第10讲 比例法解行程
行程问题 方程比例法

(4)为什么会比乙迟到0.5小时了吗?1份花0.5小时
4、板书解题过程
5、总结:画图数比例数:当知识速度比时,画线段图时,就按照份数画准确。更能显示题中隐藏的条件。
学习例题4:(表格法+画图法)
1、读题:齐读
2、理解题意:两种情况
3、分析题:
(1)给出了两者速度,你们能得出什么?
授课教师
课题
行程问题—方程与比例法
授课班级
五年级创新班
教学目标
1、会分析行程问题中的相遇与追及问题中已知和未知之间的等量关系。
2、掌握运动中的物体,速度、时间、路程之间的数量关系,会利用路程、时间和速度三量关系,列方程解行程问题。
3、理解行程问题中的存在的正比与反比关系,并运用比例关系解决问题。
教学重点
1、课内题单——长方体
授新课
知识回顾
教师活动
学生活动
1、因数个数定理
2、行程问题:相遇与追及问题
积极回忆,抢答问题,答对有奖
体系说明
行程问题是小学应用题的难点,是升学考试中常见的压轴题,要想在小升初考试中取得好成绩,熟练掌握行程问题的几种解法是比不可少的。
比例和方程结合线段图是解决行程问题的最有效的方法。
1、会分析行程问题中的相遇与追及问题中已知和未知之间的相等关系。
2、理解行程问题中的存在的正比与反比关系:时间相同,速度比=路程比;速度相同,路程比=时间的比;路程相同,时间比= 速度的反比
教学难点
分析行程问题中的相遇与追及问题中已份对应关系
教具
无
教学过程
入门测
强调:正比反比只存在于乘除法中。
行程问题的正比与反比有前提条件:相同量。
第十讲--比与比例精华讲义

第三讲 比和比例【名师导航】学习比和比例关系是提高小学数学综合能力的一个重要方面,深刻理解相关联的量是学习的基本要求。
比和比例的学习,也是为中学学习函数打下基础。
用比和比例解答的应用题有:1.按比例分配应用题。
把一个数量按一定的比进行分配,解答这类应用题的关键是根据题中所给的比,转化成求一个数的几分之几来做。
2.正、反比例应用题。
解答这类应用题,首先要找出相关联的量,然后判断成什么比例关系,建立比例式。
【例题精讲】例1 一个长方体的棱长总和是180厘米,它的长、宽、高之比是4:3:2。
这个长方形的体积是多少立方厘米?分析:长方体的长、宽、高各有 ,其一条长、宽、高之和是 (厘米),将45厘米按长、宽、高之比是4:3:2进行分配,分别求出长、宽、高,再求出这个长方形的表面积和体积。
解:(1)长、宽、高之和是: ;(2)长: ;宽: ;高: ;(3)长方体的体积是: 。
答:这个长方体的体积是3000平方厘米。
例2 兄弟俩共有85元,他们都买了一支价格相同的钢笔,哥哥花掉了自己钱数的34,弟弟花掉了自己钱数的23,哥哥还剩多少元? 分析:依题意,哥哥的钱数×34 =弟弟的钱数×23 ,那么哥哥的钱数:弟弟的钱数=23 :34=8:9(或哥哥的钱数×34 =弟弟的钱数×23 ,即哥哥的钱数×68 =弟弟的钱数×69,得到哥哥的钱数:弟弟的钱数=8:9)。
再将85元按比例分配,即可求得哥哥(或弟弟)的钱数,进而求出钢笔的单价。
解法一:(1)哥哥与弟弟的钱数之比是 ;(2)哥哥的钱数是: ;(3)哥哥还剩: 。
分析:可以把钢笔的价格看做单位“1”,那么哥哥的钱是钢笔价钱的43,弟弟的钱是钢笔价钱的32 ,再用85元除以它所对应的钢笔价格的(43 +32),就可以求出钢笔的价格,再求出哥哥剩下的钱。
解法二:把钢笔的价格看做单位“1”。
(1)钢笔的价格是 ;(2)哥哥剩下的钱是: 。
(完整版)六年级奥数比例解行程问题

_________________个性化辅导讲义年 级:时 间年 月 日课 题比例解行程问题教学目标1.了解物体匀速运动的特点。
2.掌握运用比例知识解决行程问题的方法。
3.培养想像力,增强思维力。
教 学 内 容【知识梳理】我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:,,v v t ts s 乙乙乙甲甲甲,;;1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
,这里因为时间相同,即,所以由s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙t t t ==乙甲s s t t v v ==甲乙乙甲乙甲,得到,,甲乙在同一段时间t 内的路程之比等于速度比s s t v v ==甲乙乙甲s vs v=甲甲乙乙2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
,这里因为路程相同,即,由s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙s s s ==乙甲s v t s v t =⨯=⨯乙乙乙甲甲甲,得,,甲乙在同一段路程s 上的时间之比等于速度比的反比。
s v t v t =⨯=⨯乙乙甲甲v tv t =甲乙乙甲比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
【例题精讲】例题1 甲、乙两人同时地出发,在、两地之间匀速往返行走,甲的速度大于乙的速度,A A B甲每次到达地、地或遇到乙都会调头往回走,除此以外,两人在之间行走方向不会改变,A B AB已知两人第一次相遇的地点距离地米,第三次的相遇点距离地米,那么第二次相遇B1800B800的地点距离地。
六年级奥数--比例解行程问题

【举一反三】
1.甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共行了35千米.求A,B两地间的距离.
2.一辆汽车从甲地开往乙地,如果车速提高20%可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?
5.甲、乙两车分别从A,B两地同时相向开出,4时后两车相遇,然后各自继续行驶3时,此时甲车距B地10千米,乙车距A地80千米。问:甲车到达B地时,乙车还要经过多少时间才能到达A地?
6.一辆汽车按计划行驶了 小时,剩下的路程用计划速度的 继续行驶,到达目的地的时间比计划的时间迟了2时。如果按计划速度行驶的路程再增加60千米,那么到达目的地的时间比计划时间只迟1时。问:计划速度是多少?全程有多远?
例题3甲火车4分行进的路程等于乙火车5分行进的路程。乙火车上午8:00从B站开往A站,开出若干分后,甲火车从A站出发开往B站。上午9:00两列火车相遇,相遇的地点离A,B两站的距离的比是15∶16。甲火车从A站发车的时间是几点几分?
练习:甲、乙两列火车的速度比是5∶4。乙车先从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车开往B站。如果两列火车相遇的地方离A,B两站距离的比是3∶4,那么A,B两站之间的距离为多少千米?
第10讲比例的应用-2022-2023学年六年级数学下册易错题精编讲义(人教版)

第10讲比例的应用(讲义)(知识梳理+易错汇总+易错精讲+易错专练)1、比例尺的意义。
一幅图的图上距离和实际距离的比,叫作这幅图的比例尺。
温馨提示:比例尺是一个比,表示两个同类量间的倍比关系,不能带单位。
2、比例尺的分类。
分法一:按表现形式分,可以分为数值比例尺和线段比例尺。
分法二:按将实际距离缩小还是放大分,可以分为缩小比例尺和放大比例尺。
3、已知图上距离和实际距离,求比例尺的方法。
先把图上距离和实际距离统一单位,再用图上距离比实际距离,然后把它化简成最简整数比,得出比例尺。
三者中知道任意两者,可求第三者。
4、应用比例尺画图的方法。
(1)确定比例尺。
(2)根据比例尺求出图上距离。
(3)画图。
(4)标出所画图的名称和比例尺。
5、图形放大与缩小的特点。
形状相同,大小不同。
6、将图形放大与缩小的方法。
一看,看图形每边各占几格;二算,按已知比计算出放大图或缩小图的每边各占几格;三画,按计算出的边长画出原图形的放大图或缩小图。
温馨提示:把图形每条边按相同倍数放大(或缩小)后,形状不变,相对应的角的度数也不变。
7、用比例解决问题。
根据问题中的不变量找出两种相关联的量,并判断这两种相关联的量成什么比例关系,根据正、反比例关系列出相应的比例并求解。
1、比例尺是图上距离与实际距离的比,是一个比值,没有单位。
2、通常缩小比例尺的前项为1,放大比例尺的后项为1。
3、图上距离一般用厘米做单位,实际距离一般用米或千米做单位,计算时要先统一单位。
4、把图形放大(或缩小)后,形状不变,相对应的角的度数也不变。
5、平均锯一次的时间一定,一共用的时间与锯的次数成正比例。
6、在路程一定时,速度和时间成反比例关系,速度越快,所用时间越短;反之所用时间越长。
【易错一】学校的操场是一个长方形,长是90米,宽是60米,小聪想把它画在练习本上,比较合适的比例尺是()。
A.1∶100 B.1∶1000 C.1∶10000 D.1∶1【分析】根据图上距离=实际距离×比例尺,先把单位换算成厘米后,把4个选项里的比例尺代入到数量关系中,分别求出练习本的长是多少,找出符合实际的答案即可。
比例法解行程问题

相同时间内,甲乙两车的速度比与路程比相等
全程的60%,客车每小时比货车快15千米,两地的距离是多少千米?
A、4:3
B、4:5
C、5:4
D、3:4
9
2、货车的速度是客车的
那么有:7x-5x=42 解得x=21
10
,货车和客车分别从甲乙两地同时相向而行,在
设:离客车两到地达甲中地点时,3千货车米走处了x相千米遇得,: 相遇后,两车分别用原来的速度继续前行,到达甲乙
比例法解行程问题
课前回忆
甲、乙两辆汽车的速度比为3:4,它们分别行驶3小时之后的路程比 是多少?
解:设甲速为3x,乙速为4x 那么:甲3小时行驶的路程可表示为:3×3x=9x
乙3小时行驶的路程可表示为:3×4x=12x 那么:甲3小时行驶的路程:乙3小时行驶的路程
=9x:12x=3:4
相同时间内,甲乙两车的速度比与路程比相等
答:客车到达甲地时,货车离乙地还有11.4千米
活学活用:
1、客车3小时所行的路程是汽车4小时所行路程的60%,客车与小汽车的
速度比为:〔
〕〔2021年中大附中〕
A、4:3
B、4:5
C、5:4
D、3:4
2、甲、乙两辆船同时从A地开往B地,乙船的速度是甲船的1.2倍,经过12 小时,乙船到达B地,此时甲船离B地还有54千米,求A、B两地的路程。 〔2021年天河外国语〕
答:甲乙两地相距294千米。
相那同么时 有间10内x设-,9甲:x=乙6客两车车的解到速得度:达比x=甲与6 路地程时比相,等货车走了x千米得:
相设同:时 货间车内的,速5甲度4乙为: x两13车=x,的1客速0车度:9的比速与度路为程1比解5x相得等:x=48.6
比例法解行程问题(易淑珍)

3、甲乙两车分别从A,B两地同时出发相向而 行,甲车每小时行50千米,乙车每小时行60 千米,两车相遇时,甲车比乙车少行了50千 米, A,B两地相距多少千米?
例3:甲乙两车分别从A,B两地同时出发相向 1 而行,当甲车行了全程的 4 时,乙车行了全 程的 1 ,当乙车行完全程时,甲车距离终点 3 还有20千米,A,B两地相距多少千米? 1 分析:由条件“甲车行了全程的 时,乙车 4 1 行了全程的 ”可以求出两车在相同的时间 3 1 1 里所行的路程比是: 4 ÷ 3 =3:4 就是说乙车行完全程时,甲车距中点还有 4-3=1(份)的路程,这1份的路程就是20 千米。 1 因此AB两地相距:20÷ 4 =80(km) 答: A,B两地相距80千米。
趣味数学系列课(六年级)
比例法解答行程应用题
制作:宜春市实验小学
比例法解答行程应用题
在行程应用题中, 如果路程一定,那么时间和速度成反比; 如果时间一定,那么路程和速度成正比; 如果速度பைடு நூலகம்定,那么路程和时间成正比。 利用这些性质,我们可以很方便地解答一些行程应 用题。
3、A,B两地相距380千米,甲乙两车分别从A,B两地同 3 时出发相向而行,当甲车行了全程的 5 时,乙车行 了全程的 2 ,那么甲乙两车相遇时,各行多少千米?
3
例4: 甲.乙两车的速度分别是50千米/时.40千米/时, 乙车先从B站开住A站,当到离B站72千米的D 地时,甲车从A站开往B站,在C地与乙车相遇, 如下图,如果甲.乙两车相遇地C地离A,B两站 的路程比是2:4,那么A,B两站之间的路程是多 少千米? A 甲车 C D B 乙车
数学春季教案 六年级-10 行程问题(一)

第10讲行程问题(一)[教学内容]春季六年级精英版,第10讲“行程问题(一)”。
[教学目标]知识与技能利用行程问题中的路程、速度、时间的关系,并结合分数、比、比例等的知识解行程类应用题,感知数学在实际生活中的用途。
数学思考理解数学的数形结合的思想,发展学生的抽象概括能力。
问题解决获得分析较复杂的行程问题和解决这类问题的一些基本方法,体验解决行程问题方法的多样性,发展创新意识。
情感与态度在学习过程中,体验获得成功的乐趣,锻炼克服困难的意志,建立自信心;在合作与交流中学会肯定自己和倾听他人的意见。
[教学重点和难点]教学重点:结合分数、比、比例等知识解决行程问题。
教学难点:寻找解决较复杂的行程问题的方法。
[教学准备]动画多媒体语言课件第一课时教学过程:第二课时教学过程:本讲内容参考答案:自主探究例1:2420米例2:1.75小时例3: 39千米/时例4: 126分例5: 315千米例6: 150千米大胆闯关1、675米2、308千米3、10分钟4、7时40分5、11秒本讲内容的补充习题及答案:1、邮递员去送信,已知回来时沿原路返回,但速度提高了25%。
并且来、回的时间差是小时。
求往返一次用多少小时?路程速度时间去 1 1 5回 1 125% 4÷(5-4)×(5+4)=小时2、甲、乙两人分别从A、B两地同时出发,相向而行。
出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。
这样,当甲到达B地时,乙离A地还有280km。
那么A、B两地的路程是多少千米?3×(1+20%)=3.62×(1+30%)=2.6280÷(-÷3.6×2.6)=900千米3、甲、乙两辆汽车同时从A去B,出发后,甲、乙两车的速度的比是5:4。
当甲车行至中点时,乙离中点还差60千米。
当乙车到达中点后,速度提高50%。
当甲到达B地时,乙离B地还有多少千米?÷5×4=—=60÷=600千米-÷4×5=4×(1+50%)=6÷5×6=600×(-)=30千米4、甲、乙两车同时从A、B两地相向而行,两车第一次在距A地32千米处相遇,相遇后两车继续行驶各自到达B、A两地后,立即沿原路返回,第二次在距A地64千米处相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4:48
乙
全程150千米 甲 汽车
乙
第二阶段:乙坐车,甲步行
S甲:S车=V甲:V车=1:12 第一阶段:甲坐车,乙步行 S乙:S车=V乙:V车=1:12
第二阶段:乙坐车,甲步行
S甲:S乙=V甲:V乙=1:12 第一阶段:甲坐车,乙步行 S甲:S乙=V甲:V乙=1:12
所以:车和人的路程差的份数为12-1=11 份 而 路程差= 汽车往返的路程/2 所以 汽车往返单程= 11/2=5.5份 设人走x千米,就可列出方程: x+5.5x+x=150 7.5x=150
谢谢!
比例法解行程
例4
甲班与乙班学生同时从学校出发去公园,两班的步行 的速度都是每小时4千米。学校有一辆汽车,它的速度 是每小时48千米,这辆汽车恰好能坐一个班的学生。 为了使两班学生在最短时间内到达公园,设两地相距 150千米,那么各个班的步行距离是多少千米?
思0千米 甲 汽车