微分方程模型介绍
常见微分方程模型

设N(t)为t时刻的人口,则在[t,t+△t]时间内人口的增长 量为: N(t+△t)-N(t) ≈rN(t). △t 设t=t0时的人口为N0,则可以建立模型:
dN (t ) rN (t ) dt N (t 0 ) N 0
该初值问题的解为:
N (t ) N0er (t t 0)
称之为Logistic模型
上述模型的解为:
Nm N (t ) 1 ( N m / N 0 1)e r (t t 0)
模型分析: (1)仍然用1790年至1980年的美国人口进行分析, 发现人口误差非常小。当然随着时间的增加,误差会 大些,这是因为Nm随着科技的提高会不一样。 (2)人也属于生物,故上述两种模型也适用于类似环 境下单一物种生存的其他生物模型,如数目增长,池 塘鱼的增长等。 (3)欲建立更精确的模型,应根据成员的年龄分组及 把成员性别分开。
可算出白铅中铅的衰变率 y0 ,再于当时的矿物 比较,以鉴别真伪。 矿石中铀的最大含量可能 2~3%,若白铅中铅210 每分钟衰变超过3 万个原子,则矿石中含铀量超 过 4%。
测定结果与分析
画名 Emmaus的信徒们 洗足 钋210衰变原子数 镭226衰变原子数
8.5 12.6
0.82 0.26
间的年代:
真正的年代=
c
14
年 1.4 900
3、 范. 梅格伦(Van Meegren) 伪造名画案
第二次世界大战比利时解放后,荷兰保安机关开始搜
捕纳粹分子的合作者,发现一名三流画家H.A.Vanmeegren 曾将17世纪荷兰著名画家Jan.Vermeer的一批名贵油画盗卖 给德寇,于1945年5月29日通敌罪逮捕了此人。 Vanmeegren被捕后宣称他从未出卖过荷兰的利益,所
微分方程模型(全)

第四步:了解问题中所涉及的原则或物理定律。
第五步:依据 第二、第三、第四步 建立微分 方程。 还有已知的对应某个 t 的 y 的值(可 能还有 y 的导数的值)就是求解微分方程所 需要的初始值。
第六步:求微分方程的解并给出问题的答案。 下面我们从易到难给出微分方程模型之应 用案例
例1 火车启动
例 1:火车启动
y ce .
kt
(2)
y( 24) 400.
初始值:
y(0) 100,
代入(2)求得: 因此:
c 100, k (ln 4) / 24.
t ln 4 / 24
y 100e
.
我们要求的是:
y(12) 100e
(12 / 24) ln 溶液浓度
如果有一个实际问题,要找一个量 y , 与另一个量 t(时间或其他变量)的关系, 这种关系涉及量 y 在每个 t 时的瞬时变化率, 而且这个瞬时变化率与量 y 与 t 的关系可以 确定,那么这样的问题通常可以通过微分 方程来解决。 利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步:
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关; 涉及的量为: “时间”(小时),“路程”(千米),“速 度”(千米/小时),“加速度”(常数 a );
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时); 有(待定)函数关系的两个量定为: 细菌总数 y ,时间 t ; 涉及的原则或物理定律: 导数=增长率.
微分方程(组)模型

③
(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例
微分方程(模型)

dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。
在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题
常见的微分方程模型

常见的微分方程模型引言微分方程是数学中的一个重要分支,用于描述自然界中的各种现象和规律。
微分方程模型是一类特定形式的微分方程,常用于解决实际问题。
本文将介绍几个常见的微分方程模型,并讨论它们在不同领域中的应用。
1. 简单增长模型简单增长模型描述了一个系统中某个物质或某个群体数量随时间变化的规律。
它可以用以下形式表示:dNdt=rN其中,N表示物质或群体的数量,t表示时间,r表示增长率。
这个模型可以应用于人口增长、细菌繁殖等问题。
例如,在人口学中,我们可以使用简单增长模型来预测未来人口数量的变化趋势。
2. 指数衰减模型指数衰减模型描述了一个系统中某个物质或某个群体数量随时间指数衰减的规律。
它可以用以下形式表示:dNdt=−rN其中,N表示物质或群体的数量,t表示时间,r表示衰减率。
这个模型可以应用于放射性元素的衰变、药物的消失等问题。
例如,在医学中,我们可以使用指数衰减模型来预测药物在人体内的浓度随时间的变化。
3. 指数增长模型指数增长模型描述了一个系统中某个物质或某个群体数量随时间指数增长的规律。
它可以用以下形式表示:dN dt =rN(1−NK)其中,N表示物质或群体的数量,t表示时间,r表示增长率,K表示系统的容量。
这个模型可以应用于生态学中研究种群数量随时间变化的问题。
例如,在生态学中,我们可以使用指数增长模型来研究某种生物在特定环境下的种群动态。
4. 鱼类生长模型鱼类生长模型描述了鱼类体重随时间变化的规律。
它可以用以下形式表示:dW dt =rW(1−WK)其中,W表示鱼类的体重,t表示时间,r表示生长速率,K表示饱和重量。
这个模型可以应用于渔业学中研究鱼类养殖和捕捞的问题。
例如,在渔业学中,我们可以使用鱼类生长模型来预测鱼类的生长轨迹和最优捕捞量。
5. 热传导方程热传导方程描述了物体内部温度随时间和空间变化的规律。
它可以用以下形式表示:∂u ∂t =α∂2u∂x2其中,u(x,t)表示物体在位置x处、时间t时的温度,α表示热扩散系数。
常见的微分方程模型

常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。
它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。
下面将介绍一些常见的微分方程模型。
1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。
它可以描述许多实际问题,比如放射性衰变、人口模型等。
一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。
2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。
它可以用来描述放射性物质的衰变、人口增长的趋势等。
指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。
这个方程表示y的变化速率与y本身成比例,且反向。
3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。
它可以用来研究热传导、扩散现象等。
扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。
这个方程表示u 的变化率与u的二阶导数成正比。
4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。
它可以用来研究天体运动、分子碰撞等问题。
多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。
5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。
它可以用来研究金融市场的波动、生态系统的不确定性等。
随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。
以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。
通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。
微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。
数学建模 微分方程模型讲解

量在初始阶段的增长情况比较相符。
(2)由(3—19)式推得,t=0 时显然 x=0,这一结果自然与
事实不符。产生这一错误结果的原因在于我们假设产品是自然推
销的,然而,在最初产品还没卖出之时,按照自然推销的方式,
便不可能进行任何推销。事实上,厂家在产品销售之初,往往是
通过广告、宣传等各种方式来推销其产品的。
? 1. 新产品推销模型 ? 一种新产品问世,经营者自然要关心产
品的卖出情况。下面我们根据两种不同 的假设建立两种推销速度的模型。
模型 A 假设产品是以自然推销的方式卖出,换句话说,被卖出的产品
实际上起着宣传的作用, 吸引着未来购买的消费者。 设产品总数与时刻 t 的关
系为 x(t), 再假设每一产品在单位时间内平均吸引 k 个顾客,则 x(t) 满足微
样,从根本上解决了模型 A 的不足。 由(3—20)式易看出, dx ? 0 ,即 x(t) 是关于时刻 t 的单调增
dt
加函数,实际情况自然如此,产品的卖出量不可能越卖越少。另外,
对(3—20)式两端求导,得
d 2x dt 2
?
k(M
?
2 x)
dx dt
故令 d 2x
dt 2
?
0 ,得到 x(t0 ) ?
Nm N0
)e? n
易看出,当t→? 时,当N(t) →Nm。这个模型称为Logistic 模型,其结果 经过计算发现与实际情况比较吻合。上面所画的是 Logistic 模型的的图形。
你也可从这个图形中,观察到微分方程解的某些性态。
捕鱼问题
在鱼场中捕鱼,捕的鱼越多,所获得的经济效益越大。但捕捞的鱼过多,
根据上面的假设,我们建立模型
dS ? P ? A(t) ? ??1 ? S (t) ?? ? ? S(t )
常微分方程模型

t0 1961 ,
x0 3.0610 ,
9
r 0.02,
x(t ) 3.0610 e
9
0.02( t 1961)
(4)
公式(4)能非常准确地反映了在1700-1961年间世 界估计人口总数,
8
但当t=2510年,
t=2635年, t=2670年,
x = 21014 (2万亿), x = 1.8 1015 (18万亿), x = 3.6 10 (36万亿),
(7)
dx ~ x 曲线 和 dt
根据(6),(7)两式可画出 图如图1-a及图1-b:
x~t
图1-a
图1-b
12
dx ~ x 是一条抛物线, 如图1-a, dt dx 他表示人口增长率 dt 随着人口数量 xm 的增加而先增后减,在 x 处达到 2
x
最大值。
如图1-b,x ~ t 是一条 型 xm 曲线 ,拐点在 x 处,当 x 2 m x 时,t
i i1
i2
(17)
制订生育政策就是确定 (t ) 和 hi (t ) ,通过 (t ) 控制 生育多少,通过hi (t )可以控制生育的早晚和疏密。 引入向量、矩阵记号:
x(t ) [ x1(t ), x2 (t ), xm (t )]
T
(18)
20
0 0 0 1 d1 ( t ) A( t ) 0 1 d 2 (t ) 0 0
3
影响人口增长的因素很多,人口的多少,出生率 的高低,人口男女比例的大小,人口年龄组成情况, 工农业生产水平高低,各民族的风俗习惯,自然灾害, 战争,人口迁移等等. 如果一开始把众多因素全考虑,则无从下手.我 们先把问题简化,只考虑影响人口的主要因素—增 长率(出生率减去死亡率),其余因素暂不考虑,建立 一个较粗的数学模型.在这个模型的基础上逐步考 虑次要因素的影响,从而建立一个与实际更加吻合 的数学模型.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微分方程模型介绍
在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。
微分方程模型反映的是变量之间的间接关系,因此,要得到直接关系,就得求微分方程。
求解微分方程有三种方法:
1)求解析解;2)求数值解(近似解);3)定性理论方法。
建立微分方程模型的方法:
1)利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律等来建立微分方程模型。
2)微元分析法
利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律
3)模拟近似法
在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。
下面我们以生态学模型为例介绍微分方程模型的建立过程: 一. 单种群模型
1. 马尔萨斯(Malthus)模型
假定只有一个种群,()N t 表示t 时刻生物总数,r 表示出生率,0t 表示初始时刻,则生物总数增长的数学模型为
()
()()00
d ,d (1)t t N t rN t t N t N =⎧=⎪
⎨⎪=⎩
不难得到其解为()0()
0r t t N t N e
-=.
2. 密度制约模型
由马尔萨斯模型知,种群总数将以几何级数增长,显然与实际不符,因为种群密度增大时,由于食物有限,生物将产生竞争,或因为传染病不再按照增长率r 增长,因而有必要修改,在(1)式右端增加一项竞争项。
()()()d (1)
(2)d N t N t rN t t
K
=-
其中K 为最大容纳量,可以看出当()N t K =时,种群的规模不再增大。
这个模型就是著名的Logistic 模型,可以给出如下解释:由于资源最多仅能维持K 个个体,故每个个体平均需要的资源为总资源的
1K
,在t 时刻个体共消耗了总资源的
()N t K
此时资源剩余()1N t K
-
,
因此Logistic 模型表明:种群规模的相对增长率与当时所剩余的资源份量成正比,这种种群密度对种群规模增长的抑制作用。
称为密度制约。
显然当不考虑密度制约因素时,Logistic 方程就变成了Malthus 模型。
由方程(2)可见,种群规模有两个平衡态()()0;N t N t K ==,易知其解曲线的分布如下图
(可由函数单调性讨论得到) 二 两种群相互作用的模型
20世纪20年代,意大利生物学家Ancona 在研究鱼类变化规律时,无疑中发现了第一次世界大战期间,意大利Finme 港收购站的软骨掠肉鱼(鲨鱼等以其它鱼为食的鱼)在鱼类收购量中的下述比例资料:
使Ancona 感到惊奇的是:在战争期间掠肉鱼的捕获比例显著增加,起初他认为是这是由于战争使捕鱼量减少,掠肉鱼获得了更充裕的食物,从而促进了它们更快地繁殖生长,但再转念一想,捕获量的减少也应同样有利于非掠肉鱼,为什么会导致掠肉鱼的比例上升呢?Ancona 无法用生物学的观点去解释这一现象,于是就去请教他当时的同事、意大利著名的数学家、后来成为他女婿的V.V olterra ,希望他可以通过数学来解释这个现象。
V .V olterra 把鱼分成两大类:掠肉鱼(捕食种群)和食用鱼(食饵种群)。
为了建立数学模型,他用()y t 表示t 时刻Finme 港中掠肉鱼的数量,用()x t 表示t 时刻食用鱼的数量。
1. 无捕捞情况下的模型
假定,若不存在捕食者()y t 时,食饵种群规模()x t 的增长符合马尔萨斯方程,即
()()d d x t ax t t
=
其中0a >为增长率,当捕食者存在()y t 时,单位时间内每个捕食者对食饵的吞食量与食饵种群规模()x t 成正比,比例常数为0b >从而有
()()()()d d x t ax t bx t y t t
=-
再假定捕食者吞食食饵以后,立即转化为能量,供给捕食种群的繁殖增长(略去时滞),设转化系数为α,捕食种群的死亡率与种群规模成正比,比例系数为d 。
于是有
()()()()d d y t bx t y t dy t t
α=-
这样,V olterra 便得到由捕食者与食饵所构成的两种群相互作用的数学模型
d d (3)d d x
ax bxy t y cxy dy t
⎧=-⎪⎪⎨
⎪=-⎪⎩
其中c b α=。
这是一个非线性微分方程,我们对它进行定性讨论。
A: 确定平衡点(驻点,稳定点)
由00
ax bxy cxy dy -=⎧⎨-=⎩解得两个平衡位置(0,0);(,)d a O M c b
B: 考虑各个平衡点的稳定性
对(0,0)O ,考虑其一次线性近似系统
d d d d x
ax t
y dy t
⎧=⎪⎪⎨
⎪=-⎪⎩ 得到其特征方程为()()0a b λλ-+=,得到特征根120;0a b λλ=>=-<,易知具有正实部的特征根,所以有常微分方程的知识知平衡点(0,0)O 是不稳定的。
对平衡点(
,)d a
M c b
,作变换,d a x x y y c
b
=-
=-
,将坐标系平移,系统(3)化为
d d (4)d d x
bd y bxy t c y ac x cxy t
b ⎧=--⎪⎪⎨
⎪=+⎪⎩
可用同样的方法讨论其稳定性。
(稳定但非渐近稳定)
同号——结点 相异(非零)实根
实根 异号——鞍点(不稳定)
临界结点(正的不稳定,负的稳定) 重(非零)实根
退化结点(正的不稳定,负的稳定) 实部不为零——焦点 复根
实部为零——中心(稳定但非渐近稳定)
由matlab 给出系统(3)的数值模拟: 假定1,0.1,0.02,0.5a b c d ==== 可由simulink 仿真模拟出其解曲线的图形
验证了稳定而非渐近稳定
能否给出matlab 的程序及其模拟情况?
3. 考虑捕捞情况下的模型
假定由于海上捕捞,食饵与捕食者的数量分别以hx 和h y 的速率减少,其中h 反映了捕捞能力,它由渔船的规模、设备与技术水平、下网次数等因素所确定h a <,于是在捕捞情况下,系统(3)就变为
()()d d (5)d d x
a h x bxy t y cxy d h y t
⎧=--⎪⎪⎨
⎪=-+⎪⎩
可以判断其平衡点及其稳定性的情况。