'=',即()()f x f x c --=+,而(1)(1)2f f -+=,故2c =-,故()()2f x f x +-=,又(1)f x +为偶函数,所以()(1)1f x f x -+=+,即()()2f x f x =-,所以()2()2f x f x -+-=,故()(2)2f x f x ++=即()2(4)2f x f x +++=,()()4f x f x =+,所以4是()f x 的周期,故B 正确.对A ,由()(1)1f x f x -+=+两边求导得()()11f x f x --='+',令0x =得()()11f f -'=',解得()10f '=,A 正确;对C ,由上知()()2f x f x +-=,所以()01f =,所以()()(2024)450601f f f =⨯==,C 错误;对D ,因为()()2f x f x +-=,()()2f x f x =-,故()2(2)2f x f x -++=,故()f x 的图象关于2,1对称,故选:ABD【点睛】关键点睛:本题解答关键在于原函数与导数数的奇偶性关系,以及对()(1)1f x f x -+=+两边求导,通过代换求导函数的周期.三、填空题(本大题共3小题,每小题5分,共15分)12.曲线()e xf x x =-在0x =处的切线方程为______.【答案】1y =##10y -=【解析】【分析】求出函数的导函数,利用导数的几何意义求出切线的斜率,即可求出切线方程.【详解】因为()e xf x x =-,则()01f =,又()e 1xf x '=-,所以()00f '=,所以曲线()e xf x x =-在0x =处的切线方程为1y =.故答案为:1y =13.若复数cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭在复平面内对应的点位于直线y x =上,则λ的最大值为__________.【答案】1-##1-+【解析】【分析】根据复数对应的点cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭在y x =得212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,即可利用二倍角公式以及基本不等式求解.【详解】cos 21sin isin (0π)2z θλθθθ⎛⎫=+-+<< ⎪⎝⎭对应的点为cos 21sin ,sin 2θλθθ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,故cos 21sin sin 2θλθθ⎛⎫+-= ⎪⎝⎭,故212sin 1sin sin 2θλθθ⎛⎫-+-= ⎪⎝⎭,由于()0,πθ∈,故sin 0θ>,则2sin 1111sin sin sin 122sin θλθθθθ==≤++++,当且仅当1sin 2sin θθ=,即2sin 2θ=,解得π3π,44θθ==时等号成立,114.过抛物线2:3C y x =的焦点作直线l 交C 于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于M ,N 两点,若||12AB =,则||MN =__________.【答案】【解析】【分析】联立直线与抛物线方程,得韦达定理,根据焦点弦的公式可得223332122k AB k +=+=,解得213k =,即可求解()111:AM y x x y k=--+得11M x ky x =+,即可代入求解.【详解】2:3C y x =0,根据题意可知直线l 有斜率,且斜率不为0,根据对称性不设直线方程为34y k x ⎛⎫=-⎪⎝⎭,联立直线34y k x ⎛⎫=-⎪⎝⎭与23y x =可得22223930216k x k x k ⎛⎫-++= ⎪⎝⎭,设()()1122,,,A x y B x y ,故2121223392,16k x x x x k ++==,故21223332122k AB x x p k +=++=+=,解得213k =,直线()111:AM y x x y k=--+,令0y =,则11M x ky x =+,同理可得22N x ky x =+,如下图,故()()()211221212121M N MN x x ky x ky x k y y x x k x x =-=+--=-+-=+-,()()22221212233192141483316k MN k x x x x k ⎛⎫+ ⎪⎛⎫=++-=+-⨯= ⎪ ⎪⎝⎭ ⎪⎝⎭故答案为:83四、解答题(本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤)15.记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos 0a b c A -+=.(1)求角C ;(2)若AB 边上的高为1,ABC V 的面积为33,求ABC V 的周长.【答案】(1)π3C =;(2)23.【解析】【分析】(1)利用余弦定理角化边,整理后代入余弦定理即可得解;(2)利用面积公式求出c ,然后由面积公式结合余弦定理联立求解可得a b +,可得周长.【小问1详解】由余弦定理角化边得,2222202b c a a b c bc +--+⨯=,整理得222a b c ab +-=,所以2221cos 222a b c ab C ab ab +-===,因为()0,πC ∈,所以π3C =.【小问2详解】由题知,13123c ⨯=,即233c =,由三角形面积公式得1πsin 233ab =,所以43ab =,由余弦定理得()222π42cos 333a b ab a b ab +-=+-=,所以()2416433a b +=+=,所以3a b +=,所以ABC V 的周长为33a b c ++=+=16.如图,PC 是圆台12O O 的一条母线,ABC V 是圆2O 的内接三角形,AB 为圆2O 的直径,4,AB AC ==.(1)证明:AB PC ⊥;(2)若圆台12O O 的高为3,体积为7π,求直线AB 与平面PBC 夹角的正弦值.【答案】(1)证明见详解;(2)19.【解析】【分析】(1)转化为证明AB ⊥平面12O O CP ,利用圆台性质即可证明;(2)先利用圆台体积求出上底面的半径,建立空间坐标系,利用空间向量求线面角即可.【小问1详解】由题知,因为AB 为圆2O 的直径,所以AC BC ⊥,又4,AB AC ==AB ==,因为2O 为AB 的中点,所以2O C AB ⊥,由圆台性质可知,12O O ⊥平面ABC ,且12,,,O O P C 四点共面,因为AB ⊂平面ABC ,所以12O O AB ⊥,因为122,O O O C 是平面12O O CP 内的两条相交直线,所以AB ⊥平面12O O CP ,因为PC ⊂平面12O O CP ,所以AB PC ⊥.【小问2详解】圆台12O O的体积(2211ππ237π3V r =⋅+⋅⨯=,其中11r PO =,解得11r =或13r =-(舍去).由(1)知122,,O O AB O C 两两垂直,分别以2221,,O B O C O O 为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则(2,0,0),(2,0,0),(0,2,0),(0,1,3)A B C P -,所以(4,0,0),(2,1,3),(2,2,0)AB BP BC ==-=-.设平面PBC 的一个法向量为(,,)n x y z =,则230,220,n BP x y z n BC x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩解得,3,x y x z =⎧⎨=⎩于是可取(3,3,1)n =.设直线AB 与平面PBC 的夹角为θ,则sin cos ,19AB n θ===,故所求正弦值为19.17.已知函数()ln f x x ax =+.(1)若()0f x ≤在(0,)x ∈+∞恒成立,求a 的取值范围;(2)若()1,()e()xa g x f f x ==-,证明:()g x 存在唯一极小值点01,12x⎛⎫∈ ⎪⎝⎭,且()02g x >.【答案】(1)1,e⎛⎤-∞- ⎥⎝⎦;(2)证明见解析.【解析】【分析】(1)参变分离,构造函数()ln xh x x=-,利用导数求最值即可;(2121内,利用零点方程代入()0g x ,使用放缩法即可得证.【小问1详解】()0f x ≤在(0,)x ∈+∞恒成立,等价于ln xa x≤-在(0,)+∞上恒成立,记()ln x h x x =-,则()2ln 1x h x x='-,当0e x <<时,ℎ′<0,当e x >时,ℎ′>0,所以ℎ在()0,e 上单调递减,在()e,∞+上单调递增,所以当e x =时,ℎ取得最小值()ln e 1e e eh =-=-,所以1a e≤-,即a 的取值范围1,e ∞⎛⎤-- ⎥⎝⎦.【小问2详解】当1a =时,()()e()eln ,0xxg x f f x x x =-=->,则1()e x g x x'=-,因为1e ,xy y x==-在(0,)+∞上均为增函数,所以()g x '在(0,)+∞单调递增,又()121e 20,1e 102g g ⎛⎫=-''=- ⎪⎝⎭,1存在0x ,使得当∈0,0时,()0g x '<,当∈0,+∞时,()0g x '>,所以()g x 在()00,x 上单调递减,在()0,x ∞+上单调递增,所以()g x 存在唯一极小值点01,12x ⎛⎫∈⎪⎝⎭.因为01e 0x x -=,即00ln x x =-,所以00000()e ln =e x x g x x x =-+,因为01,12x ⎛⎫∈⎪⎝⎭,且=e x y x+1上单调递增,所以012001()=e e 2x g x x +>+,又9e 4>,所以123e 2>,所以00031()=e 222xg x x +>+=.18.动点(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于34,且|||y x <.记点M 的轨迹方程为Γ.(1)求Γ的方程;(2)过Γ上的点P 作圆22:(4)1Q x y +-=的切线PT ,T 为切点,求||PT 的最小值;(3)已知点40,3G ⎛⎫⎪⎝⎭,直线:2(0)l y kx k =+>交Γ于点A ,B ,Γ上是否存在点C 满足0GA GB GC ++= ?若存在,求出点C 的坐标;若不存在,说明理由.【答案】(1)2213y x -=(2)2(3)3,44C ⎛⎫-- ⎪ ⎪⎝⎭【解析】【分析】(1)根据点到直线距离公式,即可代入化简求解,(2)由相切,利用勾股定理,结合点到点的距离公式可得PT =,即可由二次函数的性质求解,(3)联立直线与双曲线方程得到韦达定理,进而根据向量的坐标关系可得()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,将其代入双曲线方程即可求解.【小问1详解】根据(,)M xy 到直线1:l y=与直线2:l y =的距离之积等于3434=,化简得2233x y -=,由于|||y x <,故2233x y -=,即2213y x -=.【小问2详解】设(,)P x y,PT ====故当3y =时,PT 最小值为2【小问3详解】联立:2(0)l y kx k =+>与2233x y -=可得()223470k x kx ---=,设()()()112200,,,,,A x y B x y C x y ,则12122247,33k x x x x k k-+==--,故()212122444,3k y y k x x k+=++=+-设存在点C 满足0GA GB GC ++= ,则1201200433x x x y y y ++=⎧⎪⎨++=⨯⎪⎩,故()02201224,3443k x k k y y y k ⎧=-⎪⎪-⎨-⎪=-+=⎪-⎩,由于()00,C x y 在2233x y -=,故22222443333k k k k ⎛⎫-⎛⎫--= ⎪⎪--⎝⎭⎝⎭,化简得421966270k k -+=,即()()2231990k k --=,解得2919k =或23k =(舍去),由于()22Δ162830k k =+->,解得27k<且23k ≠,故2919k =符合题意,由于0k >,故31919k =,故022024,344334k x k k y k ⎧=-=-⎪⎪-⎨-⎪==-⎪-⎩,故3,44C ⎛⎫-- ⎪ ⎪⎝⎭,故存在3,44C ⎛⎫-- ⎪ ⎪⎝⎭,使得0GA GB GC ++= 19.设n ∈N ,数对(),n n a b 按如下方式生成:()00,(0,0)a b =,抛掷一枚均匀的硬币,当硬币的正面朝上时,若n n a b >,则()()11,1,1n n n n a b a b ++=++,否则()()11,1,n n n n a b a b ++=+;当硬币的反面朝上时,若n n b a >,则()()11,1,1n n n n a b a b ++=++,否则()()11,,1n n n n a b a b ++=+.抛掷n 次硬币后,记n n a b =的概率为n P .(1)写出()22,a b 的所有可能情况,并求12,P P ;(2)证明:13n P ⎧⎫-⎨⎬⎩⎭是等比数列,并求n P ;(3)设抛掷n 次硬币后n a 的期望为n E ,求n E .【答案】(1)答案见详解;(2)证明见详解,1111332n n P -⎛⎫=-⨯- ⎪⎝⎭;(3)21113929nn E n ⎛⎫=+--⎪⎝⎭【解析】【分析】(1)列出所有()11,a b 和()22,a b 的情况,再利用古典概型公式计算即可;(2)构造得1111323n n P P +⎛⎫-=-- ⎪⎝⎭,再利用等比数列公式即可;(3)由(2)得()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,再分n n a b >,n n a b =和n n a b <讨论即可.【小问1详解】当抛掷一次硬币结果为正时,()()11,1,0a b =;当抛掷一次硬币结果为反时,()()11,0,1a b =.当抛掷两次硬币结果为(正,正)时,()()22,2,1a b =;当抛掷两次硬币结果为(正,反)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,正)时,()()22,1,1a b =;当抛掷两次硬币结果为(反,反)时,()()22,1,2a b =.所以,12210,42P P ===.【小问2详解】由题知,1n n a b -≤,当n n a b >,且掷出反面时,有()()11,,1n n n n a b a b ++=+,此时11n n a b ++=,当n n a b <,且掷出正面时,有()()11,1,n n n n a b a b ++=+,此时11n n a b ++=,所以()()()()()1111112222n n n n n n n n n n P P a b P a b P a b P a b P +⎡⎤=>+<=>+<=-⎣⎦,所以1111323n n P P +⎛⎫-=-- ⎪⎝⎭,所以13n P ⎧⎫-⎨⎬⎩⎭是以11133P -=-为首项,12-为公比的等比数列,所以1111332n n P -⎛⎫-=-⨯- ⎪⎝⎭,所以1111332n n P -⎛⎫=-⨯- ⎪⎝⎭.【小问3详解】设n n a b >与n n a b <的概率均为n Q ,由(2)知,()11111232nn n Q P ⎡⎤⎛⎫=-=--⎢⎥⎪⎝⎭⎢⎥⎣⎦显然,111110222E =⨯+⨯=.若n n a b >,则1n n a b =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b =,则当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,1n n a a +=;若n n a b <,则1n n b a =+,当下次投掷硬币为正面朝上时,11n n a a +=+,当下次投掷硬币为反面朝上时,11n n a a +=+.所以1n n a a +=时,期望不变,概率为111122262nn n Q P ⎡⎤⎛⎫+=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;11n n a a +=+时,期望加1,概率为1111111124226262n nn n Q P ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫-+=-+-=--⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦.所以()11111112144626262nn nn nn n E E E E +⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯+-++⨯--=+--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故12112111111444626262n n n n n n E E E -----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+--=+--+--⎢⎥⎢⎥⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=1111111446262n E -⎡⎤⎡⎤⎛⎫⎛⎫=+--++--⎢⎥⎢⎥⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦011111111444626262n -⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+--++--⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 111241612n n ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥=-⎢⎥⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦21113929nn ⎛⎫=+-- ⎪⎝⎭.经检验,当1n =时也成立.21113929nn E n ⎛⎫∴=+-- ⎪⎝⎭.【点睛】关键点点睛:本题第三问的关键是分1n n a a +=和11n n a a +=+时讨论,最后再化简n E 的表达式即可.。
2024-2025学年江苏省南通市海安高级中学高三上学期9月月考数学试题及答案

江苏省海安中学2025届高三年级学习测试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的1.已知集合{}{}20,1,2,3,log 1A B xx ==≤∣,则A B ⋂=( )A.{}0,1,2B.{}1,2C.{}0,1D.{}12.命题“20,10x x x ∀>-+>”的否定为( )A.20,10x x x ∀>-+≤B.20,10x x x ∀≤-+≤C.20,10x x x ∃>-+≤D.20,10x x x ∃≤-+≤3.已知函数()21,0cos ,0x x f x x x ⎧+>=⎨≤⎩,则下列结论正确的是( )A.()f x 是偶函数B.()f x 是增函数C.()f x 是周期函数D.()f x 的值域为[)1,∞-+4.若a b >,则( )A.ln ln a b >B.0.30.3a b >C.330a b ->D.0a b ->5.已知函数()()1ln 1f x x x=+-,则()y f x =的图象大致是( )A. B.C. D.6.如图,矩形ABCD 的三个顶点A B C 、、分别在函数12,,xy y x y ===的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为()A.11,24⎛⎫⎪⎝⎭ B.11,34⎛⎫ ⎪⎝⎭ C.11,23⎛⎫ ⎪⎝⎭ D.11,33⎛⎫ ⎪⎝⎭7.已知()912160,0,log log log a b a b a b >>==+,则ab=( )C.128.已知()()5,15ln4ln3,16ln5ln4a b c ==-=-,则( )A.a c b <<B.c b a <<C.b a c <<D.a b c<<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求、全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分9.下列函数中,在区间ππ,42⎛⎫⎪⎝⎭上单调递减的函数是( )A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.cos y x x=-C.sin2y x =D.πcos 3y x ⎛⎫=-⎪⎝⎭10.下面的结论中正确的是( )A.若22ac bc >,则a b >B.若0,0a b m >>>,则a m ab m b+>+C.若110,0,a b a b a b>>+=+,则2a b +≥D.若20a b >>,则()44322a b a b +≥-11.已知函数()cos sin2f x x x =,下列结论中正确的是( )A.()y f x =的图像关于()π,0中心对称B.()y f x =的图像关于π2x =对称C.()f xD.()f x 既是奇函数,又是周期函数三、填空题:本题共3小题,每小题5分,共15分.12.已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()321f x g x x x -=+-,则()()11f g +=__________.13.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为__________.14.若存在实数t ,对任意的(]0,x s ∈,不等式()()ln 210x x t t x -+---≤成立,则整数s 的最大值为__________.(参考数据:ln3 1.099,ln4 1.386≈≈)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题13分)如图1,在等腰直角三角形ABC 中,90,6,A BC D E ∠== 、分别是,AC AB 上的点,CD BE O ==为BC 的中点.将ADE 沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中AO =(1)求证:A O '⊥平面BCDE ;(2)求点B 到平面A CD '的距离.16.(本题15分)设数列{}n a 的各项均为正整数.(1)数列{}n a 满足1121212222n n n n a a a a n --++++= ,求数列{}n a 的通项公式;(2)若{}n a 是等比数列,且n a n ⎧⎫⎨⎬⎩⎭是递减数列,求公比q .17.(本题15分)已知函数()πsin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭在2π0,3⎛⎤ ⎥⎝⎦上单调递增,在2π,π3⎛⎤ ⎥⎝⎦上单调递减,设()0,0x 为曲线()y f x =的对称中心.(1)求0x 的值;(2)记ABC 的角,,A B C 对应的边分别为,,a b c ,若0cos cos ,6A x b c =+=,求BC 边上的高AD 长的最大值.18.(本题17分)已知函数()()e ln xf x x m =-+.(1)当0m =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当2m ≤时,求证()0f x >.19.(本题17分)在平面内,若直线l 将多边形分为两部分,多边形在l 两侧的顶点到直线l 的距离之和相等,则称l 为多边形的一条“等线”,已知O 为坐标原点,双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为12,,F F E 的离心率为2,点P 为E 右支上一动点,直线m 与曲线E 相切于点P ,且与E 的渐近线交于,A B 两点,当2PF x ⊥轴时,直线1y =为12PF F 的等线.(1)求E 的方程;(2)若y =是四边形12AF BF 的等线,求四边形12AF BF 的面积;(3)设13OG OP =,点G 的轨迹为曲线Γ,证明:Γ在点G 处的切线n 为12AF F 的等线江苏省海安中学2025届高三年级学习测试数学试卷答案解析人:福佑崇文阁一、单选题:本大题共8小题,每题5分,共40分在每小题提供的四个选项中,只有一项是符合题目要求的.12345678BCDCBADB二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACACDABD三、填空题:本题共3小题,每小题5分,共15分.12.11-14.2四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.【详解】(1)解:(1)连接,,45,3OD OE B C CD BE CO BO ∠∠====== ,在COD 中,OD ==,同理得OE =,因为6BC =,所以AC AB ==所以AD A D A E AE ='==='因为AO =所以222222,A O OD A D A O OE A E '+=='+''所以,A O OD A O OE'⊥⊥'又因为0,OD OE OD ⋂=⊂平面,BCDE OE ⊂平面BCDE 所以A O '⊥平面BCDE ;(2)取DE 中点H ,则OH OB ⊥以O 为坐标原点,,,OH OB OA '所在直线分别为,,x y z 轴,建立空间直角坐标系则()(()()0,0,0,,0,3,0,1,2,0O A C D --',设平面A CD '的一个法向量为(),,n x y z =,又((),1,1,0CA CD ==' ,所以300n CA y n CD x y ⎧⋅==⎪⎨⋅=+=⎪'⎩,令1x =,则1,y z =-=,则(1,n =-,又()()0,3,0,0,6,0B CB =,所以点B 到平面A CD '16.【详解】(1)因为1121212222n n n na a a a n --++++= ,①所以当2n ≥时,1121211222n n a a a n --+++=- ,②由①-②得,12nn a =,所以2nn a =,经检验,当1n =时,12a =,符合题意,所以2nn a =(2)由题设知0q >.若1q =,则1,n n a a a n n n ⎧⎫=⎨⎬⎩⎭是递减数列,符合题意.若1q <,则当1log q n a >时,11nn a a q =<,不为正整数,不合题意.若1q >,则()()1111n n n qn n a a a n n n n +⎡⎤-+⎣⎦-=++,当1qn n >+,即11n q >-时,11n n a a n n +>+,这与n a n ⎧⎫⎨⎬⎩⎭是递减数列相矛盾,不合题意.故公比1q =.17.【详解】(1)因为()πsin 6f x x ω⎛⎫=+⎪⎝⎭在2π(0,}3上单调递增,在2π,π3⎛⎤⎥⎝⎦上单调递减,所以2π13f ⎛⎫=⎪⎝⎭且4π3T ≥,所以2πππ2π,362k k ω⋅+=+∈Z ,可知13,2k k ω=+∈Z ,又由2π4π3ω≥,可知302ω<≤,所以12ω=,故()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭,由1ππ,26x m m +=∈Z ,可得π2π3x m =-,即0π2π,3x m m =-∈Z .(2)22222201()2362cos cos 2222b c a b c bc a bc a A x bc bc bc+-+----=====,化简得2363a bc =-,因为11sin 22ABC S a AD bc A =⋅=,所以AD =,所以()22223()3()44363bc bc AD a bc ==-,又b c +≥,所以9bc ≤,当且仅当3b c ==时取等号,所以()22223()3327363436343634499()bc AD bc bc bc ==≤=-⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦,所以AD ≤,故AD.18.【详解】(1)当()()10,e ln ,e xxm f x x f x x==--'=,所以()1e 1k f '==-,而()1e f =,切线方程为()()e e 11y x -=--,即所求切线方程为()e 110x y --+=;(2)()f x 得定义域为()()1,,e xm f x x m∞='-+-+,设()()1e xg x f x x m='=-+,则()21e 0()xg x x m '=+>+,故()f x '是增函数,当x m →-时,(),f x x ∞∞→-→+'时,()f x ∞'→+,所以存在()0,x m ∞∈-+,使得001e x x m=+①,且()0,x m x ∈-时,()()0,f x f x '<单调递减,()0,x x ∞∈+时,()()0,f x f x '>单调递增,故()()0min 00()e ln xf x f x x m ==-+②,由①式得()00ln x x m =-+③,将①③两式代入②式,结合2m ≤得:min 000011()20f x x x m m m m x m x m =+=++-≥-=-≥++,当且仅当01x m =-时取等号,结合(2)式可知,此时()00e 0x f x =>,故()0f x >恒成立.19.【详解】(1)由题意知()()212,,,0,,0b P c F c F c a ⎛⎫- ⎪⎝⎭,显然点P 在直线1y =的上方,因为直线1y =为12PF F 的等线,所以222212,2,b ce c a b a a -====+,解得1a b ==,E 的方程为2213y x -=(2)设()00,P x y ,切线()00:m y y k x x -=-,代入2213y x -=得:()()()2222200000032230k xk kx y x k x y kx y -+--+-+=,故()()()22222000000243230k kx y kkx y kx y ⎡⎤-+-+-+=⎣⎦,该式可以看作关于k 的一元二次方程()22200001230x k x y k y --++=,所以000002200031113x y x y x k x y y ===-⎛⎫+- ⎪⎝⎭,即m 方程为()001*3y y x x -=当m 的斜率不存在时,也成立渐近线方程为y =,不妨设A 在B 上方,联立得A B x x ==,故02A B x x x +==,所以P 是线段AB 的中点,因为12,F F 到过O 的直线距离相等,则过O 点的等线必定满足:,A B 到该等线距离相等,且分居两侧,所以该等线必过点P ,即OP的方程为y =,由2213y y x ⎧=⎪⎨-=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩,故P .所以03A A y ====,所以03B B y ====-,所以6A B y y -=,所以1212122ABCD A B A B S F F y y y y =⋅-=-=(3)设(),G x y ,由13OG OP =,所以003,3x x y y ==,故曲线Γ的方程为()229310x y x -=>由(*)知切线为n ,也为0093133x y y x -=,即00133y y x x -=,即00310x x y y --=易知A 与2F 在n 的右侧,1F 在n 的左侧,分别记12,,F F A 到n 的距离为123,,d d d ,由(2)知000011A A x y y y x x ===--,所以3d 由01x ≥得12d d ==因为231d d d +==,所以直线n 为12AF F .等线.。
安徽省六安市毛坦厂中学2025届高三上学期9月月考数学试题

安徽省六安市毛坦厂中学2025届高三上学期9月月考数学试题一、单选题1.命题p :n ∃∈N ,22n n ≥,则命题p 的否定为( ) A .n ∀∈N ,22n n ≤ B .n ∃∈N ,22n n ≤ C .n ∀∈N ,22n n <D .n ∃∈N ,22n n <2.已知函数y =f x (x ∈R )的图象如图,则不等式()0xf x '<的解集为( )A .()10,2,3∞⎛⎫⋃+ ⎪⎝⎭B .11,,233∞⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭C .()1,0,23∞⎛⎫-⋃ ⎪⎝⎭D .()()1,01,3-⋃3.若1x >,1y >,则“1->x y ”是“ln ln 1x y ->”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.“学如逆水行舟,不进则退:心似平原跑马,易放难收”(明·《增广贤文》)是勉励人们专心学习的.假设初始值为1,如果每天的“进步率”都是1%,那么一年后是365365(11%) 1.01+=;如果每天的“退步率"都是1%,那么一年后是355365(11%)0.99-=.一年后“进步者”是“退步者”的3653653051.01 1.0114810.990.99⎛⎫=≈ ⎪⎝⎭倍.照此计算,大约经过( )天“进步者”是“退步者"的2倍(参考数据:lg1.010.00432,lg0.990.00436≈≈-,lg 20.3010≈) A .33B .35C .37D .395.已知583log 2,log 3,log 5a b c ===,则下列结论正确的是( ) A .a b c << B .b a c << C .a c b <<D .b c a <<6.已知函数()f x 在[)2,+∞上单调递减且对任意x ∈R 满足()()13f x f x +=-,则不等式()()235f x f ->的解集是( )A .()(),14,∞∞-⋃+B .(),4∞-C . 1,+∞D .1,4 7.已知x 1、x 2分别是函数f (x )=ex +x -4、g (x )=ln x +x -4的零点,则12ln xe x +的值为( )A .2ln3e +B .ln3e +C .3D .48.若函数2()2ln 4f x x ax x =--存在极大值,则实数a 的取值范围为( ) A .()1,∞-+B .()1,0-C .()0,∞+D .(),1∞-二、多选题9.已知函数()f x 的定义域为R ,且()()()()()f x y f x f y f x f y +=++,0x >时,()0f x >,()23f =,则( )A .()11f =B .函数()f x 在区间()0,∞+单调递增C .函数()f x 是奇函数D .函数()f x 的一个解析式为()21xf x =-10.已知函数3()1f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线 11.已知1,1x y >>,且4xy =,则( )A .45x y ≤+<B .220log log 1x y <⋅≤C .2log y x 的最大值为2D .21log log 2x x y ≤+<三、填空题12.某服装加工厂为了适应市场需求,引进某种新设备,以提高生产效率和降低生产成本.已知购买x 台设备的总成本为()21800200f x x x =++(单位:万元).若要使每台设备的平均成本最低,则应购买设备台.13.已知函数()2lg 4f x x x =+-的零点在区间()(),1k k k Z +∈上,则k =.14.已知对任意(0,)x ∈+∞,都有()111ln 0kxk e x x ⎛⎫+-+> ⎪⎝⎭,则实数k 的取值范围为.四、解答题15.已知函数2()1,f x ax ax a R =+-∈其中. (Ⅰ)当2a =时,解不等式()0f x <;(Ⅱ)若不等式()0f x <的解集为R ,求实数a 的取值范围. 16.已知函数2()ln ,R f x ax x x a =+-∈.(1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若函数()y f x =在区间[]1,3上是减函数,求实数a 的取值范围. 17.给定函数()(2)e x f x x =+.(1)判定函数()f x 的单调性,并求出()f x 的极值; (2)画出()f x 的大致图像;(3)求出方程()(R)f x a a =∈的解的个数. 18.设函数()2ln f x ax x =--(R)a ∈.(Ⅰ)求()f x 的单调区间;(Ⅱ)当1a =时,试判断()f x 零点的个数;(Ⅲ)当1a =时,若对(1,)x ∀∈+∞,都有(41ln )()10k x x f x --+-<(Z k ∈)成立,求k 的最大值.19.定义在R 上的函数f (x )满足:如果对任意的x 1,x 2∈R ,都有f (122x x +)()()122f x f x +≤,则称函数f (x )是R 上的凹函数,已知二次函数f (x )=ax 2+x (a ∈R ,a ≠0)(1)当a =1,x ∈[﹣2,2]时,求函数f (x )的值域;(2)当a =1时,试判断函数f (x )是否为凹函数,并说明理由;(3)如果函数f (x )对任意的x ∈[0,1]时,都有|f (x )|≤1,试求实数a 的范围.。
湖北省荆州市沙市中学2024-2025学年高三上学期9月月考试题 数学(含解析)

2024—2025学年度上学期2022级9月月考数学试卷考试时间:2024年9月25日一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.集合,若,则集合可以为()A. B. C. D.2.若复数,则( )AB.C. 1D. 23.已知,若与的夹角为,则在上的投影向量为( )A .B .C .D .4.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量、放电时间和放电电流之间关系的经验公式:,其中为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为时,放电时间为;当放电电流为时,放电时间为,则该蓄电池的Peukert 常数约为(参考数据:,)( )A .1.12B .1.13C.1.14D .1.155.已知,且,,则( ) A . B . C . D .6.已知函数恒成立,则实数的最小值为( )A .B .C .D .7.函数与函数的图象交点个数为( )A .6B .7C .8D .98.斐波拉契数列因数学家斐波拉契以兔子繁殖为例而引入,又称“兔子数列”. 这一数列如下定义:设为斐波拉契数列,,其通项公式为.{}215=∈<N M x x {}05⋃=≤<M N x x N {}4{}45≤<x x {}05<<x x {}5<x x 232022202320241i i i i +i i z =-+-++- z =2b a = a b 60︒2a b - b 12br 12b- 32b- 32b C t I C I t λ=λ7.5A 60h 25A 15h λlg 20.301≈lg 30.477≈,(0,π)αβ∈cos α=sin()αβ+=αβ-=4π34π4π-34π-2()()ln 0f x x ax b x =++≥a 2-1-12()ln 1f x x =-()πsin 2g x x ={}n a ()*12121,1,3,N n n n a a a a a n n --===+≥∈,设是的正整数解,则的最大值为( )A .5B .6C .7D .8二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.给出下列命题,其中正确命题为( )A .已知数据,满足:,若去掉后组成一组新数据,则新数据的方差为168B .随机变量服从正态分布,若,则C .一组数据的线性回归方程为,若,则D .对于独立性检验,随机变量的值越大,则推断“两变量有关系”犯错误的概率越小10.如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有( ) A .动点B .与不可能垂直C .三棱锥体积的最小值为D .当三棱锥的体积最大时,其外接球的表面积为11.已知抛物线的焦点为,准线交轴于点,直线经过且与交于两点,其中点A 在第一象限,线段的中点在轴上的射影为点.若,则( )A .B .是锐角三角形C .四边形D .三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12.若“使”为假命题,则实数的取值范围为___________.13.在中,,∠,D 为线段AB 靠近点的三等分点,E 为线段CD 的中点,若,则的最大值为________.14.将这七个数随机地排成一个数列,记第i 项为,若,n nn a ⎤⎥=-⎥⎦n 2log 1(14(x x x ⎡⎤⎣⎦-<+n 12310x x x x 、、、、()12210i i x x i --=≤≤110x x 、X ()21,,( 1.5)0.34N P x σ>=()0.34P x a <=0.5a =()(),1,2,3,4,5,6i i x y i = 23y x =+6130i i x ==∑6163i i y ==∑2χ1111ABCD A B C D -E 1DD F 11C CDD 1//B F 1A BE F 1B F 1A B 11B D EF -1311B D DF -25π22:2(0)C y px p =>F x D l F C ,A B AF M y N MN NF =l ABD △MNDF 22||BF FA FD ⋅>[]01,4x ∃∈20040x ax -+>a ABC ∆BC =3A π=A 14BF BC =AE AF ⋅ 1,2,3,4,5,6,7()1,2,,7i a i = 47a =,则这样的数列共有个.四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知的内角,,的对边分别为,,,若.(1)求的值;(2)若,求周长的取值范围.16.已知正项数列的前项和为,且.(1)求数列的通项公式;(2)设,若数列满足,且数列的前n 项和为,若恒成立,求的取值范围.17.如图所示,半圆柱与四棱锥拼接而成的组合体中,是半圆弧上(不含)的动点,为圆柱的一条母线,点在半圆柱下底面所在平面内,.(1)求证:;(2)若平面,求平面与平面夹角的余弦值;(3)求点到直线距离的最大值.123567a a a a a a ++<++ABC △A B C a b c ()4sin sin sin -=-A b B c A B a ABC△ABC △{}n a n n S 222n n n a a n S +-={}n a 21na nb =-{}nc 11n n n n b c b b ++=⋅{}n c n T ()12n T n λ-+≤λ1OO A BCDE -F BC ,B C FG A 122,OB OO AB AC ====CG BF ⊥//DF ABE FOD GOD G OD18.已知双曲线的中心为坐标原点,渐近线方程为,点在双曲线上. 互相垂直的两条直线均过点,且,直线交于两点,直线交于两点,分别为弦和的中点.(1)求的方程;(2)若直线交轴于点,设.①求;②记,,求.19.如果函数 F (x )的导数为,可记为 ,若 ,则表示曲线 y =f (x ),直线 以及轴围成的“曲边梯形”的面积. 如:,其中 为常数; ,则表及轴围成图形面积为4.(1)若 ,求 的表达式;(2)求曲线 与直线 所围成图形的面积;(3)若 ,其中 ,对 ,若,都满足,求 的取值范围.E y =(2,1)-E 12,l l ()(,0n n P p p )*n ∈N 1l E ,A B 2l E ,C D ,M N AB CD E MN x ()()*,0n Q t n ∈N 2nn p =n t n a PQ =()*21n b n n =-∈N 211(1)nkk k k k b b a +=⎡⎤--⎣⎦∑()()F x f x '=()()d f x x F x ⎰=()0f x ≥()()()baf x dx F b F a =-⎰x a x b ==,x 22d x x x C ⎰=+C ()()222204xdx C C =+-+=⎰0,1,2x x y x ===x ()()()e 1d 02xf x x f =⎰+=,()f x 2y x =6y x =-+()[)e 120,xf x mx x ∞=--∈+,R m ∈[)0,a b ∞∀∈+,a b >()()0d d a bf x x f x x >⎰⎰m()()32024+1232022022022024241i 1i ()1+1i 1i 1i 11i i iiiii z i =-+----⨯-+====--+-+++()0f x ≥2()g x x ax b =++1x >()0g x ≥01x <<()0g x <(1)0(0)0g g =⎧⎨≤1010a b a b b ++=⇒=--⎧⎨≤1a ≥-1.C2.C 【详解】6.B 【详解】∵恒成立,设,则当时,时,∴,即,∴4x ≥()()ln 1ln 31f x x g x =-≥>≥24x <<()ln 1ln10f x x g =-≥=>2x =()ln 1ln10sin πf x x =-===①当时,点,②当时,③当时,,02p F ⎛⎫ ⎪⎝⎭x 11,,0,242x y p M N ⎛⎫⎛+ ⎪ ⎝⎭⎝MNF V MN l 11.ABD 【详解】由题意可知:抛物线的焦点为,准线为则可知为等边三角形,即且∥x 轴,可知直线[5,)+∞00040x ax -+>[]1,4x ∀∈240x ax -+≤4≥+a x x[]1,4()4f x x x=+[]1,2[]2,4()()145f f ==()max 5f x =5a ≥a [5,)+∞11812345621+++++=310S ≤333310360A A ⨯⨯=4=at ()0>t ABC △2sin =⋅a R A 2sinB =⋅b R 2sin =⋅c R C ()22sin sin sin sin -=-t A B C A B ABC △()sin sin =+C A B ()()22sin sin sin sin -=+-t A B A B A B ()()()221sin sin cos2cos2sin sin 2+-=--=-A B A B A B A B 2222sin sin sin sin -=-t A B A B 1=t 4=a 12. 【详解】因为“使”为假命题,所以“,”为真命题,其等价于在上恒成立,又因为对勾函数在上单调递减,在上单调递增,而,所以,所以,即实数的取值范围为.13.14.360【解析】∵,∴,列举可知:①(1,2,3)……(1,2,6)有4个;②(1,3,4),……,(1,3,6)有3个;③(1,4,5)有1个;④(2,3,4),(2,3,5) 有2个;故共有10个组合,∴共计有个这样的数列。
上海市宝山中学2024-2025学年高三上学期9月月考数学试卷

上海市宝山中学2024-2025学年高三上学期9月月考数学试卷一、填空题1.若()i 1i z =⋅-(其中i 表示虚数单位),则Im z =.2.在等差数列{}n a 中,前7项的和714S =,则35a a +=.3.已知()22f x x x =+,则曲线()1y f x x ==在处的切线方程是.4.在(4x 的展开式中,3x 的系数为.5.已知直线()1:2310l m x y ---=与直线()2:210l mx m y +++=相互平行,则实数m 的值是. 6.已知双曲线22221x y a b-=(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为. 7.已知平面向量a r ,b r 满足3,4a b ==r r 且向量a r ,b r 的夹角为 π3,则 2a b +r r 在a r 方向上的投影数量为.8.已知,R a b ∈且0a ≠,则4||a b b a++-的最小值是. 9.在ABC V 中,角A B C ,,所对的边分别为a b c ,,.已知357a b c ===,,,则ABC V 的面积为.10.已知01a <<, 函数 1(2)41,2,2,2x a x a x y a x --++≤⎧=⎨>⎩若该函数存在最小值,则实数a 的取值范围是11.已知曲线C 由抛物线24x y =及抛物线24x y =-组成,若(4,3)A ,(4,3)B -,D ,E 是曲线C 上关于x 轴对称的两点,A ,B ,D ,E 四点不共线,其中点D 在第一象限,则四边形ABED 周长的最小值为 .12.设 a n 与 b n 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若 a n 与 b n 均为等差数列,则M 中最多有1个元素;②若 a n 与 b n 均为等比数列,则M 中最多有2个元素;③若 a n 为等差数列, b n 为等比数列,则M 中最多有3个元素;④若 a n 为递增数列, b n 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.二、单选题13.已知,R a b ∈, 则“a b >”是“33a b >”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 14.设α、β为两个平面,m 、n 为两条直线, 且m αβ=I .下述四个命题: ①若//m n ,则//n α或//n β ②若m n ⊥,则n α⊥或n β⊥③若//n α且//n β,则//m n ④若n 与α、β所成的角相等,则m n ⊥,其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④15.设函数πsin()(05)6y x ωω=+<<图像的一条对称轴方程为π12x =,若12,x x 是该函数的两个不同的零点,则12x x -不可能取下述选项中的( ).A .π4B .π3C .π2D .π16.已知函数()y f x =是定义在R 上的奇函数,当0x >时,()()131,0212,23x x f x f x x -⎧-<≤⎪=⎨->⎪⎩,若关于x 的方程()()()()2220R f x m f x m m ⎡⎤-++=∈⎣⎦恰有4个不相等的实数根,则实数m 的值是( ) A .23- B .23 C .0 D .23±三、解答题17.已知2()2cos 2f x x x =,(1)求函数()y f x =的单调递减区间;(2)若π[0,]2x ∈,求函数()y f x =的值域. 18.如图,已知AB ⊥平面BCD ,BC BD ⊥,直线AD 与平面BCD 所成的角为30︒,且2AB BC ==.(1)求三棱锥A BCD -的体积;(2)设M 为BD 的中点,求异面直线AD 与CM 所成角的大小.(结果用反三角函数值表示)19.2024年上海书展于8月16日至22日在上海展览中心举办.展会上随机抽取了500名观众,调查他们每个月用在阅读上的时长,得到如图所示的频率分布直方图:(1)求x 的值,并估计这500名观众每个月阅读时长的平均数和中位数;(2)用分层抽样的方法从[)[)20,40,80,100这两组观众中随机抽取12名观众,再若从这12名观众中随机抽取4人参加抽奖活动,求所抽取的4人中两组均有的概率.20.已知椭圆 2222:1(0)x y C a b a b+=>>的左、右焦点分别为 ()2,0F F N -₁、₂,为椭圆的一个顶点,且右焦点 F ₂到双曲线. ²²2x y -=渐近线的距离为 (1)求椭圆C 的标准方程;(2)设直线():0l y kx m k =+≠与椭圆C 交于 A 、B 两点.①若直线l 过椭圆右焦点F ₂,且△AF ₁B 的面积为 求实数k 的值; ②若直线l 过定点P (0,2), 且k >0, 在x 轴上是否存在点T (t ,0)使得以TA 、TB 为邻边的平行四边形为菱形? 若存在,则求出实数t 的取值范围; 若不存在,请说明理由.21.设函数()()2e x f x x ax =+,其中a 为常数.对于给定的一组有序实数(,)k m ,若对任意1x 、2x ∈R ,都有[][]1122()()0kx f x m kx f x m -+⋅-+≥,则称(,)k m 为()f x 的“和谐数组”.(1)若0a =,判断数组(0,0)是否为()f x 的“和谐数组”,并说明理由;(2)若a =()f x 的极值点;(3)证明:若(,)k m 为()f x 的“和谐数组”,则对任意x ∈R ,都有()0kx f x m -+≤.。
忻州市2024年9月月考高三数学试题与答案

忻州市2024年9月月考高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}{|lg 2,|A x y x B x y ==-=∈=N ,则A B = ()A.{}0,1,2 B.{}0,1 C.()2,2- D.()0,22.已知,a b 挝R R ,且()()2i 1i 2i a b +-=+,则a b +=()A.1-B.0C.1D.23.已知命题:p 20,2x x x ∃>>,则p 的否定为()A.20,2xx x ∀>≤ B.20,2xx x ∀>> C.20,2xx x ∃>≤ D.20,2xx x ∃≤≤4.在平行四边形ABCD 中,2AP PB = ,则PD =()A.23+AB AD B.23AB AD-+C.13AB AD +D.13AB AD-+5.如果随机变量(),B n p ξ~,且()()4312,3E D ξξ==,则p =()A.14B.13C.12D.236.已知0,0,24x y x y xy >>++=,则x y xy +-的最小值为()A.32B.2C.12D.17.已知数列{}n a 满足1122n n n n a a a a ++++=,且12311,217a a a a ==+,则1003a =()A.165 B.167C.169 D.1718.已知0a >,设函数()()2e 2ln ln xf x a x x a =+---,若()0f x ≥在()0,∞+上恒成立,则a 的取值范围是()A.10,e⎛⎤ ⎥⎝⎦B.(]0,1 C.(]0,e D.(]0,2e 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0a >,则函数()2xf x a a =-的图象可能是()A. B. C. D.10.已知函数()()π2sin 22f x x ϕϕ⎛⎫=+< ⎪⎝⎭,且()π6f x f ⎛⎫≤ ⎪⎝⎭,则下列结论正确的是()A.π6ϕ=B.()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上单调递增C.若12,x x 为方程()2f x =的两个解,则21x x -的最小值为2πD.若关于x 的方程()f x a =在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有一个解,则a 的取值范围为{}2⎡⋃⎣11.已知函数()f x 的定义域为R ,设()()21g x f x =+-,若()g x 和()1f x '+均为奇函数,则()A.()21f = B.()f x 为奇函数C.()f x '的一个周期为4D.20241()2024k f k ==∑三、填空题:本题共3小题,每小题5分,共15分.12.将一个底面半径为()0r r >的圆柱形铁块熔铸成一个实心铁球,则该实心铁球的表面积与圆柱的侧面积之比为__________.13.设π02α<<,若π5tan tan 42αα⎛⎫+-= ⎪⎝⎭,则sin α=______.14.设,a b 是正实数,若椭圆221ax by +=与直线1x y +=交于点,A B ,点M 为AB 的中点,直线OM (O 为原点)的斜率为2,又OA OB ⊥,则椭圆的方程为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.如图,在直三棱柱111ABC A B C -中,ACB ∠为直角,侧面11BCC B 为正方形,2BC =,C 1A =.(1)求证:1⊥BC 平面1AB C ;(2)求直线1AB 与平面1ABC 所成的角的正弦值.16.已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的图象的相邻两条对称轴之间的距离为π2,点π,03⎛⎫⎪⎝⎭为()f x 的图象的一个对称中心.(1)求()f x 的解析式;(2)将()f x 的图象向右平移π12个单位长度,得到函数()g x 的图象,若()g x 在区间[]0,m 上的最大值和最小值互为相反数,求m 的最小值.17.已知函数()f x 是()(0xg x a a =>且1)a ≠的反函数,且函数()()()()22F x fx f x f a =--.(1)若()()()41,6,3F f m g n =-==,求a 及3m n的值;(2)若函数()F x 在1,22⎡⎤⎢⎥⎣⎦上有最小值2-,最大值7,求a 的值.18.在ABC V 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB λμ==.(i )求11λμ+的值;(ii )若CA CB =,求CMN 和ABC V 周长之比的最小值.19.已知函数()()ln f x x x a =+.(1)当0a =时,求()f x 的极值;(2)若()f x 存在两个极值点()1212,x x x x <.(i )求a 的取值范围;(ii )证明:()1240e f x -<<忻州市2024年9月月考高三数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}{|lg 2,|A x y x B x y ==-=∈=N ,则A B = ()A.{}0,1,2 B.{}0,1 C.()2,2- D.()0,2【答案】B【分析】根据题意求集合,A B ,进而求交集即可.【详解】令20x ->,解得2x <,则{}|2A x x =<,令240x -≥,解得22x -≤≤,则{}{}|220,1,2B x x =∈-≤≤=N ,所以{}0,1A B = .2.已知,a b 挝R R ,且()()2i 1i 2i a b +-=+,则a b +=()A.1-B.0C.1D.2【答案】C【分析】根据复数的乘法运算结合复数相等求,a b ,即可得结果.【详解】因为()()2i 1i 2i a b +-=+,则()212i 2i a a b ++-=+,可得2212a a b +=⎧⎨-=⎩,解得01a b =⎧⎨=⎩,所以1a b +=.3.已知命题:p 20,2x x x ∃>>,则p 的否定为()A.20,2xx x ∀>≤ B.20,2xx x ∀>> C.20,2xx x ∃>≤ D.20,2xx x ∃≤≤【答案】A【分析】根据特称命题的否定是全称命题分析判断.【详解】由题意可知:20,2x x x ∃>>的否定为20,2x x x ∀>≤.4.在平行四边形ABCD 中,2AP PB = ,则PD =()A.23+AB AD B.23AB AD-+C.13AB AD +D.13AB AD-+【答案】B【分析】借助平行四边形的性质及向量线性运算法则计算即可得.【详解】由2AP PB = ,则22AP AB AP =-,即23AP AB =uu u r uu u r ,则23PA AB =-,故23PD PA AD AB AD =+=-+.5.如果随机变量(),B n p ξ~,且()()4312,3E D ξξ==,则p =()A.14B.13C.12D.23【答案】D【分析】根据期望的性质可得()4E ξ=,结合二项分布的期望和方差公式运算求解即可.【详解】因为()()3312E E ξξ==,即()4E ξ=,又因为随机变量(),B n p ξ~,且()43D ξ=,则()4413np np p =⎧⎪⎨-=⎪⎩,解得623n p =⎧⎪⎨=⎪⎩.6.已知0,0,24x y x y xy >>++=,则x y xy +-的最小值为()A.32B.2C.12D.1【答案】D【分析】根据题意利用基本不等式可得2()422x y x y xy +--=≤,解得2x y +≥,结合题意整理即可得最小值.【详解】因为0,0,24x y x y xy >>++=,则2()422x y x y xy +--=≤,当且仅当1x y ==时,等号成立,解得2x y +≥或4x y +≤-(舍去),所以()342122x y x y x y xy x y +--+-=+-=-≥.7.已知数列{}n a 满足1122n n n n a a a a ++++=,且12311,217a a a a ==+,则1003a =()A.165B.167C.169 D.171【答案】B【分析】由题意整理可得21112n n n a a a +++=,可知数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,结合题意求首项和公差,结合等差数列通项公式可得121n a n =+,即可得结果.【详解】因为1122n n n n a a a a ++++=,可得21112n n n a a a +++=,可知数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,又因为12121a a a =+,即121121112a a a a +==+,即21112a a -=,可知1n a ⎧⎫⎨⎬⎩⎭是2为公差的等差数列,且317a =,则131122743a a =-⨯=-=,可得()132121n n n a =+-=+,即121n a n =+,所有10031320167a ==.8.已知0a >,设函数()()2e 2ln ln xf x a x x a =+---,若()0f x ≥在()0,∞+上恒成立,则a 的取值范围是()A.10,e⎛⎤ ⎥⎝⎦B.(]0,1 C.(]0,e D.(]0,2e 【答案】D【分析】根据题意同构可得()()22eln e ln xx ax ax +≥+,构建()ln ,0g x x x x =+>,结合单调性可得2e xax ≥,参变分析可得2e x a x ≤,构建()2e ,0xh x x x=>,利用导数求最值结合恒成立问题分析求解.【详解】由题意可知:()()2e2ln ln 0xf x a x x a =+---≥,整理可得()()22e ln e ln x x ax ax +≥+,设()ln ,0g x x x x =+>,则()110g x x=+>',可知()g x 在0,+∞内单调递增,由题意可知:()()2exg g ax ≥,则2exax ≥对任意∈0,+∞内恒成立,可得2e xa x ≤对任意∈0,+∞内恒成立,设函数()2e ,0x h x x x =>,则()()2221exx h x x -'=,令ℎ'>0,解得12x >;令ℎ'<0,解得102x <<;可知ℎ在10,2⎛⎫ ⎪⎝⎭内单调递减,在1,2∞⎛⎫+ ⎪⎝⎭内单调递增,可知ℎ的最小值为12e 2h ⎛⎫=⎪⎝⎭,可得02e a <≤,所以a 的取值范围为(]0,2e .【点睛】关键点点睛:根据题意同构可得()()22e ln e ln xx ax ax +≥+,构建()ln ,0g x x x x =+>,结合单调性可得2e x ax ≥.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知0a >,则函数()2xf x a a =-的图象可能是()A. B. C. D.【答案】AD【分析】通过特值法,排除错误选项,通过a 的取值,判断函数的图象的形状,推出结果即可.【详解】由于当1x =时,(1)20f a a a =-=-<,排除B ,C ,当2a =时,()24x f x =-,此时函数图象对应的图形可能为A ,当12a =时,1()(12xf x =-,此时函数图象对应的的图形可能为D.10.已知函数()()π2sin 22f x x ϕϕ⎛⎫=+< ⎪⎝⎭,且()π6f x f ⎛⎫≤ ⎪⎝⎭,则下列结论正确的是()A.π6ϕ=B.()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上单调递增C.若12,x x 为方程()2f x =的两个解,则21x x -的最小值为2πD.若关于x 的方程()f x a =在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有一个解,则a 的取值范围为{}2⎡⋃⎣【答案】AD【分析】由题意可得π26f ⎛⎫=± ⎪⎝⎭,代入解出即可得A ;借助整体思想与正弦函数的单调性可得B ;由题意可得21x x -的最小值为原函数的最小正周期,即可得C ;结合原函数在π0,4⎡⎤⎢⎥⎣⎦上的值域及其性质可得D.【详解】对A :由题得π26f ⎛⎫=± ⎪⎝⎭,所以()ππ2π62k k ϕ⨯+=+∈Z ,即()ππ6k k ϕ=+∈Z ,由π2ϕ<,所以π6ϕ=,故A 正确;对B :当π,π2x ⎡⎤∈⎢⎥⎣⎦时,7ππ13π2666x ≤+≤,所以()f x 在区间π,π2⎡⎤⎢⎥⎣⎦上不单调,故B 错误;对C :21x x -的最小值为最小正周期π,故C 错误;对D :当π0,4x ⎡⎤∈⎢⎣⎦时,ππ2π2663x ≤+≤,所以a 的取值范围为{}2⎡⋃⎣,故D 正确.11.已知函数()f x 的定义域为R ,设()()21g x f x =+-,若()g x 和()1f x '+均为奇函数,则()A.()21f =B.()f x 为奇函数C.()f x '的一个周期为4D.20241()2024k f k ==∑【答案】ACD【分析】对A :结合奇函数的性质,负值0x =代入计算即可得;对B :由()1f x '+为奇函数可得()1f x +为偶函数,再利用偶函数的性质结合A 中所得可得()()2f x f x +-=;对C :由B 中所得()()22f x f x ++=,即可得()()4f x f x =+,对其左右求导后结合周期性即可得;对D :由C 中所得可得()f x 的周期,结合赋值法计算出一个周期内的和即可得.【详解】对A :由()g x 为奇函数,可得()()21210f x f x +-+-+-=,即()()222f x f x ++-+=,令0x =,解得()21f =,故A 正确;对B :由()1f x '+为奇函数可得,则()1f x +为偶函数,所以1+=1−,所以()()2f x f x =-,又()()222f x f x -++=,所以()()22f x f x ++=,又()()2f x f x -=+,所以()()2f x f x +-=,故B 错误;对C :由()()22f x f x ++=可得,()()242f x f x +++=,所以()()4f x f x =+,求导可得,()()4f x f x ''=+,故'的一个周期为4,故C 正确;对D :由()()4f x f x =+,故()f x 的一个周期为4,因为()()222f x f x -++=,令1x =可得,()()132f f +=,令2x =可得,()()242f f +=,所以()()()()12344f f f f +++=,所以202412024()420244k f k ==⨯=∑,故D 正确.【点睛】结论点睛:解决抽象函数的求值、性质判断等问题,常见结论:(1)关于对称:若函数()f x 关于直线x a =轴对称,则()(2)f x f a x =-,若函数()f x 关于点(),a b 中心对称,则()2(2)f x b f a x =--,反之也成立;(2)关于周期:若()()f x a f x +=-,或1()()f x a f x +=,或1()()f x a f x +=-,可知函数()f x 的周期为2a .三、填空题:本题共3小题,每小题5分,共15分.12.将一个底面半径为()0r r >的圆柱形铁块熔铸成一个实心铁球,则该实心铁球的表面积与圆柱的侧面积之比为__________.【答案】2【分析】根据题意关系可得R r=,再结合侧面积公式运算求解即可.【详解】设球的半径为R ,由题意可知:234ππ3r R ⨯=⨯,解得R r =,223622R r ⎫===⎪⎭.13.设π02α<<,若π5tan tan 42αα⎛⎫+-= ⎪⎝⎭,则sin α=______.【答案】【分析】借助两角差的正切函数公式化简并计算可得tan 3α=,然后利用正切函数定义即可得解.【详解】π1tan 5tan tan tan 41tan 2ααααα-⎛⎫+-=+=⎪+⎝⎭,整理得()()tan 32tan 10αα-+=,因为π02α<<,所以tan 0α>,所以tan 3α=,则310sin 10α==.14.设,a b 是正实数,若椭圆221ax by +=与直线1x y +=交于点,A B ,点M 为AB 的中点,直线OM (O 为原点)的斜率为2,又OA OB ⊥,则椭圆的方程为__________.【答案】2242133x y +=【分析】联立直线与椭圆方程可得韦达定理,即可根据垂直关系的坐标运算以及两点斜率公式,即可求解4323a b ⎧=⎪⎪⎨⎪=⎪⎩,即可求解.【详解】由已知条件可知,,0,a b a b >≠,联立2211x y ax by +=⎧⎨+=⎩,消去y 并整理得:()2210a b x bx b +-+-=,设1,1,2,2,则1212Δ021b x x a b b x x a b ⎧⎪>⎪⎪+=⎨+⎪-⎪=⎪+⎩,则()()()1212121222111a y y x x a b a y y x x a b ⎧+=-+=⎪⎪+⎨-⎪=--=⎪+⎩,由OA OB ⊥,则0OA OB ⋅=,又因为2OM k =,所以1212121222220OM y y a k x x b a b x x y y a b +⎧⎪===⎪+⎪⎨⎪+-⎪+==⎪+⎩,解得4323a b ⎧=⎪⎪⎨⎪=⎪⎩.所以椭圆的方程为2242133x y +=.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.如图,在直三棱柱111ABC A B C -中,ACB ∠为直角,侧面11BCC B 为正方形,2BC =,C 1A =.(1)求证:1⊥BC 平面1AB C ;(2)求直线1AB 与平面1ABC 所成的角的正弦值.【分析】(1)结合题目条件,借助线面垂直的判定定理可得AC ⊥平面11BB C C ,即可得1AC BC ⊥,再利用线面垂直的判定定理可得证;(2)建立适当空间直角坐标系后,可计算出直线的方向向量与平面的法向量,借助向量夹角公式即可得两向量夹角余弦值,即可得直线1AB 与平面1ABC 所成的角的正弦值.【小问1详解】侧面11BCC B 为正方形,11BC B C ∴⊥,直三棱柱1111,ABC A B C AC CC -∴⊥,111,,,,AC CC AC BC BC CC C BC CC ⊥⊥⋂=⊂ 平面11BB C C ,AC ∴⊥平面11BB C C ,1BC ⊂ 平面11BB C C ,1AC BC ∴⊥1111,,,BC B C AC B C C AC B C ⊥=⊂ 平面1AB C1BC ∴⊥平面1AB C ;【小问2详解】建立如图所示的空间直角坐标系1C ABC -,则()()()()()110,0,0,1,0,0,0,2,0,0,2,2,0,0,2C A B B C .又由()()11,2,0,0,2,2AB BC =-=- ,设平面1ABC 的一个法向量为 =s s ,则有120220n AB x y n BC y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1y =,则2,1x z ==,于是()2,1,1n =,又由()1111,2,2,2,3,AB AB n AB n =-⋅=== 设直线1AB 与平面1ABC 所成的角为θ,所以1116sin cos ,9AB n AB n AB n θ⋅===⋅ ,故直线1AB 与平面1ABC 所成的角的正弦值为9.16.已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的图象的相邻两条对称轴之间的距离为π2,点π,03⎛⎫ ⎪⎝⎭为()f x 的图象的一个对称中心.(1)求()f x 的解析式;(2)将()f x 的图象向右平移π12个单位长度,得到函数()g x 的图象,若()g x 在区间[]0,m 上的最大值和最小值互为相反数,求m 的最小值.【分析】(1)根据周期求解2ω=,利用对称可得π3ϕ=,即可求解;(2)平移可得()πsin 26g x x ⎛⎫=+⎪⎝⎭,即可利用整体法,结合三角函数的性质即可求解.【小问1详解】设()f x 的最小正周期为T ,则ππ22T ω==,所以2ω=,因为()π2π3k k ϕ⨯+=∈Z ,所以()2ππ3k k ϕ=-∈Z ,因为0πϕ<<,所以π3ϕ=,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭;【小问2详解】依题意,()ππππsin 2sin 2121236g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为0x m ≤≤,所以πππ22666x m ≤+≤+,当π6m <时,()g x 的最大值为()g m ,最小值为()102g =,不符题意;当π6m ≥时,()g x 的最大值为1,所以()g x 的最小值为1-,所以π3π262m +≥,解得2π3m ≥,所以m 的最小值为2π3.17.已知函数()f x 是()(0x g x a a =>且1)a ≠的反函数,且函数()()()()22F x f x f x f a =--.(1)若()()()41,6,3F f m g n =-==,求a 及3mn的值;(2)若函数()F x 在1,22⎡⎤⎢⎥⎣⎦上有最小值2-,最大值7,求a 的值.【分析】(1)由题意可得()log a f x x =,()()2log 2log 1a a F x x x =--,结合题意解得2a =,进而可得22log 6,log 3m n ==,结合换底公式运算求解;(2)换元令log a t x =,根据二次函数值域结合t 的值域特征分析可得[]2,2t ∈-,列式求解即可.【小问1详解】因为函数()f x 是()(0xg x a a =>且1)a ≠的反函数,则()log a f x x =,即()()2log 2log 1a a F x x x =--,则()()24log 42log 411a a F =--=-,解得log 42a =或log 40a =(舍),可得2a =,即()2log f x x =,()2x g x =,又因为()()26log 6,23nf mg n ====,即22log 6,log 3m n ==,所以232log 6log 6log 33336mn ===.【小问2详解】由(1)可知:()()2log 2log 1a a F x x x =--,且1,22x ⎡∈⎤⎢⎥⎣⎦,令log a t x =,则[]log 2,log 2,(01a a t a ∈-<<时)或[]log 2,log 2,(1a a t a ∈->时),可得221y t t =--,若函数在1,22⎡⎤⎢⎥⎣⎦上有最小值2-,最大值7,可知221y t t =--的最小值2-,最大值7,令2212y t t =--=-,解得1t =;令2217y t t =--=,解得2t =-或4t =;且log 2a 与log 2a -互为相反数,可知[]2,2t ∈-,则log 22a -=或log 22a =,解得22a =或a =,综上所述,a =或.18.在ABC V 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB λμ== .(i )求11λμ+的值;(ii )若CA CB =,求CMN 和ABC V 周长之比的最小值.【分析】(1)借助三角形内角关系及两角和的正切公式化简并计算即可得;(2)(i )设D 为AB 的中点,结合重心的性质及向量运算可得1133CG CM CN λμ=+ ,再利用三点共线定理即可得解;(ii )由题意可得ABC V 为等边三角形,可设其边长为1,则可用,λμ表示两三角形周长之比,结合(i )中所得与基本不等式即可得解.【小问1详解】由题可知()()tan tan tan tan πtan 1tan tan A B C A B A B A B+=--=-+=-=-又()0,πC ∈,所以π3C =;【小问2详解】(i )设D 为AB 的中点,则1122CD CA CB =+ ,又因为23CG CD = ,所以11113333CG CA CB CM CN λμ=+=+ ,因为,,M G N 三点共线,所以11133λμ+=,所以113λμ+=;(ii )由CA CB =,π3C =,可得ABC V 为等边三角形,设ABC V 的边长为1,CMN 与ABC V 周长分别为12,C C ,则23C =,MN =,所以1C λμ=++,所以12C C =由113λμ+=可得,3λμλμ=+≥(当且仅当λμ=时等号成立),解得49λμ≥,所以124293C C λμ=++,所以CMN 和ABC V 的周长之比的最小值为23.19.已知函数()()ln f x x x a =+.(1)当0a =时,求()f x 的极值;(2)若()f x 存在两个极值点()1212,x x x x <.(i )求a 的取值范围;(ii )证明:()1240ef x -<<.【分析】(1)求导,利用导数求()f x 的单调性和极值;(2)(i )求导可得()()()1ln f x x a x a x x a ⎡⎤=+++⎣⎦+',构建()()()ln g x x a x a x =+++,由题意可知()g x 在(),a -+∞内有两个变号零点,结合导数分析函数零点即可得结果;(ⅱ)由(i )可知,121e a x a -<<-,且()()()2111ln f x x a x a =-++,构建()221ln 0e h x x x x ⎛⎫=-<< ⎪⎝⎭,利用导数求最值即可.【小问1详解】当0a =时,()ln f x x x =,可知()f x 的定义域为()0,∞+,且()1ln f x x ='+,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<;当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,当()0f x '>;可知()f x 在10,e ⎛⎫ ⎪⎝⎭内单调递减,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭内单调递增,所以()f x 的极小值为11e ef ⎛⎫=-⎪⎝⎭,无极大值.【小问2详解】(i )由题意可得:()f x 的定义域为(),a -+∞,且()()()()1ln ln x f x x a x a x a x x a x a⎡⎤=++=+++⎣⎦++',设()()()ln g x x a x a x =+++,可知()g x 在(),a -+∞内有两个变号零点,则()()2ln g x x a =++',当21,e x a a ⎛⎫∈-- ⎪⎝⎭,()0g x '<;当21,e x a ∞⎛⎫∈-+ ⎪⎝⎭时,()0g x '>;可知()g x 在21,e a a ⎛⎫-- ⎪⎝⎭内单调递减,在21,e a ∞⎛⎫-+ ⎪⎝⎭内单调递增,则()g x 的最小值为2211e e g a a ⎛⎫-=-- ⎪⎝⎭,且当x 趋近于+∞时,()g x 趋近于+∞,当21,e x a a ⎛⎫∈-- ⎪⎝⎭时,则()0,ln 0x a x a +>+<,可得()()ln 0x a x a ++<,可得()()()ln g x x a x a x x a =+++<<-,即当x 趋近于a -时,()g x 趋近于a -,可得210e 0a a ⎧--<⎪⎨⎪->⎩,解得210e a -<<,所以实数a 的取值范围为21,0e ⎛⎫- ⎪⎝⎭;(ii )由(i )可知,121ea x a -<<-,且()()111ln 0x a x a x +++=,所以()()()()211111ln ln f x x x a x a x a =+=-++,设()221ln 0e h x x x x ⎛⎫=-<< ⎪⎝⎭,则()()ln 2ln h x x x =-+',因为210,e x ⎛⎫∈ ⎪⎝⎭,则()0h x '<,可知210,e ⎛⎫ ⎪⎝⎭内单调递减,且2214e e h ⎛⎫=- ⎪⎝⎭,可得()240e h x -<<,所以()1240e f x -<<.【点睛】方法点睛:对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解。
广东省揭阳市2024-2025学年高三上学期9月月考数学试题

广东省揭阳市2024-2025学年高三上学期9月月考数学试题一、单选题1.已知集合{}{}|1,|(1)(3)0A x x B x x x =>=+-<,则()A B =R I ð( ) A .()3,+∞B .()1,-+∞C .()1,3-D .(]1,1-2.若复数()13i 3i z -=-(i 为虚数单位),则z z -在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.双曲线2213y x -=的两条渐近线的夹角的大小等于( )A .6π B .3π C .23π D .56π4.在△ABC 中,D 是BC 上一点,满足3BD DC =uu u r uuu r,M 是AD 的中点,若BM BA BC λμ=+u u u u r u u u r u u u r ,则λμ+=( ) A .54B .1C .78D .585.若两个等比数列{}{},n n a b 的公比相等,且1234,2b a a ==,则{}n b 的前6项和为( ) A .578B .638C .124D .2526.若函数()sin f x x x ωω=(0)>ω在区间[,]a b 上是减函数,且()1f a =,()1f b =-,πb a -=,则ω=( ) A .13B .23C .1D .27.已知点()1,0A -,()0,3B ,点P 是圆()2231x y -+=上任意一点,则PAB V 面积的最小值为( )A .6B .112C .92D .6 8.已知函数y =f x 的定义域为R ,且f −x =f x ,若函数y =f x 的图象与函数()2log 22x x y -=+的图象有交点,且交点个数为奇数,则()0f =( )A .1-B .0C .1D .2二、多选题9.设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率. ()P A ,()()0,1P B ∈,则下列说法正确的是( )A .若A ,B 互斥,则()()()P A B P A P B ⋃=+ B .若()()()P AB P A P B =,则A ,B 相互独立C .若A ,B 互斥,则A ,B 相互独立D .若A ,B 独立,则()(|)P B A P B =10.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c .若cos b c A =,内角A 的平分线交BC 于点D ,1AD =,1cos 8A =,以下结论正确的是( )A .34AC =B .8AB =C .18CD BD = D .ABD △11.设函数()()2(1)4f x x x =--,则( )A .1x =是()f x 的极小值点B .()()224f x f x ++-=-C .不等式()4210f x -<-<的解集为{}|12x x <<D .当π02x <<时,()()2sin sin f x f x >三、填空题12.在△ABC 中,若a =2,b +c =7,1cos 4B =-,则b =13.如果一个直角三角形的斜边长等于积为.14.已知函数()()0e 23xf x f x =-++',点P 为曲线()y f x =在点()()0,0f 处的切线l 上的一点,点Q 在曲线e xxy =上,则PQ 的最小值为.四、解答题15.在ABC V 中,角、、A B C 所对的边分别为,4,9a b c c ab ==、、.(1)若2sin 3C =,求sin sin A B ⋅的值; (2)求ABC V 面积的最大值.16.某商场举行有奖促销活动,凡5月1日当天消费不低于1000元,均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球,其中红球有4个,白球有2个,抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出3个球,每有1个红球,可立减80元;方案二:从抽奖箱中,有放回地每次摸出1个球,连摸3次,每摸到1次红球,立减80元. (1)设方案一摸出的红球个数为随机变量X ,求X 的分布列、数学期望和方差; (2)设方案二摸出的红球个数为随机变量Y ,求Y 的分布列、数学期望和方差;(3)如果你是顾客,如何在上述两种抽奖方式中进行选择?请写出你的选择及简要理由. 17.如图,三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,12AB AA AC ===,160BC ABB =∠=o ,点D 是棱11A B 的中点.(1)证明:AD BC ⊥;(2)求面ABC 与面1A BC 夹角的正切值.18.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为()10F ,,直线l 经过点F ,且与C 相交于A ,B 两点,记l 的倾斜角为α. (1)求C 的方程;(2)求弦AB 的长(用α表示);(3)若直线MN 也经过点F ,且倾斜角比l 的倾斜角大π4,求四边形AMBN 面积的最小值.19.如果n 项有穷数列{}n a 满足1n a a =,21n a a -=,…,1n a a =,即()11,2,,i n i a a i n -+==L ,则称有穷数列{}n a 为“对称数列”.(1)设数列{}n b 是项数为7的“对称数列”,其中1234,,,b b b b 成等差数列,且253,5==b b ,依次写出数列{}n b 的每一项;(2)设数列{}n c 是项数为21k -(k *∈N 且2k ≥)的“对称数列”,且满足12n n c c +-=,记n S 为数列{}n c 的前n 项和.①若1c ,2c ,…,k c 构成单调递增数列,且2023k c =.当k 为何值时,21k S -取得最大值? ②若12024=c ,且212024k S -=,求k 的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆南开中学高级高三9月月考数学(文科)试题
一、选择题:本大题共l0小题,每小题5分,共50分.在每小题给出的四个备选项中,只 有一项是符合题目要求的.
1.已知集合A=,B={2,3,4},则 ( ) A . B . C . D .
2.函数,的定义域为( ) A . B . C . D . 3.函数的值域为( ) A . B . C . D .
4.已知f(x)为R 上的减函数,则满足>的实数x 的取值范围是( ) A .(一,1) B .(1,+) C .(-,0)(0,1) D . 5.关于命题P :,命题q :,则下列说法正确的是( )
A .或为真
B .且为真
C .或_为真
D .且为真 6.已知是定义在R 上的奇函数,则的值为( )
A .
B .一3
C .
D . 7.函数与在区间[1,2]上都是减函数,则a 的取值范围是( )
A. B . C . D . 8.设f ,g 都是由A 到A 的映射,其中A={1,2,3},其对应法则(从上到下)如下表:
{}3A B=⋃{}3{}2,4{}1,2,4{}2,3,4(
)2
lg(31)f x x =
+1,3⎛⎫-+∞ ⎪⎝⎭1,13⎛⎫- ⎪⎝⎭11,33⎛⎫- ⎪⎝⎭1,3⎛⎫-∞- ⎪⎝⎭
1
32
x y =-1,2⎛⎫-∞-
⎪⎝⎭()0,+∞()1,0,2⎛⎫-∞-⋃+∞ ⎪⎝⎭1,02⎛⎫
- ⎪⎝⎭
1f x ⎛⎫
⎪⎝⎭
()1f ∞∞∞⋃()(),01,-∞⋃+∞A
∅=∅A A ⋃∅=p ⌝q p ⌝q ⌝p ⌝q ⌝p ⌝q ()221x f x a =--179f -⎛⎫- ⎪⎝⎭
13799
7
()2
2f x x ax =-+21()1
a g x x -=+1(,1]2-
1,0(0,1)2⎛⎫-⋃ ⎪⎝⎭1,0(0,1]2⎛⎫-⋃ ⎪⎝⎭1,12⎛⎫- ⎪⎝⎭
设,,,则a ,b ,C 之间的关系正确的为( ) A . a=b≠C B .a=b=C C .g≠b≠c D .a≠b=c 9.己知定义在R 上的函数f(x)满足f(1)=2,且的导函数在R 上恒有
<1,则不等式f(x)<x+1的解集是( )
A .{x|x<一1}
B .{x | x>1}
C .{x | x<一1或x>1}
D . {x|一1<x<1} 10.若对于x∈[0,1],不等式恒戍立,则一定有( ) A .k ≥0,m ≥
B .k≥.m ≤
C
D .k ≥,m
二、填空题:(本大题5个小题,每小题5分,共25分)各题答案必须填写在答题卡Ⅱ上 (只填结果,不要过程)。
11。
设全集U=R ,A={x|x<一3或x ≥2),B={x|-1<x<5),则=________.
12.lg8+3lg5=________.
13.函数的增区间为________. 14.设函数的反函数为,且 =a ,
则=________.
15.正实数及函数满足,且,则的最小值为
=________.
三、解答题:(本大题6个小题,共75分)各题解答必须答在答题卡Ⅱ上(必须写出必要
[(3)]a g f =[(2)]b g g ={[(1)]}c f g f =()f x ()`
f x ()`
f
x 11kx mx -≤
≤-131413
1
2()
u C A B ()2l g (2)(01)a f x o x x a =+<<()32l g (1)4
24{x o x x x f x -+>≤=()1f x -118f -⎛⎫
⎪⎝⎭
()7f a +12,x x ()f x ()
()
141x f x f x +=-12()()1f x f x +=12()f x x +
的文字说明、演算步骤或推理过程) 16.(13分)已知集合,,若,求
实数a 的取值范围.
17.(13分)已知函数f(x)=一x+3. (1)解不等式:;
(2)设a>2,解关于x 的不等式:
18.(13分)设函数.
(1)求不等式f(x)>0的解集A ;
(2)若集合且,求实数t 的取值范围.
19.(12分)已知命题p :是f(x)=1—3x 的反函数,且
(a)1≤2;
命题q :集合,B={x|x>0}且.
求实数a 的取值范围,使命题P 、q 中有且只有一个为真命题.
20.(12分)已知函数,实数:是f(x)的两个极值点且 满足:0<<1< <3. (1)求实数a 的取值范围;
(2)若对任意b ∈[-1,1]恒成立,求实数m 的取值范围.
2
6
1{|()12
x
x A x --=<4{|l g ()1B x o x a =+<A B =∅()2
43f x x x >-+()
2(3)23
1x a x a f x -++<()2
222(l g )4l g 6f x o x o x =+-1
{|,}2
B x x t x R =-≤∈A B =∅()1
f
x -1f -2
{|(2)1,}A x x a x x R =+++∈A
B =∅()32
112232
f x x ax x a =-++12,x x 1x 2x 2
1222x x m bm -≥--
21.(12分)设函数, (实数a ≠0).
(1)若a>0,求f(x)的增区问;
(2)若a>0且函数f(x)与g(x)的图象只有一个公共点,记g(x)的最小值为h(a) 求h(a)的值域;
(3)若f(x)与g(x)在区间(a ,a+2)上均为增函数,求实数a 的范围
重庆市南开中学级8月月考参考解答
数学(文科)
DBCDA BABBD
11. 12. 3 13. 14. -2 15. 16.解:A=(3,+∞)(一∞,一2),B=(-a ,4一a)
17.解:(1){x|0<x<3); (2)由已知得:
当a>3时,原不等式的解集为:{x|2<x<3或x>a}; 当a=3时,原不等式的解集为:{x|2<x<3或x>3}; 当2<a<3时,原不等式的解集为:{x|2<x<a 或x>3}. 18.解:(1)f(x)>0或或o<x< A={x|x>2或o<x<
} (2),由得或
或.
19.解:p :.;
()322
1f x x ax a x =+-+2
()21g x ax x =-+{|12}x x -<<1,2⎛⎫-∞-
⎪⎝⎭45
⋃43
2
{12a a A B a -≤-≥-=∅∴⇒≤≤()(2)
03
x a x x -->-2l g 1o x ⇔>2l g 32o x x <-⇒>18
∴18
11[,]22B t t =-+A B =∅1128
12
2
t t ⎧-≥⎪⎪⎨⎪+≤⎪⎩102t +≤5382
t ∴≤≤1
2t ≤-()113
x
f x --=()1257f x a -∴<⇒-≤≤
q :在有解,
又命题P 、q 中有且只有一个为真命题,一4<a≤7或a<一5. 20.解:(1)
,由题可知方程的根满足
0<<1< <3
(2).令
则g(b)≤0在b ∈[-1,1]恒成立, -1≤m ≤1.
21.解:(1)在上是增函数: (2)恰有一根,
(3)当a>O 时,f(x)在上是单调递增, 同理:
2
(2)10x a x +++=()0,+∞12()2,4a x a x
∴+=-+≤-∴≤∴()122f x x ax -=-+220x ax -+=1x 2x ()()()··
`
0011103330
f f a f ⎧>⎪⎪<∴<<⎨⎪>⎪⎩2
212
81x x a -=-≥∴2221m bm --≤2()23g b m bm =--()()10
10
g g -≤⎧⎪∴⇒⎨
≤⎪⎩()13()()0()3
a
f x x x a f x -=-+>⇒(),,,3a a ⎛⎫
-∞+∞ ⎪⎝⎭
()2
2
()[(2)]0f x g x x x a =⇒--
=2
020
a a a >⎧∴⇒<<⎨
-≤⎩211
()()1g x a x a a =-+
+1()1(,1h a a ∴=-∈-∞(),,,3a a ⎛⎫
-∞+∞
⎪⎝⎭
0131a a a a a a ⎧⎪>⎪⎪∴>⇒≥⎨⎪⎪>⎪⎩02313312a a
a a a a a a
⎧
⎪<⎪
⎪
+≤
⇒≤-∴≥≤-⎨⎪⎪+≤⎪⎩
或。