耐热高分子

耐热高分子
耐热高分子

耐热高分

heat-resistant polymers

能在150~300℃范围内长期使用的高分子材料。

根据应用的要求,选用耐热高分子的原则为:①要求在热或热、氧同时作用下不发生化学变化,一般选用元素高分子(如含氟高分子、有机硅高分子)和杂环高分子。

②除用作烧蚀材料外,要求在使用温度下仍保持一定的物理、力学性能,一般选用分子链刚性大的、玻璃化温度较高的材料或适度交联的材料。

在不同温度范围内长期使用的常见耐热高分子有:①耐150~200℃的,有聚砜、聚酯酰亚胺、聚酰胺酰亚胺、耐热酚醛树脂、耐热环氧树脂。②耐200~250℃的,有聚芳砜、聚苯硫醚、聚二烯丙基邻苯二甲酸酯、可熔性聚酰亚胺(聚醚酰亚胺)、四氟乙烯-六氟丙烯共聚物(氟46)。③耐250~300℃的,有聚酰亚胺、聚四氟乙烯、聚苯基喹噁啉等。

一般是指在250℃下连续使用仍能保持其主要物理性能的聚合物材料。在电气绝缘材料范畴,通常把使用温度长期在150℃以上的高分子材料称为耐热高分子绝缘材料。环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐照等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指材料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一般热塑性聚合物的耐热性低于热稳定性。

沿革60年代以来,由于航天技术和军事工业的发展,需要烧蚀材料、耐高温的塑料、薄膜、层压材料、胶粘剂、涂料、耐热抗燃纤维等多种耐热高分子材料,从而大大促进了这类材料的发展,出现了第一个有重要意义的杂环聚合物──聚苯并咪唑。之后,合成新的耐热聚合物骤趋活跃,又先后出现了一批耐热芳杂环聚合物、元素有机聚合物、无机聚合物、梯形聚合物等各种类型的耐热高分子材料。

提高耐热性的措施主要措施有:

①提高分子中原子间的键能;

②增加分子中的环结构和共轭程度;

③增加分子链间的交联程度;

④增加分子的取向度和结晶度;

⑤加入稳定剂。

但在采取上述措施时,则不同程度地降低了可加工性。目前,合成在500℃以上、于空气中能长期使用的高分子材料,仍然是人们追求的目标。然而,耐热高分子材料研究工作的发展趋势,已不是单纯创制耐热等级更高的新品种,而是着重解决提高耐热性与可加工性之间的矛盾,并不断降低成本,以便进一步扩大应用范围。

主要品种耐热高分子材料按结构可分为:

①芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酰胺等;

②杂环聚合物类,如聚酰亚胺、聚苯并咪唑、聚喹□啉等;

③梯形聚合物类,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹□啉类梯形聚合物等;

④元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物;

⑤无机聚合物类。

在芳杂环耐热高分子材料中,以聚酰亚胺和芳香族聚酰胺这两类聚合物发展最快,并已实现相当规模的工业化生产。聚酰亚胺在315℃的空气中,能耐1000h,其高温机械性能仍然良好,且耐磨、耐辐射、耐燃性能优异,短期能经受482℃的高温处理。聚酰亚胺的产品已系列化,有薄膜、层压材料、塑料、纤维、涂料、胶粘剂、浸渍漆、分离膜、泡沫塑料、光致抗蚀剂、半导体器件用绝缘涂层等各种形式,因而在航天、电气、电子等许多工业部门中,都得到了越来越广泛的应用。芳香族聚酰胺已被广泛用作高强度和高模量有机纤维、抗燃纤维、反渗透膜、耐热电气绝缘材料等。各国为了解决石棉产品引起的环境公害问题,正在使用芳香族聚酰胺纤维作为石棉的替代品之一,并用于高性能复合材料方面

生活中的高分子材料

生活中的高分子材料 【摘要】 高分子应用在生活中各个地方,塑料便是应用较为广泛。塑料在生活起重大作用,但是也给环境带来了危害。如何解决由塑料制品所造成的白色污染时全人类共同面临的问题。目前,在诸多的解决方案中,开发可降解塑料成为全球瞩目的热点。 【正文】 高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。 高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。 高分子材料的结构特征 高分子材料的高分子链通常是由成千上万个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 高分子材料按其来源可分为:天然高分子材料、半合成高分子材料(改性天

常用高分子聚合物名称缩写 中英文对照

常用高分子聚合物名称缩写 塑料原料名称中英文对照表(无忧塑料网https://www.360docs.net/doc/482411850.html,版权所有) 塑料类别俗称中文学名英文学名英文简称主要用途 热 塑 性 塑 料 聚苯乙烯类硬胶通用聚苯乙烯General Purpose Polystyrene PS灯罩、仪器壳罩、玩具等 不脆胶高冲击聚苯乙烯High Impact Polystyrene HIPS日用品、电器零件、玩具等 改性聚苯乙烯类ABS料丙烯腈-丁二烯-苯乙烯Acrylonitrile Butadiene Styrene ABS电器用品外壳,日用品,高级玩具,运动用品 AS料(SAN料)丙烯腈-苯乙烯Acrylonitrile Styrene AS(SAN)日用透明器皿,透明家庭电器用品等 BS(BDS)K料丁二烯-苯乙烯Butadiene Styrene BS(BDS)特种包装,食品容器,笔杆等 ASA料丙烯酸-苯乙烯-丙烯睛Acrylonitrile Styrene acrylate copolymer ASA适于制作一般建筑领域、户外家具、汽车外侧视镜壳体 聚丙烯类PP(百折胶)聚丙烯Polypropylene PP包装袋,拉丝,包装物,日用品,玩具等 PPC氯化聚丙烯Chlorinated Polypropylene PPC日用品,电器等 聚乙烯类LDPE(花料,筒料)低密度聚乙烯Low Density Polyethylene LDPE包装胶袋,胶花,胶瓶电线,包装物等 HDPE(孖力士)高密度聚乙烯High Density Polyethylene HDPE包装,建材,水桶,玩具等 改性聚乙烯类EVA(橡皮胶)乙烯-醋酸乙烯脂Ethylene-Vinyl Acetate EVA鞋底,薄膜,板片,通管,日用品等 CPE氯化聚乙烯Chlorinated Polyethylene CPE建材,管材,电缆绝缘层,重包装材料 聚酰胺尼龙单6聚酰胺-6Polyamide-6PA-6轴承,齿轮,油管,容器,日用品 尼龙孖6聚酰胺-66Polyamide-66PA-66机械,汽车,化工,电器装置等 尼龙9聚酰胺-9Polyamide-9PA-9机械零件,泵,电缆护套 尼龙1010聚酰胺-1010Polyamide-1010PA-1010绳缆,管材,齿轮,机械零件 丙烯酸脂类亚加力聚甲基丙烯酸甲脂Polymethyl Methacrylate PMMA透明装饰材料,灯罩,挡风玻璃,仪器表壳 丙烯酸脂共聚物改性有机玻璃372#,373#甲基丙烯酸甲脂-苯乙烯Polymethyl Methacrylate-Styrene MMS高抗冲要求的透明制品 甲基丙烯酸甲脂-乙二烯Methyl Methacrylate-Butadiene MMB机器架壳,框及日用品等

高分子化学常见名词

高分子化学常见名词(中英文)Side groups All the carbon based polymers you will find mentioned on this site have the structure -C-C-C-C-C-C- etc. Anything hanging off that centre chain that is not a hydrogen atom is a side group. 侧基:任何悬挂在高分子主链上的非氢原子均称为侧基。Functional Group An atom or group of atoms that has similar chemical behavior, no matter what the rest of the molecule looks like. For example, the hydroxy (OH) group in all alcohols has similar reactivity, as does the thio (SH) group in all thiols. 官能团:分子中存在的一部分原子、原子团或特征结构,容易发生体现分子主要性质的某些特征反应,因此称它们为官能团。 Hydrogen bond The strongest attraction between two dipoles is when one or both of them involves a bond between hydrogen and a strongly electronegative atom, like oxygen, fluorine, or nitrogen. Because hydrogen only has one electron, if it forms a bond with an element that is very keen to grab an electron, it becomes much more positive than an element that has plenty of other electrons left to hang around the positively charged nucleus. Dipole-dipole interactions between these sort of molecules (like water {H2O}, ammonia {NH3}, hydrofluoric acid {HF}) are so much stronger than ordinary dipole-dipole bonds that we give them the special name of 'hydrogen bonds'. 氢键:氢键是极性很强的X-H键上的氢原子与另外一个键上电负性很大的原子上的孤对电子相互吸引而形成的一种键。氢键作用力比一般的偶极间相互作用力大。氢键具有饱和性和方向性。 Monomer Any small molecule that can undergo a reaction in which it is incorporated into a large molecule containing many similar units. Common monomers are vinyl acetate, styrene, butadiene and vinyl chloride. (Yes, it is appropriate to consider hydrocarbons as polymers of methylene!) 单体:能够发生反应生成大分子的小分子物质,最常用的单体如:醋酸乙烯,苯乙烯,丁二烯,氯化乙烯等。(习惯上称亚甲基聚合物为碳氢化合物)

高分子材料常见知识简答

简单题: 1.超高分子量聚乙烯的性能特点,加工特点? 答:超高分子量聚乙烯为线型结构,其具有极佳的耐磨性,突出额高模量,高韧性,优良的自润滑性以及耐环境应力开裂性,摩擦系数低,同时还具有优异的化学稳定性和抗疲劳性。由于其相对分子质量极高,因而它的熔体粘度就极大,熔体流动性能非常差,几乎不流动,所以其不宜采用注射成型,宜采用粉末压制烧结。其与中相对分子质量聚乙烯、低相对分子质量聚乙烯、液晶材料或助剂共混后,具有了流动性。 2.硅烷交联两步法(水解、接枝) 两步法的原理是首先将乙烯基硅烷在熔融状态下接枝到聚乙烯分子上,在接枝过程中通常采用有机过氧化物作为引发剂。过氧化物受热分解产生的自由基能夺取聚乙烯分子链上的氢原子,所产生的聚乙烯大分子链自由基就能与硅烷分子中的双键发生接枝反应。接枝后的硅烷可通过热水或水蒸气水解而交联成网状的结构。 3.论述聚丙烯结构与性能特点,加工特性? 聚丙烯具有优良的抗弯曲疲劳性,强度、刚度、硬度比较高,具有优异的电绝缘性能,主要用于电信电缆的绝缘和电气外壳,具有良好的耐热性,在室温下不溶于任何溶剂,但可在某些溶剂中发生溶胀。耐候性差,易燃烧。 加工性能:

①其吸水率低,因此成型加工前不需要对粒料进行干燥处理。 ②聚丙烯的熔体接近于非牛顿流体,粘度对剪切速率和温度都比较敏感,提高压力或增加温度可以改善其熔体流动性。 ③聚丙烯是结晶类聚合物,所以成型收缩率比较大,且具有较明显的后收缩性。 ④聚丙烯受热时容易氧化降解,在高温下对氧特别敏感,为防止其在加工过程中发生热降解,一般在树脂合成时即加入抗氧剂。 ⑤聚丙烯一次成型性优良,几乎所有的成型加工方法都可适用,其中最常采用的是注射成型和挤出成型。 4.简述聚1-丁烯与其它聚烯烃相比,聚1-丁烯的特点? 1、具有刚性 2、较高的拉伸强度 3、好的耐热性 4、良好的化学腐蚀性以及抗应力开裂性,在油、洗涤剂和其它溶剂中,不会像高密度聚乙烯等其它聚烯烃一样产生脆化,只有在98%浓硫酸,发烟硝酸,液体溴等强度氧化剂的作用下,才会产生应力开裂。 5、优良的抗蠕变性,反复绕缠而不断,即使在提高温度时,也具有特别好的抗蠕变性 6、具有超高相对质量聚乙烯相媲美的非常好的耐磨性 7、可容纳大量的填料,在90-100℃下可长期使用。 5.论述聚氯乙烯结构与性质的关系?

高分子材料简介

康尔高分子复合板板材结构及技术特点分析介绍 1、基材是用福人牌中密度板,密度为 710-730 ,达到欧洲环保的 E1 级标准。不含任何有害的易挥发性物质。 2、背面用进口耐污的纯三聚氢氨面材贴面,耐磨且更易清洗。 3、表面用世界先进的 PUR 胶水粘合一层高分子复合材料,胶水特性:目前航天部门指定胶水,永远不脱胶。高分子复合材料特性:是我公司用两年时间反复试验后,开发出的一种 PVC 、 PET 、 Acrylic 等高分子材料的聚合体,在抗黄变、抗冲击、阻燃、耐变形、耐污和耐磨等方面在同类产品上有显著提高,是目前国际上最优质的产品。 4、使用全中国引进的第一条欧洲最先进的贴合设备,有效提高了板材表面的平整度,克服了同类产品表面不平整的缺点。 5、高分子复合材料是在原先 UV 类产品上的改良产品,除拥有原先 UV 产品的特性外,还解决了 UV 类产品常见的色差、起皱等问题,而且颜色更趋于流行时尚。 6、门板封边采用欧式的封边技术,使门板更具完美品质。铝合金封边:简洁、大方、质感分明;同色封边:幽雅、柔和、浑然一体; 高分子复合材料产品与传统类 UV 产品的理化性能对比 PET材料,其化学名称是聚对苯二甲酸乙二酯。分子结构高度对称,具有很好的光学性能和耐侯性,PET做成的各种材料均具有强度大、透明性好、无毒、防渗透、高环保等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料,包装瓶,电子电器,汽车配件等方面。 PET板材是目前最为环保的橱柜、衣柜门板用材料之一,其性能解析如下: 一、材料解析:

PET材料因其高环保性、无毒、达到食品级(PET材料具有强度大、透明性好、无毒、防渗透、高环保等优点。被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PET材料做成)而广泛受到国内外装饰业界的关注,这也是PET 材料的最大卖点,因为现在的消费者越来越关注环保,也愿意为这类产品多花价钱买单。现在国内知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PET)、柯乐芙、东方邦太等厂家的PET产品也已全面上市。 二、面材构成: 表层材料由两层构成,上层采用PET材料(表面透明部分),下层为PVC颜色膜材料。采用当今世界耐磨、耐污的美国杜邦化工原料进口添加剂,使用当今流行的德国真空覆膜技术制作而成,具有耐磨、耐压、耐高温、抗腐蚀、耐老化等特点;基材为经过国家环保认证的高环保型E0/E1级优质中密度纤维板。 PE T复合材料具有强度大、透明性好、无毒、防渗透、高环保达到食品级等优点。因此,被广泛应用在各类食品、药品、无毒无菌的包装材料:像保鲜膜、饮料瓶、食用油包装瓶均是由PE T材料做成)现在国内很多知名品牌像海尔高端F0橱柜(即海尔零甲醛橱柜门板全面选用PE T)、柯乐芙、科宝等厂家的PE T产品已全面上市。 产品优势:

常用高分子材料总结

常用高分子材料总结

不饱和聚酯(UP)由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨基塑料脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电弧 性和一定的机械强度,有自熄性、无 臭、无味、耐热性、耐水性比酚醛塑 料稍差,外观美丽鲜艳,耐霉菌,制 造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低,而 且耐沸水煮,耐热性也优于脲醛塑料 一般可在150-200℃范围内使用,并 有抗果汁、洒类饮料的沾污,密胺餐 具而出名 (UMF)制品具有优良的 耐电弧性能和很高的机 械强度,以及良好的电 绝缘性和耐热性;耐电 弧防爆电器设备配件, 要求高强度的电器开关 和电动工具的绝缘部件 等。 三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 醛树脂 UMF 聚氨酯(PU)主链含—NHCOO— 重复结构单元的一 类聚合物,由异氰 酸酯(单体)与羟 基化合物亲电加聚 而成 良好的耐油性、韧性、耐磨性、耐老 化性和粘合性,用不同材料可制得适 应较宽温度范围材料(-50~150) 聚合方法随材料性质而不同得到:热 塑弹性体、弹性纤维、硬质泡沫塑料、 软质泡沫塑料、涂料、胶粘剂 聚氨酯弹性体,轻质泡 沫,涂料,乳液,胶粘 剂,磁性材料 环氧树脂(EP)分子中含有两个或 两个以上环氧基团 的有机高分子化合 物,一般相对分子 质量都不高 形式多样,固化方便,粘附力强,收 缩性低,固化后,力学性能,电性能, 化学稳定性优良,尺寸稳定性好,耐 霉菌 含有活泼的环氧基、羟基、醚键,可 与多种类型的固化剂发生交联反应 而形成不溶、不熔的具有三向网状结 构,须固化 槽、管、船体、机体、 储罐、气瓶、简易模具、 汽车构件、电容器等塑 封件各种构件黏结剂、 涂料

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

耐热高分子材料及其应用

耐热高分子材料及其应用 二耐热高分子材料的分类 耐热高分子材料按结构可分为:①芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酰胺等;②杂环聚合物类,如聚酰亚胺、聚苯并咪唑、聚喹 啉等;③梯形聚合物类,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹 啉类梯形聚合物等;④元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物;⑤无机聚合物类。 三影响耐热高分子材料耐热性的因素 环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐照等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指材料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一般热塑性聚合物的耐热性低于热稳定性。 四提高耐热高分子材料耐热性的措施

①提高分子中原子间的键能;②增加分子中的环结构和共轭程度;③增加分子链间的交联程度;④增加分子的取向度和结晶度;⑤加入稳定剂。但在采取上述措施时,则不同程度地降低了可加工性。目前,合成在500℃以上、于空气中能长期使用的高分子材料,仍然是人们追求的目标。然而,耐热高分子材料研究工作的发展趋势,已不是单纯创制耐热等级更高的新品种,而是着重解决提高耐热性与可加工性之间的矛盾,并不断降低成本,以便进一步扩大应用范围。 五耐热高分子的选用条件 ①在热或热、氧同时耐热高分作用下,不发生化学变化,一般选用元素高分子(如含氟高分子、有机硅高分子)和杂环高分子;②除用作烧蚀材料外,要求在使用温度下仍能保持一定的物理、力学性能,一般选用分子链刚性大的、玻璃化温度较高的材料或适度交联的材料。 六耐热高分子材料的发展及应用 在芳杂环耐热高分子材料中,以聚酰亚胺和芳香族聚酰胺这两类聚合物发展最快,并已实现相当规模的工业化生产。聚酰亚胺在315℃的空气中,能耐1000h,其高温机械性能仍然良好,且耐磨、耐辐射、耐燃性能优异,短期能经受482℃的高温处理。聚酰亚胺的产品已系列化,有薄膜、层压材料、塑料、纤维、涂料、胶粘剂、浸渍漆、分离膜、泡沫塑料、光致抗蚀剂、半导体器件用绝缘涂层等各种形式,因而在航天、电气、电子等许多工业部门中,都得到了越来越广泛的应用。芳香族聚酰胺已被广泛用作高强度和高模量有机纤维、抗燃纤维、反渗透膜、耐热电气绝缘材料等。各国为了解决石棉产品引起的环境公害问题,正在使用芳香族聚酰胺纤维作为石棉的替代品之一,并用于高性能复合材料方面。

常用高分子材料汇总

常用高分子材料汇总

————————————————————————————————作者:————————————————————————————————日期: 2

常用高分子材料总结 塑料:1、热固性塑料 2、热塑性塑料:①通用塑料(五大通用塑料) ②工程塑料(通用工程塑料特种工程塑料) 工程塑料具有更高的力学强度,能经受较宽的温度变化范围和较苛刻的环境条件,具有较高的尺寸稳定性, 五大通用工程塑料为:聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚。 分 类 名称概述性能特点加工性能主要应用 酚醛树脂(PF)酚类和醛类缩聚而 成的合成树脂的总 称。最常用的是苯 酚和甲醛 力学强度高;性能稳定;坚硬耐磨; 耐热、阻燃、耐腐蚀;电绝缘性良好; 尺寸稳定性好;价格低廉;色深,难 于着色 本身很脆,成型时需排气,须加入纤 维或粉末状填料。有层压和模压 电绝缘材料(俗称电 木)、家具零件、日用品、 工艺品、耐酸用的石棉 酚醛塑料 3

热固性塑不饱和聚酯 (UP) 由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨 基 塑 料 脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电 弧性和一定的机械强度,有自熄性、 无臭、无味、耐热性、耐水性比酚醛 塑料稍差,外观美丽鲜艳,耐霉菌, 制造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低, 而且耐沸水煮,耐热性也优于脲醛塑 料一般可在150-200℃范围内使用, 并有抗果汁、洒类饮料的沾污,密胺 餐具而出名 (UMF)制品具有优良 的耐电弧性能和很高的 机械强度,以及良好的 电绝缘性和耐热性;耐 电弧防爆电器设备配 件,要求高强度的电器 开关和电动工具的绝缘三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 4

耐热高分子材料及其应用

耐热高分子材料及其应用 姓名 (常州轻工职业技术学院常州 213164) 摘要:随着尖端科学技术的发展,特别是高速飞行、火箭、宇宙航行、无线电、工程技术等的飞跃发展,对高分子材料的耐热性提出了越来越高的要求。近年来世界各国科学家正在开发这方面新技术,很多材料已经进行大规模生产。耐高温高分子材料一直是大家关注的热点,本文首先对耐热高分子材料作一概述,然后从多方面介绍耐热高分子材料在实际中的应用以及对其未来的展望。 关键词:耐热高分子耐热性高分子材料耐热材料应用 1 耐热高分子材料 1.1 耐热高分子材料的定义 耐热高分子材料一般是指在250℃下连续使用仍能保持其主要物理性能的聚合物材料[1]。在电气绝+缘材料范畴,通常把使用温良长期在150℃以上的高分子材料称为谢热高分子绝缘材科. 1.2 耐热高分子材料的影响因素 环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐射等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指树料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一种热塑性聚合物的耐热性低于热稳定性。 1.3 耐热高分子材料的分类 耐热高分子材料按结构可分为: (1)芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酷咬等; (2)杂环聚合物类,如聚酰亚胺、聚苯并咪唑、喹恶林等; (3)梯形聚合物,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹恶林类梯形聚合物等: (4)元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物; (5)无机聚合物类. 2 高分子材料的耐热性与结构 2.1 对高分子材料耐热性的要求 关于高分子材料的耐热性,至今尚无完全统一的规定,不同研究者往往有不同的解释[2]。Eirich,等人在1961年曾对高分子材料的耐热性提出三条基本要求:有高熔点和高软化点;高的抗热解性;有良好的耐热氧化性和耐化试学剂性。但通常首先注意材料的最高工作

常见高分子缩写

常用塑料的缩写代号、英文全称、中文全称及别名对照表 缩写代号英文全称中文全称别名ABS Acrylonitrile-butadiene-styrene 丙烯腈/丁二烯/苯乙烯共聚物ABS树脂AES Acrylonitrile-ethylene-styrene 丙烯腈/乙烯/苯乙烯共聚物AES树脂 AS Acrylonitrile-styrene resin 丙烯腈/苯乙烯共聚物AS树脂 CN Cellulose nitrate 硝酸纤维素赛璐璐 EPM Ethylene-propylene polymer 乙烯/丙烯共聚物乙丙树脂EPS Expanded polystyrene 可发性聚苯乙烯发泡聚苯乙烯EV A Ethylene/vinyl acetate 乙烯/醋酸乙烯共聚物EV A树脂GPPS Generral polystyrene 通用聚苯乙烯透明聚苯乙烯HDPE High-density polyethylene plastics 高密度聚乙烯低压聚乙烯HIPS High impact polystyrene 高抗冲聚苯乙烯改性聚苯乙烯 K树脂Styrene- butadiene 苯乙烯/丁二烯共聚物K胶 LCP Liquid crystal polymer 液晶聚合物 LDPE Low-density polyethylene plastics 低密度聚乙烯高压聚乙烯LLDPE Linear low-density polyethylene 线型低密聚乙烯线型高压聚乙烯MF Melamine-formaldehyde resin 密胺-甲醛树脂密胺塑料 PA Polyamide (nylon) 聚酰胺尼龙、锦纶PAI Polyamide-imide 聚酰胺-酰亚胺 PBT Poly(butylene terephthalate) 聚对苯二酸丁二酯聚酯 PC Polycarbonate 聚碳酸酯

耐热高分子

耐热高分 子 heat-resistant polymers 能在150~300℃范围内长期使用的高分子材料。 根据应用的要求,选用耐热高分子的原则为:①要求在热或热、氧同时作用下不发生化学变化,一般选用元素高分子(如含氟高分子、有机硅高分子)和杂环高分子。 ②除用作烧蚀材料外,要求在使用温度下仍保持一定的物理、力学性能,一般选用分子链刚性大的、玻璃化温度较高的材料或适度交联的材料。 在不同温度范围内长期使用的常见耐热高分子有:①耐150~200℃的,有聚砜、聚酯酰亚胺、聚酰胺酰亚胺、耐热酚醛树脂、耐热环氧树脂。②耐200~250℃的,有聚芳砜、聚苯硫醚、聚二烯丙基邻苯二甲酸酯、可熔性聚酰亚胺(聚醚酰亚胺)、四氟乙烯-六氟丙烯共聚物(氟46)。③耐250~300℃的,有聚酰亚胺、聚四氟乙烯、聚苯基喹噁啉等。 一般是指在250℃下连续使用仍能保持其主要物理性能的聚合物材料。在电气绝缘材料范畴,通常把使用温度长期在150℃以上的高分子材料称为耐热高分子绝缘材料。环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐照等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指材料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一般热塑性聚合物的耐热性低于热稳定性。 沿革60年代以来,由于航天技术和军事工业的发展,需要烧蚀材料、耐高温的塑料、薄膜、层压材料、胶粘剂、涂料、耐热抗燃纤维等多种耐热高分子材料,从而大大促进了这类材料的发展,出现了第一个有重要意义的杂环聚合物──聚苯并咪唑。之后,合成新的耐热聚合物骤趋活跃,又先后出现了一批耐热芳杂环聚合物、元素有机聚合物、无机聚合物、梯形聚合物等各种类型的耐热高分子材料。 提高耐热性的措施主要措施有: ①提高分子中原子间的键能; ②增加分子中的环结构和共轭程度; ③增加分子链间的交联程度; ④增加分子的取向度和结晶度; ⑤加入稳定剂。 但在采取上述措施时,则不同程度地降低了可加工性。目前,合成在500℃以上、于空气中能长期使用的高分子材料,仍然是人们追求的目标。然而,耐热高分子材料研究工作的发展趋势,已不是单纯创制耐热等级更高的新品种,而是着重解决提高耐热性与可加工性之间的矛盾,并不断降低成本,以便进一步扩大应用范围。

高分子材料常用专业术语中英对照表解析

加工processing 反应性加工reactive processing 等离子体加工plasma processing 加工性processability 熔体流动指数melt [flow] index 门尼粘度Mooney index 塑化plasticizing 增塑作用plasticization 内增塑作用internal plasticization 外增塑作用external plasticization 增塑溶胶plastisol 增强reinforcing 增容作用compatibilization 相容性compatibility 相溶性intermiscibility 生物相容性biocompatibility 血液相容性blood compatibility 组织相容性tissue compatibility 混炼milling, mixing 素炼mastication 塑炼plastication 过炼dead milled 橡胶配合rubber compounding 共混blend 捏和kneading 冷轧cold rolling 压延性calenderability 压延calendaring 埋置embedding 压片performing 模塑molding 模压成型compression molding 压缩成型compression forming 冲压模塑impact moulding, shock moulding 叠模压塑stack moulding 复合成型composite molding 注射成型injection molding 注塑压缩成型injection compression molding 射流注塑jet molding 无流道冷料注塑runnerless injection molding 共注塑coinjection molding 气辅注塑gas aided injection molding 注塑焊接injection welding 传递成型transfer molding

耐热高分子材料

耐热高分子材料调研 1 耐热高分子材料 1.1 耐热高分子材料的定义 耐热高分子材料一般是指在250℃下连续使用仍能保持其主要物理性能的聚合物材料。在电气绝+缘材料范畴,通常把使用温良长期在150℃以上的高分子材料称为谢热高分子绝缘材科. 1.2 耐热高分子材料的影响因素 环境对高分子材料的耐热程度影响很大,在不同的环境介质中,温度、应力、作用时间、辐射等,会使高分子材料的性能有很大差别。高分子材料的耐热程度,主要由耐热性和热稳定性表示。耐热性是指在负荷下,材料失去原有机械强度发生变形时的温度,其参数如熔化温度、软化温度、玻璃化温度等。热稳定性是指树料的分子结构在惰性气体中开始发生分解时的温度,在空气中开始分解的温度称为热氧稳定性。一种热塑性聚合物的耐热性低于热稳定性。 1.3 耐热高分子材料的分类 耐热高分子材料按结构可分为: (1)芳环聚合物类,如聚亚苯基、聚对二甲苯、聚芳醚、聚芳酯、芳香族聚酷咬等; (2)杂环聚合物类,如聚酰亚胺、聚苯并咪唑、喹恶林等; (3)梯形聚合物,如聚吡咯、石墨型梯形聚合物、菲绕啉类梯形聚合物、喹恶林类梯形聚合物等: (4)元素有机聚合物类,如主链含硅、磷、硼的有机聚合物和其他有机金属聚合物; (5)无机聚合物类. 2 高分子材料的耐热性与结构 2.1 对高分子材料耐热性的要求 关于高分子材料的耐热性,至今尚无完全统一的规定,不同研究者往往有不同的解释。Eirich,等人在1961年曾对高分子材料的耐热性提出三条基本要求:有高熔点和高软化点;高的抗热解性;有良好的耐热氧化性和耐化试学剂性。但通常首先注意材料的最高工作温度。实际上,对耐高温高分子材料的要求不只是这一个指际,还应指出使用条件、可耐时间以及性能改变的允许范围等才有意义。例如美国航空宇宙局规定的条件为:在330 C于空气中400小时,538 C 下80小时内材料仍保持足够的机械强度、尺寸稳定性及化学稳定性。当做火箭烧蚀材料时,则要求在1000——10000 C高温下,在儿秒到儿分钟的短时间内,应残留大量的燃烧残渣并保持其原来的形态。只有提出对温度、环境、性能等儿方面的要求,才能作为可使用材料的完整指标。 当前合成新的耐高温高分子材料的要求是:能长时间耐300 C以上高温,甚至在氧化环境中能长期保持结构的完整性并维持其性能。现有的高分子材料的耐热性多数低于这个要求,并希望某高分子材料其有导体和半导体比、或加入某些石墨化或金属活化的组成,使其显示超导体性。 2.2 耐热性与高分子结构 关于高分子结钩与耐热性之间的关系问题,从1959年以来进行了不少的探讨,取得了某些进展,这对耐高温材料的合成及提高材料的耐热性,具有一定的指导意义。但是还存在着很大的盲目性,如把几十种杂环引进高分子链,真正

高分子材料之最

高分子材料之最 聚乙烯——最易燃塑料之一 环境应力开裂——聚乙烯特有现象 乙烯乙烯醇共聚物(EVOH)树脂在所有高阻隔树脂中热稳定性最好 聚丙烯力学性能和耐热性能在通用热塑性塑料中最高 聚丙烯是塑料材料中除4-甲基-1-戊烯(P4MP)之外最轻的品种 聚氯乙烯的降解是因为发生交联 聚甲基丙烯酸甲脂的透光性,透明性是所有塑料中最好的 阻燃:Cl 酚醛树脂聚碳酸酯聚苯醚聚苯硫醚(S)聚芳醚酮 易燃:聚乙烯聚丙烯聚苯乙烯聚甲醛 自润滑性塑料:聚酰胺聚甲醛聚苯醚聚对苯二甲酸乙二醇酯聚芳酯聚四氟乙烯 坚韧又刚性:聚碳酸酯 分子间作用大,力学强度高,熔点高。 易结晶:结构规整,氢键, 刚性:位阻效应, PE的力学性能受到结晶度,密度,相对分子质量影响。 极性基团:Cl 酰胺基团 吸水性:酰胺基团 聚碳酸酯吸水性不大但易水解 力学性能包括:拉伸强度,压缩强度,冲击强度,刚性,耐磨性 自熄性:聚酰胺聚苯醚 刚性:主链有芳杂环取代基极性大支链交联分子间作用力结晶度砜基 柔性:碳酸酯链主链有孤立双键对称性好分子链越长构象数目越少醚基 通用工程塑料综合性能好 增强一般用:玻璃纤维,碳纤维,玻璃球石棉纤维硼纤维 润滑一般用:石墨聚四氟乙烯二硫化钼机油硅油 内旋困难熔点高 无可水解基团故耐水(易水解酯) 接近牛顿体:聚苯醚聚碳酸酯 假塑体:聚对苯二甲级乙二醇酯 聚夲酯热稳定性、自润滑性、硬度、电绝缘性、耐磨性是目前所有高分子材料中最好的,长期使用温度为315℃,并且不溶于任何溶剂和酸中。 聚四氟乙烯耐化学药品性最好 四大通用纤维:涤纶(PET)腈纶()锦纶(PA)丙纶(PP) 涤纶:最挺括的纤维,易干免洗免烫 PTT最有发展前途的通用纤维塑料 可燃性用极限氧指数表示。 天然橡胶性能:具有很好的弹性,在通用橡胶中仅次于顺丁橡胶。耐油性、耐臭氧老化和耐热老化性差。 天然橡胶:自增强性 天然橡胶具有最好的加工性能和综合性能 丁苯橡胶最早工业化的合成橡胶。 乙丙橡胶的热稳定性和耐老化性是通用橡胶中最好的,密度在其中最低 氟橡胶优异的热稳定性耐化学药品和腐蚀性是橡胶中最好的

11生活中常见合成高分子材料

11、生活中常见合成高分子材料 [考点解析] 天然高分子(如棉花、羊毛、淀粉、纤维素、蛋白质) 1 .高分子材料 ,聚乙烯)橡胶、塑料、纤维 2.常见合成高分子 [典例分析]例1.不粘锅内壁有一薄层为聚四氟乙烯的高分子材料的涂层,用不粘锅烹烧菜肴时不易粘锅、烧焦。下列关于聚四氟乙烯的说法正确的是( )。 A .不粘锅涂层为新型有机高分子材料,商品名为 “特氟隆” B .聚四氟乙烯的单体是不饱和烃 C .聚四氟乙烯中氟元素的质量分数为76% D .聚四氟乙烯的化学性质较活泼 解析:聚四氟乙烯仍属于传统的三大合成材料之一——塑料,它的单体是四氟乙烯,属于不饱和卤代烃;其氟元素的质量分数 ;化学性质稳 定,广泛应用于炊具,商品名为“特氟隆”。答案:C 例2.塑料的主要成分是___________,热塑性塑料的特点是___________,热固性塑料的特点是___________。人们根据需要制成了许多特殊用途的塑料,如___________塑料、___________塑料、___________塑料等,其中___________塑料在宇宙航空、原子能工业和其他尖端技术领域将发挥重要的作用。 答案:合成树脂;加热到一定温度可软化甚至熔化,可以反复加工,多次使用;一旦加工成型,就不会受热熔化;工程;增强;改性;工程 分析:了解几种常见塑料的品种、性能及用途。

[自我检测] 1.汽车轮胎的主要成分是()。 A.塑料B.纤维C.复合材料D.橡胶 2.下列物质不属于塑料的是()。 A.有机玻璃B.聚四氟乙烯C.电木D.白明胶 3.下列塑料可作耐高温材料的是()。 A.聚氯乙烯B.聚四氟乙烯C.聚苯乙烯D.有机玻璃 4.丁列物质属于天然纤维的是()。 A.粘胶纤维B.木材C.丙纶D.涤纶 5.制作VCD、DVD光盘的材料和装修用的“水晶板”,都是有机玻璃。它属于( )。 A.合成材料B.复合材料C.金属材料D.无机非金属材料6.下列有关高分子材料的表述不正确 ...的是()。 A.棉花、羊毛、天然橡胶等属于天然高分子材料 B.塑料、合成纤维、黏合剂、涂料等是合成高分子材料 C.高分子材料是纯净物 D.不同高分子材料在溶解性、热塑性和热固性等方面有较大的区别 7.下列对一些塑料制品的叙述中,不正确的是()。 A.塑料凉鞋可以热修补,因为制作材料具有热塑性 B.聚乙烯塑料可反复加工多次使用 C.因为塑料制品易分解,塑料制品废弃可采用深埋处理 D.酚醛塑料制品如电木插座不能进行热修补,是因为酚醛塑料不具有热塑性 8. 下列不属于新型有机高分子材料的是()。 A.高分子分离膜B.液晶高分子材料C.生物高分子材料D.丁苯橡胶9.高分子分离膜可以让某些物质有选择地通过而将物质分离,下列应用不属于高分子分离膜的应用范围的是()。 A.分离工业废水,回收废液中的有用成分 B.食品工业中,浓缩天然果汁、乳制品加工和酿酒 C.将化学能转换成电能,将热能转换成电能 D.海水的淡化 10.材料是为人类社会所需要并能用于制造有用器物的物质。按用途分可分为结构材料、功能材料等;按化学组成和特性又可分成四类,请将下列物质的标号填在相应的空格中: A. 水泥B.半导体材料C.塑料D.超硬耐高温材料E.陶瓷F.普通合金 G.合成橡胶合成纤维H.玻璃 ⑴属于传统无机非金属材料的有;⑵属于新型无机非金属材料的有; ⑶属于金属材料的有;⑷属于高分子材料的有。

耐高温吸波材料

高温吸波材料 姓名:学号: 摘要:本文论述了常见的石墨、乙炔炭黑吸收剂、碳纤维和碳化硅高温吸收剂的性能和应用概况,重点论述了碳化硅纤维、纳米碳化硅吸收剂处理方法和性能。综述了高温吸波材料的研究及应用概况。实现隐身的技术途径主要有两类:一是通过外形设计尽量减少雷达波散射截面,但因受到战术技术指标和环境条件的限制,进行理想设计有相当大的难度;二是应用吸波材料。因研制吸波材料则较为容易,且易于实施,所以吸波材料研究成为隐身技术中的研究热点。由于高温吸波材料仅仅依靠材料的电损耗来吸收电磁波,故其吸波效率远低于磁性吸波材料,这就要求高温吸波材料具有较大的厚度。 关键词:高温,吸收剂,吸波材料 1.概述 通讯技术和电子对抗技术的迅速发展对吸波材料的吸波性能要求越来越高,一般传统的吸波材料已难以满足需要。目前美、日和西欧国家在电磁波吸收材料研究和应用上处于领先,虽然主要涉及军事应用,在民用领域已分别研制出了毫米厚度电磁波吸收体。最先进的吸收材料是美国在隐身飞机上的电磁波吸收涂料,可以在较宽的频带内使雷达波的反射降低7~10 dB。我国的吸波材料和电磁波分析开始于20世纪80年代,90年代中后期进入发展阶段,基本上处于跟踪国外和探索阶段。总体上吸波材料和电磁波吸收体的理论分析和应用分析目前还没有形成成熟的理论。根据对电磁波吸收机理的不同,吸波材

料主要可分为电损耗型(如石墨粉、导电高分子、碳化硅、碳纳米管等)和磁损耗型(如铁氧体粉、磁性金属粉、磁性纤维等)两大类。迄今为止,对铁氧体、金属粉末等粉类吸波材料已进行了较深人的研究,但粉类吸波剂普遍存在密度大、单位厚度吸收率低等缺点,新型吸波材料则要求满足“薄、轻、宽、强”等特点。若考虑严苛条件(如高温、氧化和腐蚀等条件)则对吸波材料有更高的要求。目前巡航导弹、地地导弹和空空导弹的速率已达到5马赫以上,未来空天飞机的运行速率更是接近l0马赫,这就对经受强烈气动加热的电磁窗口材料提出了耐高温的要求。在气动加热温度超过l 000℃以上情况下,聚合物和金属材料因为化学分解和强度下降等因素已经不能满足吸波材料 的使用要求(整体性、高温强度、耐烧蚀性、吸波性能),因此国内外主要针对碳和陶瓷材料及其复合材料作为超高温耐烧蚀吸波材料的 研究。本文对最近报道的>1 000℃耐高温碳基和陶瓷基吸波材料进行了回顾,同时对在纳米技术、静电纺丝技术等研究中发现的新型碳基或陶瓷基耐高温材料应用为电磁吸收材料进行了展望。 2.高温吸波材料的选择 纵观国内外现状,目前新型吸波材料主要是缺乏基础原材料。在设计、合成和制备新型耐高温电磁波吸收剂方面,是国内外研究的热点,力求为电磁吸收材料提供宽频、轻质、高强、易加工、具有温度稳定性的吸收剂。手征性材料,比如螺旋形碳纤维,因兼具手性强化吸收、电损耗和各向异性特性,同时密度小、强度大和耐高温(吸收性能随温度变化很小),得到研究者的关注,如Gifu大学和北京化

高分子材料与工程专业排名一览表

一、工科:偏合成的:浙江大学(国内高分子鼻祖,尤其在合成方面)、华东理工、北京化工大学、清华大学;偏加工和应用的:四川大学、华南理工、东华大学(原中国纺织大学)、上海交通大学 理科:偏合成的:北京大学(好像北大遥遥领先,其他象南开、南京大学明显差一些);偏性能形态研究的:南京大学、复旦大学、北京大学 5-10年这个行业发展都会不错。 二、高分子材料与工程就业前景分析高分子材料与工程专业排名一览表 【北京市】清华大学、北京理工大学、北京航空航天大学、北京化工大学、北京服装学院、北京石油化工学院、北京工商大学 【天津市】天津大学、天津科技大学 【河北省】河北工业大学、河北科技大学、河北大学、燕山大学 【山西省】太原理工大学、华北工学院 【辽宁省】大连轻工业学院、沈阳化工学院、大连理工大学、大连轻工业学院、沈阳工业大学、沈阳工业学院 【吉林省】吉林大学、长春工业大学、吉林建筑工程学院 【黑龙江省】哈尔滨工业大学、哈尔滨理工大学、齐齐哈尔大学、东北林业大学 【上海市】复旦大学、华东理工大学、东华大学、上海大学 【江苏省】江苏大学、南京理工大学、江南大学、扬州大学、南京工业大学、江苏工业学院、江苏大学、南京林业大学、华东船舶工业学院 【浙江省】浙江大学、浙江工业大学 【安徽省】中国科学技术大学、合肥工业大学、安徽大学、安徽建筑工业学院、安徽工业大学、安徽理工大学

【福建省】福建师范大学 【江西省】南昌大学、华东交通大学 【山东省】山东大学、青岛大学、青岛科技大学、济南大学、烟台大学六 【河南省】郑州大学、河南科技大学、郑州轻工业学院 【湖北省】湖北大学、武汉理工大学、湖北工学院、武汉化工学院、武汉科技学院、湖北科技大学 【湖南省】中南林学院 【广东省】华南理工大学、广东工业大学、南华大学、株洲工学院、茂名学院、中山大学 【广西壮族自治区】桂林工学院 【海南省】华南热带农业大学 【四川省】四川大学、西南石油学院 【陕西省】西北工业大学、西安工程科技学院、陕西理工学院、陕西科技大学 【甘肃省】兰州理工大学 【新疆维吾尔自治区】新疆大学 三、理论高分子搞的比较好的是北大、浙大、吉大,各有各的长处;中科院系统的研究所的高分子专业也都不错,华南理工实际应用搞的非常好,和国内一些企业有很多技术合作。青岛科技大学的橡胶国内一流。南开的功能高分子不错。西北工大的复合材料很牛!北化据说是全国高分子的龙头,具体不清楚实力,但高分子的加工机械很厉害,有些人物。 理论研究方面,复旦的高分子物理与化学是非常好的。 工科方

相关文档
最新文档