甲乙类单电源互补对称功率放大电路
乙类单电源互补对称功率放大电路

第 6 章
功率放大电路
二、OCL 电路和 OTL 电路的比较
OCL 电源 信号 频率响应 电路结构
2
OTL 单电源 交流 fL 取决于输出耦合电容 C 较复杂
2
双电源 交、直流 好 较简单
Pomax
1 U om 1 V CC 2 RL 2 RL
1 U om 1 V 2CC 2 RL 8 RL
第 6 章
功率放大电路
6.3 乙类单电源互补 对称功率放大电路
一、电路的组成与工作原理
二、OCL电路与OTL电路的比较
第 6 章
功率放大电路ຫໍສະໝຸດ 一、单电源互补对称放大电路
RB V4
RB1 + + ui RB2 V5 E RE + CE +VCC V1 + C V2 RL
电容 C 的作用:
1)充当 VCC / 2 电源
2
+ 2)耦合交流信号 uo 当 ui = 0 时, U E VCC / 2
U C VCC / 2
当 ui > 0 时: V2 导通,C 放电, V2 的等效电源电压 0.5VCC。 当 ui < 0 时: V1导通,C 充电, V1 的等效电源电压 + 0.5VCC。
应用 OCL 电路有关公式时,要用 VCC / 2 取代 VCC 。
第三章四互补对称功率放大电路

一个信号 状态 周期内导
通时间
工作特点
整个周 失真小,静态电流
甲类 期内导 大,管耗大,效率
通
低。
半个周 失真大,静态电流
乙类 期内导 为零 ,管耗小,
通
效率高。
甲乙 类
半个多 周期内 导通
失真大, 静态电 流小 ,管耗小,
效率较高。
图示
三、乙类双电源互补对称功率放大电路(OCL) (OCL — Output Capacitorless) (一)电路组成及工作原理
U(BR)CEO>2VCC=2×24V=48 V。 放大电路在最大功率输出状态时,集电极电流幅度达最大值
Icmm,为使放大电路失真不致太大,则要求功率管最大允许集电
极电流ICM满足ICM>Icmm=VCC/RL=3A。
四、甲乙类互补对称功率放大电路 (一)甲乙类双电源互补对称功率放大电路
1、乙类互补对称功放的交越失真
2
4.7 / /5.1 2.2
111
Au2 (dB) 20 lg111 41(dB)
RL1 R3 / / Ri2 5.1/ /1.7 1.3k
总的电压增益: Au=Au1·Au2=(-9.6) ×(-111)=1066 A(dB)=Au1(dB)+Au2(dB)=19.6+41=60.6(dB)
(三)甲乙类单电源互补对称放大电路 OTL电路: 1.电路组成
2.工作原理
当 ui > 0 时:V2 导通,C 放电,V2 的等效电源电压 0.5VCC。 当 ui < 0 时:V1导通,C 充电,V1 的等效电源电压 + 0.5VCC。 注意: 应用 OCL 电路有关公式时,要用 VCC / 2 取代 VCC 。
3.4互补对称功率放大电路

Uom t
Icm t
ui > 0 V1 导通 V2 截止
io = iC1, uO ui
Icm t
Iom=Icm
io
t
ui < 0 V2 导通
io
=
-
iC2V, 1
截止 uO ui
io
二、性能分析
1. 输出功率和最大不失真输出功率
Po
= Uo Io
= U om 2
Icm 2
=
1 2
U om
I cm=
最大输出功率时
PDm
≈
2V
2 CC
/
RL
3. 效率
Po
=
U
2 om
2 RL
η = Po = Uom
PD
4 VCC
最大输出功率时 m
4
=
78.5%
Байду номын сангаас
二、性能分析 续
4. 管耗
PC1
= PC2
=
1 2
(
PD
Po )
=
1 2
( 2UomVCC RL
U
2 om
2RL
)=
U om RL
(VCC
io = - iC2, uO ui
由CC电路构成,故
io
io
负简载称能O力C强L电。u路O ui,合
成O不ut失pu真t 输Ca出p波ac形ito。rless
3.4.2 乙类双电源互补对称功率放大电路
理想工作波形
ui = 0时,V1 、V2 截止, uO = 0。
uo ui O iC1 O iC2 O io O
功率放大电路习题二

功率放大电路习题二1. 乙类互补对称功率放大电路会产生交越失真的原因是( A )。
A 晶体管输入特性的非线性 B 三极管电流放大倍数太大 C 三极管电流放大倍数太小 D 输入电压信号过大2. OTL 电路中,若三极管的饱和管压降为U CE(sat),则最大输出功率P o(max)≈( B )。
A L2CE(sat)CC 2)(R U V - BL 2CE(sat)CC 212)(R U V - C L2CE(sat)CC 212)(R U V - 3. 在准互补对称放大电路所采用的复合管,其上下两对管子组合形式为( A )。
A NPN —NPN 和PNP —NPN B NPN —NPN 和NPN —PNP C PNP —PNP 和PNP —NPN4. 关于复合管的构成,下述正确的是( A ) A 复合管的管型取决于第一只三极管 B 复合管的管型取决于最后一只三极管C 只要将任意两个三极管相连,就可构成复合管D 可以用N 沟道场效应管代替NPN 管,用P 沟道场效应管代替PNP 管 5.复合管的优点之一是( B )。
A 电压放大倍数大B 电流放大系数大C 输出电阻增大D 输入电阻减小 6. 图示电路( B )A 等效为PNP 管B 等效为NPN 管C 为复合管,第一只管子的基极是复合管的基极、发射极是复合管的集电极 7. 图示电路( C )A .等效为PNP 管,电流放大系数约为(β1+β2)B .等效为NPN 管,电流放大系数约为(β1+β2)C .等效为PNP 管,电流放大系数约为β1β2D .等效为NPN 管,电流放大系数约为β1β2E .连接错误,不能构成复合管8. 功率放大电路的最大输出功率是在输入功率为正弦波时,输出基本不失真的情况下,负载上可能获得的最大( C )。
A 平均功率B 直流功率C 交流功率9. 一个输出功率为8W 的扩音机,若采用乙类互补对称功放电路,选择功率管时,要求P CM ( A )。
甲乙类互补对称功率放大电路

进入良好的导通状态。
+ VCC
T1 uo
RL
T2
- VCC
波形关系:
EWB演示——功放的交越失真
特点:存在较小的静态
iB
iB
电流 ICQ 、IBQ 。
每管导通时间大
于半个周期,基
IBQ
本不失真。
uBE
t
uB1
iC
t UT ICQ
iC VCC /Re ib IBQ Q VCC uce
甲乙类互补对称功率放大电路
一. 甲乙类双电源互补对称电路
1.基本原理
电路中增加 R1、D1、D2、R2支路
R1
静态时: T1、T2两管发射结电压分别为二极管 D1、 D2的正向导通压降,致使两管均处于
D1
微弱导通状态——甲乙类工作状态
ui
D2
动态时:设 ui 加入正弦信号。正半周 T2 截止, T1 基极电位进一步提高,进入良好的导通状
总结:互补对称功放的类型
Байду номын сангаас互补对称功放的类型
双电源电路 又称OCL电路 (无输出电容)
Pomax
VC2C 2RL
单电源电路 又称OTL电路 (无输出变压器)
Pomax
VC2C 8RL
模拟电子技术基础第14讲 甲乙类互补对称功率放大电路探究

D1
D2
A
Re1
C
RL
Re2
b2和b2之间 的电位差等于2个二 极管正向压降,克服 交越失真。
小 结
1、功率放大电路是在大信号下工作,通常采用图
解法进行分析。 研究的重点是如何在允许的失真情况下,尽可 能提高输出功率和效率。
重点难点
重点:
(1)功率放大电路的特殊问题。
(2)乙类互补对称功率放大电路的组成、计算及功
放BJT的选择。 难点: (1)乙类和甲乙类互补对称功率放大电路的组成、 计算及功放BJT的选择。 (2)甲乙类单电源互补对称电路的工作原理、存在 的问题及解决的办法。
作业 P220-5.3.1 P221-5.3.3、5.3. 5
乙类放大的输入输出波形关系: T 1 Vi 死区 t 电压 V´o t V"o i
B
+VCC
vi T2
iL RL
-VCC i
B
vo
t
Vo t 交越失真 uBE ui t
t UT
5.3.1 甲乙类双电源互补对称电路
设T3已有合适 1. 电路组成 的静态工作点
2. 工作原理 (1)静态偏置
静态时,D1、D2上 产生的压降为功率管提 供一个适当的偏压,使 功率管处于微导通状态 ,可以克服交越失真。 由于电路对称,静 态时:
无输出变压器的互补对称功放电路otl电路05vcc522乙类单电源互补对称功率放大电路maxmaxmax1最大不失真输出功率pomax4效率2电源供给的功率pccavcccct2t1omomcc功率bjt的选择1每只管子最大允许管耗3通过bjt的最大集电极电流2每只管子最大反向电压cmt2mt1mceobrcc53甲乙类互补对称功率放大电路乙类互补对称电路存在的问题当输入信号在0v之间变化时不足以克服死区电压三极管不导通
互补对称放大电路
2 RL 2 RL 最大不失真输出电压、电流幅度: 2. 电源功率 Uomm VCC UCE(sat) 1
1 1 I cm Uom I cm 2 2 2 2 1 2(V 1 2 U CE(sat))2RL 1 VCC U omCCRL I om / 2 2 Pom
第3章
放大电路基础
克服交越失真的电路
V3 V4 V1 V2
B1
V1 V2
Rt
B2
R1 R2
V1
V3
V2
T Rt UB1B2 U CE3
+VCC R3
实际 电路
U BE3 ( R1 R2 ) R2
+VCC
R
V3
V4
V1
RL + uo
V3 R*1 R2 R4 V1
V2 + ui
R V3 V4 V5
+VCC V1 RL
t
+ uo
V2 VEE
当 ui = 0 时,V1、V2 微导通。
当 ui < 0 ( 至 ),V1 微导通 充分导通 微导通; V2 微导通 截止 微导通。
当 ui > 0 ( 至 ),V2 微导通 充分导通 微导通; V1 微导通 截止 微导通。
第3章
放大电路基础
类型与效率
三、放大电路的工作状态
iC ICQO来自IcmiCiC Icm 2
ICQ
O
2 t 甲类( 2 ) iC
t
乙类( ) iC Q Q
2 t 甲乙类( < < 2 )
O
ICQ
Icm
O
甲乙类互补对称功率放大电路
甲乙类互补对称功率放大电路甲乙类互补对称功率放大电路乙类放大电路的失真:前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN 硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。
当输入信号vi 低于这个数值时,T1和T2都截止,ic1和ic2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。
这种现象称为交越失真。
5.3.1 甲乙类双电源互补对称电路一、电路的结构与原理利用图1所示的偏置电路是克服交越失真的一种方法。
由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。
静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。
由于电路对称,静态时iC1= iC2 ,iL= 0, vo =0。
有信号时,由于电路工作在甲乙类,即使vi很小(D1和D2的交流电阻也小),基本上可线性地进行放大。
上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用VBE扩展电路。
二、VBE扩展电路利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用VBE扩展电路来解决,如图1所示。
在图1中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出VCE4=VBE4(R1+R2)/R2因此,利用T4管的VBE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。
这种方法,在集成电路中经常用到。
5.3.2 单电源互补对称电路一、电路结构与原理图1是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。
在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使IC3 、VB2和VB1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位VK=VC=VCC/2 。
模拟电子技术基础甲乙类互补对称功率放大电路
2、与甲类功率放大电路相比,乙类互补对称功放 的主要优点是效率高,在理想情况下,其最大效率 约为78.5%。为保证BJT安全工作,双电源互补对称
电路工作在乙类时,器件的极限参数必须满足:PCM >PT1≈0.2Pom,|V(BR)CEO|>2VCC,ICM>VCC/RL。
# 在怎样的条件下,电容C才可充当负电源的角色?
RLC足够大,应满足RLC>(5-10)/2πfL。
4. 带自举电路的单电源功放
静态时
1 VK 2 VCC
VD VCC IC 3 R3
C3充电后,其两端
有一固定电压,不随vi
而改变
VC3
1 2
VCC
I C 3 R3
动态时
自举电路
C3充当一个电源 # 在怎样的条件下,电容C3才能起到电源的作用? R3C3足够大
(电3路)的电特源点供是给:的功率PV PV
A 1,u u ,i u (4)效v率 Voom R 4 VCC
当 iVom
=
Po
PT
i
oVCC
时,
L
2VCCVom
RL
78.5% 4
5.2.2 乙类单电源互补对称功率放大电路
无输出变压器的互补对称功放电路(OTL电路)
(P1O)m最ax 大 不12 失VO真ma输xI出Om功ax率P8VomRCa2CxL
举例
一个功率放大电路如图所示。已知Vcc=20V, -Vcc=-20V, 负载电阻RL=8Ω。设晶体管T1、T2特性一致,死区影响及VCES 忽略不计。
(1)求R=0、vi=10 2 sinωtV时的 Po、Pv、PT及η。 (2)求R=0时电路的最大输出功 率Pom及此时的Pv、PT及η。
知识点:甲乙类互补对称功率放大电路-教学文稿.
VD 1 VD 2 VT2
+UCC
RC1
VT 1 K +
UCL
- +
RL
+C L -
R2取值适当,就可使 IC3、UB1和UB2达到所
需大小,给VT1和VT2提供一个合适的偏置, 从而使K点直流电位为UCC/2。CL两端静态电
ui
C1
VT 3
uo
-
R1
Rห้องสมุดไป่ตู้2
压也为UCC/2。
11
二、知识准备
(三)单电源互补对称功率放大电路(OTL电路)
18
四、知识深化
(一)甲乙类互补对称功率放大电路的应用
2. 常用集成功率放大电路的主要性能指标
19
四、知识深化
(一)甲乙类互补对称功率放大电路的应用
3. 用LM386组成的OTL功放电路
用LM386组成的OTL功放电路如图。7脚接去 耦电容C,5脚所接10Ω 和0.1μ F串联网络是为防
in
2
U+
8
二、知识准备
(二)甲乙类互补对称功率放大电路
为了克服交越失真,可给两互补管的发射结 设置一个很小的正向偏置电压,使它们在静态 时处于微导通状态。这样既消除了交越失真, 又使功放管工作在接近乙类的甲乙类状态,效 率仍然很高。图12-3所示电路就是按照这种要 求来构成的甲乙类功放电路。
μi
VD 1 VD 2 VT2 VT +
μi
VD 1 VD 2 VT2 VT +
+UCC R C1
VT1
RL
μO
-
RC2
-UCC
10
二、知识准备
(三)单电源互补对称功率放大电路(OTL电路)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电子技术知识点:
甲乙类单电源互补对称
功率放大电路
静态时,V K=V CC/2
输出通过电容C与
负载耦合,而不
用变压器——
OTL电路(Output
Transformerless) V CC/2
1.基本电路
2.原理分析
v i负半周
-
+充电
+
v i 正半周
-+
放电
•只要R L C 足够大,电容C 就能起到电源的作用。
-
2.原理分析
v i 为负半周最大值时
接近饱和
CC
K V v +≈2.原理分析
•理想情况下,负载R L 两端得到的交流输出电压幅值V om ≈V CC /2
v i 为正半周最大值时
接近饱和
≈=CES K V v 2.原理分析
•在单电源互补对称电路中,计算输出功率、效率、管耗和电源供给的功率,可借用双电源互补对称电路的计算公式,但要用V CC /2代替原公式中的V CC 。
2.原理分析
+V CC T 4
T 7
T 6
T 1
T 2
R 2
R 5
R 3
R L R 7
u i
u o T 5
R 6
T
8
D 1
D 4
T 3
R 4
R 1
D 3
10k Ω
( c )
5
6
D 22
4
3
R
50μF C ( a )
50μF C 2
1k Ω
18Ω
(+12V)
例题
图(b )所示为某集成功率放大器的简化电路图。
已知输入电压为正弦波;三极管T 6、T 8的饱和管压降=2V ;C 和C 2对交流信号均可视为短路。
填空:
+V CC T 4
T 7
T 6
T 1
T 2
R 2R 5
R 3R L R 7
u i
u o T 5
R 6T
8
D 1
D 4
T 3
R 4
R 1
D 310k Ω
( c )
5
6
D 2
2
4
3
R
50μF C ( a )
50μF C 2
1k Ω1
8Ω
(+12V)
例题2①为了驱动扬声器,将图(b)与图(a)、图(c)合理连接,可以增加一个元件,使电路正常工作;
此时引入的交流负反馈的组态
为,在深度负反馈条件下的电压放大倍数≈。
电压串联负反馈1+R 6/R=11-+
-
+
++
例题
+V CC T 4
T 7
T 6
T 1
T 2
R 2R 5
R 3
R L R 7
u i
u o T 5
R 6
T
8
D 1
D 4
T 3
R 4
R 1
D 310k Ω
( c )
5
6
D 22
4
3
R
50μF C ( a )
50μF C 2
1k Ω1
8Ω
(+12V)
例题2
②D 2、D 3和D 4作为输出级偏置电路的一部分,作用是。
③扬声器上能获得的最大输出功率P om =W 。
2CC CES om
L
1
()221W
V V P R -==克服交越失真例题
+V CC T 4T 7
T 6T 1T 2R 2R 5
R 3
R L R 7u i u o T 5R 6T
8D 1
D 4T 3
R 4R 1D 310k Ω( c )
56D 224
3R 50μF C
( a )( b )
50μF
C 21k Ω18Ω(+12V)
④为使扬声器获得最大输出功率,输入电压的
有效值U i ≈ V 。
m
om i u /22i u u U A ==CC CES u 12
0.26V 2V U A -==例题
模拟电子技术知识点:
甲乙类单电源互补对称
功率放大电路。