变分法

合集下载

数学中的变分法

数学中的变分法

数学中的变分法变分法是一种数学方法,它在许多物理学原理的证明和应用中被广泛使用。

变分法的基本思想是将一个对象视为其可能的所有函数中一种函数。

例如,如果我们考虑曲线上的能量问题,我们将尝试确定曲线的最小能量。

在这种情况下,我们将使用变分法来确定能量的最小值,同时识别导致最小值的曲线。

变分法被广泛运用于许多科学和工程领域中的分析问题。

其中一些领域包括最优控制理论、力学、统计学、经济学和化学等。

变分法是这些领域的基础,并广泛应用于生物力学、流体力学、材料科学以及其他科学和工程领域的问题。

变分法的核心思想是通过应用变分运算符来寻找函数的极值。

对于一个实变函数f,它的变分是指通过对f进行微小调整来找到f的变化方向,例如δf。

对于函数f(x),它的变分可以表示为如下形式:δf(x)=f(x+εv)-f(x)其中,v是任意的可微向量函数,而ε是一小的正实数。

变量v 被称为变分方向或测试函数。

此时,我们可以考虑将上式变化为以下形式:δf(x;v)=lim(ε -> 0)[f(x+εv)-f(x)] / ε当ε趋近于0时, δf(x;v)的极限被称为f在v方向的变分。

当δf(x;v)等于0时,我们可以说f在v方向上不变。

因此,我们可以通过使用变分法来确定f的最小值或最大值。

例如,如果我们要找到一条曲线,其起点和终点都已知,同时满足总长度最小的条件。

在这个问题中,我们需要确定曲线的形状来最小化熵函数。

最小化长度问题的变分形式可以表示为:L[y]=∫[a,b]L(y,y')dx其中y是曲线的方程,L(y,y')是曲线的弧长元素。

此时,我们需要找到这条曲线,其满足以下条件:∫L(y,y')dx≤∫L(y0,y'0)dx其中y0和y'0是固定的曲线。

我们可以取v为x的变化方向,而L(y,y')可以视为动能或势能。

因此,我们可以将上式改写为:∂L[y]/∂y- d/dx∂L[y]/∂y'=0这里的d/dx是导数。

变分法

变分法


tf
t0
M (t )(t )dt 0 。则在 [t 0 , t f ] 内, M (t ) 0 。
(用反证法容易证明,略) 。 二、无约束条件的泛函极值 求泛函 J

tf
t0
(t ), t ]dt (1)的极值,一般是用泛函极值的必要条件去寻找 F[ x(t ), x
一条曲线 x(t ) ,使给定的二阶连续可微函数 F 沿该曲线的积分达到极值。常称这条曲线为 极值曲线(或轨线) ,记为 x (t ) 。 1.端点固定的情况 设容许曲线 x(t ) 满足边界条件 x(t 0 ) x0 , x(t f ) x f ,且二次可微。 首先计算(1)式的变分:
t t f dt f 。寻找端点变动情况的必要条件,可仿照前面端点固定发问进行推导,即有
0 J

t f dt
t0
x , t ]dt | 0 F[ x x, x

t f dt
t0
)dt | 0 F ( x x, x x , t f dt f )dt f | 0(t t f dt f ) ( Fxx Fx x
tf x , t ] 0 dt J [ x(t ) x(t )] 0 F[ x x, x t0 tf

J
ห้องสมุดไป่ตู้
, t )x Fx , t )x ]dt [ Fx ( x, x ( x, x
t0
(2)
对上式右端第二项做分布积分,并利用 x(t 0 ) x(t f ) 0 ,有
件,有 J

tf
[ Fx
它是这类最简泛函取极值的必要条件。 最简泛函取极值的必要条件可以推广到多元泛函的情 况,如二元泛函

数值分析中的变分法及其收敛性

数值分析中的变分法及其收敛性

数值分析中的变分法及其收敛性在数值分析中,变分法(Variational Method)是一种通过变分问题求解数值解的方法。

它利用泛函分析的理论和方法,通过构建一个被最小化的泛函,来求解给定问题的最优解。

本文将介绍变分法的基本原理,并讨论其在数值分析中的应用以及收敛性。

一、变分法的基本原理变分法的基本原理可以通过极小化泛函的方法进行描述。

对于一个给定的泛函J[y],其中y是一个函数,我们的目标是找到一个y*,使得J[y*]达到最小值。

为了找到这个最小值,我们可以将问题转化为一个极小化问题,即找到一个y*,使得对于任意的形状变化δy,J[y*]的变化率为零。

这可以通过求解变分问题来实现:δJ[y*] = 0,对任意δy通过变分法,我们可以通过求解变分问题来得到原问题的最优解。

二、变分法在数值分析中的应用1. 最小化问题:变分法可以用于最小化问题的求解。

例如,对于一个函数y(x),我们可以通过构建一个泛函J[y],然后使用变分法来求解最小化问题。

2. 边值问题的求解:变分法在边值问题的求解中也有广泛的应用。

通过构建适当的泛函,我们可以将边值问题转化为一个变分问题,并通过变分法来求解。

3. 偏微分方程的数值解:变分法在偏微分方程的数值解中也有重要的应用。

通过构建适当的泛函,并选择合适的试验函数空间,我们可以使用变分法来求解偏微分方程的数值解。

三、变分法的收敛性在使用变分法求解数值问题时,我们更关注的是变分法的收敛性。

收敛性指的是在一系列逼近过程中,逼近的解是否趋近于真实的解。

对于变分法而言,它的收敛性与使用的试验函数空间以及变分问题的性质有关。

1. 试验函数空间的选择:试验函数空间的选择对于变分法的收敛性至关重要。

通常,我们会选择适当的空间,使得试验函数满足一定的光滑性和边界条件。

选择合适的空间可以提高解的逼近精度,从而提高收敛性。

2. 变分问题的性质:变分问题的性质也会影响到变分法的收敛性。

如果变分问题满足一定的正则性条件,如强解的存在性和唯一性等,那么变分法的收敛性可以得到保证。

变分法

变分法


x1
x0
F ( x) ( x)dx 0
(1.18)
则在 [x0,x1] 上就有F(x)≡0. 证明用反证法
1.3.2 欧拉方程

x1
[ y] F ( x, y, y )dx
x0
x1
x1
x0
F y F ydx y y b a
数ui(i=1,2,3)而变,[u]也是一个泛函。而ui必须满足的体积不
变条件
L、As、Φ都是依赖于可变化的函数。称其为自变函数,随 自变函数而变的量称为泛函。用符号φ、J 表示,记作 φ[y(x)]或φ(y)等。 • 变分法就是研究求泛函极大值和极小值的方法。
1.1.2 泛函自变函数的变分
• 函数y=y(x) ,自变量为x ,增量 △x, 称dx为自变 量x微分。 • 泛函φ[y(x)],自变函数为y(x),当△y(x) 变化无 限小时,称为自变函数的变分,表为δy(x) ,δy • δy是指函数y(x) 和跟它相接近的另一函数y1(x) 的微差。
x0 x0
x1
x1
(dy ) d ( y )
dy d ( y ) , 或 ( y) ( y) dx dx
3.注意:d ( xy) ydx xdy
( xy) x y
1.2.2 泛函极值的条件
泛函极值条件与函数极值条件具有相似的定义。如果
(u v) u v,
(uv) u v v u, (u v) (v u u v) / v 2
2
变分号可由积分号外进入积分号内
x1 x1 x0 x0
F ( x, y, y)dx F ( x, y, y)dx

变分法的应用

变分法的应用

变分法的应用在物理、工程、数学等领域中,变分法是一种非常重要的工具。

变分法可以被用来解决各种数学问题,如微积分、偏微分方程、力学问题和最优化问题等等。

本文将介绍变分法的定义、基本原理、应用以及其在实践中的意义。

一、什么是变分法?变分法是一种数学方法,它通过不断调整函数的形式来寻找一个极值问题的解。

变分法可以用来解决一系列的优化问题,如最优控制问题和最小能量问题等等。

在它最简单的形式中,变分法是一个求解“泛函”的问题:“找到一个函数使得某个固定泛函取得最小值”。

例如,我们想要找到长度为 L 的钢条上的最小弯曲量。

这个问题可以表示成一个泛函:J(y) = ∫[0,L] (y''(x))^2 dx,其中y表示弯曲的函数。

这个泛函是一个带有一个未知函数y的函数J。

我们的任务是找到一个函数y,使得J(y)的值最小。

二、变分法的基本原理变分法的基本原理可以归结为“求解一系列微积分变分问题”。

根据变分法的基本原理,我们可以从微积分和函数分析的角度来理解它。

变分法的原理是基于函数的连续性和光滑性的,即给定一个函数的任意两个点之间的连续性和可微性。

在求解变分问题时,我们首先需要找到一个函数,这个函数满足一些预定的条件。

然后,我们可以对这个函数进行微小的变化,来看看这个函数如何改变。

最后,我们可以通过对这个函数进行积分来得到一个新的函数值。

然后我们可以对这个函数进行微小的变化,得到y(x) → y(x) + εφ(x) (其中,ε很小,φ是一个任意函数)。

在这个情况下,我们可以用函数y(x)的一个小变化y(x) + εφ(x)来重新计算泛函J的值。

这个新的泛函的值可以表示为J(y + εφ) = ∫[0,L] F(x,y,y',y'') φ(x)dx,其中F(x,y,y',y'')为J(y)的一类一阶偏导数,我们需要将其解释为x和y的函数。

然后,通过对泛函J(y+εφ)中的项进行扩展,我们得到:J(y+εφ) = J(y) + ε∫[0,L] (F_yφ + F_{y'}φ' + F_{y''}φ'') dx。

变分法基本原理

变分法基本原理

变分法基本原理【1】变分法(Variational method)是一种数学方法,用于解决泛函的极值问题。

泛函是把函数映射到实数的映射,而泛函的极值问题是要找到使得泛函取得极值的函数。

变分法广泛应用于物理学、工程学、应用数学等领域中的最优化问题。

【2】变分法的基本原理可以概括为以下几个步骤:步骤一:定义泛函首先,要明确定义所研究的泛函。

泛函可以是一个函数的积分、一个函数的级数或者其他数学表达式。

要根据具体问题的特点来选择合适的泛函。

步骤二:提出变分函数接下来,通过引入一个假设的函数(称为变分函数)作为泛函的自变量,使泛函成为这个变分函数的函数。

变分函数通常具有一定的约束条件,如满足特定边界条件或其他限制条件。

步骤三:计算变分利用变分函数的小扰动,即在该函数上加上一个小的修正项,计算泛函的变分。

变分是泛函在变分函数上的一阶近似变化率。

步骤四:应用欧拉-拉格朗日方程将变分代入到泛函中,得到泛函的表达式。

然后,通过应用欧拉-拉格朗日方程,将泛函转化为一个微分方程。

这个微分方程是通过对变分函数求导,然后令导数为零得到的。

步骤五:求解微分方程解决微分方程,得到最优解的表达式。

这个最优解是使得泛函取得极值的函数。

【3】变分法的基本原理是通过引入一个变分函数,将泛函的极值问题转化为求解一个微分方程的问题。

这种方法的优势在于可以将复杂的极值问题转化为求解微分方程的问题,简化了求解的过程。

【4】变分法在物理学中的应用非常广泛。

例如,它可以用于求解经典力学中的最小作用量原理,即通过将作用量泛函取极值来得到物体的运动方程。

此外,变分法还可以应用于量子力学中的路径积分方法、场论中的泛函积分等问题的求解。

【5】总之,变分法是一种数学方法,用于求解泛函的极值问题。

它的基本原理是通过引入一个变分函数,将泛函的极值问题转化为求解一个微分方程的问题。

变分法广泛应用于物理学、工程学、应用数学等领域,并具有很好的应用前景。

变分法

变分法

§1 变分法简介作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”这就是著名的“最速降线”问题(The Brachistochrone Problem )。

它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。

这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。

约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。

后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。

有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题(The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。

在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。

伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。

最优控制问题的变分方法

最优控制问题的变分方法

最优控制问题的变分方法在数学与控制理论中,最优控制问题是研究如何选择最佳的控制策略,以使系统的性能达到最优的问题。

变分方法便是解决最优控制问题的一种重要数学方法。

一、引言最优控制是控制理论中一个重要的分支,它通过对系统建模和优化理论的应用,旨在找到使系统性能达到最佳的控制策略。

而变分方法,则是解决最优控制问题的一种有效途径。

二、变分法概述变分法是以变分运算为基础的数学方法,在最优控制问题中得到了广泛的应用。

它通过对控制信号进行微小的变分,并得到变分函数的极值来确定最优控制策略。

变分法的基本思想是将最优控制问题转化为求解变分问题,从而得到最优解。

三、变分法的基本原理1. 贝尔曼原理贝尔曼原理是变分法的核心原理之一。

它通过将最优控制问题分解为两个部分,即值函数和最优策略。

通过解反向动态规划方程,可以得到最优策略和值函数。

2. 泛函极值原理泛函极值原理是变分法的另一个重要原理。

它通过对泛函进行变分,并通过求解变分问题来得到泛函的极值。

在最优控制问题中,泛函可以表示系统性能的指标,如性能函数、代价函数等。

四、变分法的应用变分法在最优控制问题中有着广泛的应用。

以下是几个典型的应用领域:1. 高维空间中的最优控制在高维空间中的最优控制问题中,变分法能够通过求解变分问题,得到最优控制策略。

2. 动态规划动态规划是最优控制中一个重要的方法,变分法能够通过解反向动态规划方程,得到最优策略和值函数。

3. 时间最优控制时间最优控制问题中,变分法可以通过求解变分问题,得到最优控制策略以及最小时间。

五、总结变分方法是解决最优控制问题的一种重要数学方法。

它通过对控制信号进行微小的变分,并求解变分问题来得到最优控制策略。

变分法的应用非常广泛,能够解决包括高维空间中的最优控制、动态规划和时间最优控制等问题。

通过变分方法,我们能够有效地求解最优控制问题,并得到系统性能达到最优的控制策略。

最优控制问题的变分方法就是如上所述的一种有效的数学方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
x2
x1
x2 x1

d dx

F y
dx

在两端点 0
x2 x1
F

y

d dx

F y
dx


0
∵ (x)为任意函数

F y

d dx

F
y


0
欧拉-拉格朗日方程
最速落径问题
一阶变分:
F F y F y
y y
x2 F x, y y, y ydx x1
x2 F x, y, ydx
x1
x2 x1

F y

y

F y

y
dx

O
2
(T)I I% I
y% y
y% x
y
yx
dy dx
x
y y% y a
y y% y a
利用δ沿可变曲线将F写成: F x, y y, y y
在任意x处,将F展开成关于y和y`的泰勒级数:
F

x,
y


y,
y


y

F

x,
y,
y

y

,
y(n) y (n)
(2)
F1 F2 F1 F2
(3)
F1F2 F2 F1 F1 F2
(4)
F1 F2 F2 F1 F1 F2 F22
(5)
F n nF n1 F
(6)
x2 F x, y, ydx x2 F x, y, ydx
y(x)称为“极值曲线”或“极值函数y”%(x,)
路径”
称为“可变
y%(x) y(x) a(x)
η(x)是一可微函数,a为一微量的参变数。 η(x1)=η(x2)=0
I% x2 F x, y%, y%dx x2 F x, y a, y adx a
0

0


x2 x1

F dy% y%da
F dy%
y%
da
dx a0
0
注意到 dy%da ,dy% da
x2 x1

F y


F y


dx

0
x2 F dx F
x1 y
T
2 ds
2
dx2 dy2
x2
1 y2
dx
1V 1
V
x1
V
(1)
根据能量守恒原理
mV12 2

mgy1

mV 2
2

mgy
V
[V12
2g y

1
y1 ] 2
T
x2 x1
[V12

1 y2
2
g

y

y1
]
1 2
dx
(2)
设物体从零点静止开始下落
y
(5)
2 y

2
dy dx

d ydx

y
2


d dy

y2

d

y2

1 y2


1 y
dy
(6)
y
1


y
2


C
y dy dx Cy
y C 2 1 cos t
dy C 2 sin tdt
1 cos t C sin tdt dx C 1 cost dt dx
x1
x1
(7)
2F F , k F k1F
变分法
Variational Methods
任课教师:强士中 卫星
变分法简介
基本概念 经典变分问题 变分运算 变分的算法
基本概念
泛函 泛函是一个函数的表达式,取值取决于该表达式中的函
数,泛函是函数的函数。
I x2 F x, y, ydx x1
1) 除变量x外,泛函还可以包含其他的独立变量; 2) 除函数y(x)外,泛函还可以包含有许多以上述独立变量


F y

y

F y

y

O
2
∴ F x, y y,
F的全变分:
y


y

F

x,
y,
y


F y

y

F y

y

O
2
(T) F F x, y y, y y F x, y, y
为函数的其他函数(因变量); 3) 泛函中,除一阶导数外,还可以包含有高阶导数。
经典变分问题
最速落径问题
在垂直平面内,两点p1、p2间确定一滑槽,使一物体在 自重作用下,以最短时间由p1下降到p2。
最短线程问题
给定曲面g(x,y,z)上确定一条曲线,使其在曲面上的两 点之间的长度最短。
等周问题
式(2)简化为: T
1 x2 2g x1
1 y2
dx y
(3)
F(x, y, y)
1


y2

12
y
(4)
将式(4)直接代入欧拉-拉格朗日方程
F 1 y3 2 1 y2
y 2
F y

1

y2
1

2
yy1
x2 x1

F y

y

F y

y
dx

O
2
I
x2 x1

F y

y

F y

y
dx
I
x2 F
x1

y

d dx
F y


ydx


F y

y

x2 x1
I
x2 x1
2
d dx

F y



1 2
y 3
2
y2 1 y2

y1 2
y
1


y
2

3
2
F y

d dx

F y


y1 2
1 y2

1
2y

1

y
y2


0
2y 1 y2

F y

d dx
F y


ydx
(T)I I O 2

x2 F
x1

y
d dx
F y


ydx

O
2
2I
x2 x1

2F y 2

y2

2
2F yy

y
y

2F
y2

f
a

x

a2

1 3!

f
a

x

a
3


一阶变分
I x2 F x, y, ydx x1
函数F对变量x,y和y`二次可微;
泛函I在两点之间的数值取决于两点间所选择的路径, 即函数y(x)。
设存在函数y(x),使泛函I达到极值,其相邻路径为 y%(x)。
I F x2 x, y, y, y,, y(n) dx x1
Euler-Poisson方程:
F y

d dx
F y

d2 dx 2
F y
1n
dn dx n
F y ( n )

0
变分的算法
(1)


dy dx


d dx
函数求极值
y=f(x)
局部最大值
拐点
局部最小值
x
f
x

f
a


df dx
xa
x
a
1 2!
d2 f dx2
xa
x
a2

1 3!
d3 f 3
xa
x a3

f

x

f
a


f
a

x

a

1 2!
在所有的封闭平面曲线中,若这些曲线有固定长度L,确 定一条曲线,使其所围成的面积A最大。
变分法
经典变分问题都是寻求一个问题的最优解答,其求解 过程为“最优化”过程。
经典变分问题的求解方法和过程是泛函求极值的方法
和过程。
研究泛函极值的方法就是所谓变分法,研究泛函极值 的近似方法就是所谓变分方法。

y2
dx
I取极值的条件: I 0
F d F 0 y dx y
具有多个因变量:
相关文档
最新文档