2017考研数学七大中值定理精讲
考研高数定理:柯西中值定理

凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!考研高数定理:柯西中值定理考研数学考察的中值定理有:罗尔中值定理、拉格朗日中值定理(即微分中值定理)、柯西中值定理和泰勒中值定理。
这四个定理之间的联系和区别要弄清楚,罗尔定理是拉格朗日中值定理的特殊情况。
除泰勒定理外的三个定理都要求已知函数在某个闭区间上连续,对应开区间内可导。
柯西中值定理涉及到两个函数,在分母上的那个函数的一阶导在定义域上要求不为零,柯西中值定理还有一个重要应用——洛必达法则,在求极限时会经常用到。
泰勒公式中的x0=0时为泰勒公式的特殊情况,为麦克劳林公式,常见函数的麦克劳林展开式要熟记,在求极限和级数一章中有很重要的应用。
证明题中辅助函数的构造方法:一、结论中只含ξ,不含其它字母,且导数之间的差距为一阶。
二、结论中只含ξ,不含其它字母,且导数之间相差超过一阶。
三、结论中除含ξ,还含有端点a,b。
四、结论中含两个或两个以上的中值。
凯程考研:凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。
凯程考研的宗旨:让学习成为一种习惯;凯程考研的价值观:凯旋归来,前程万里;信念:让每个学员都有好最好的归宿;使命:完善全新的教育模式,做中国最专业的考研辅导机构;激情:永不言弃,乐观向上;敬业:以专业的态度做非凡的事业;服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。
凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。
扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。
七大中值定理的理解与运用

七大中值定理的理解与运用在高等数学内容中,七大中值定理(零点定理、介值定理、三大微分中值定理、泰勒定理与积分中值定理)是学生在学习过程中认为最难的部分。
七大定理的难主要在于难理解、难应用。
在历次考试,包括研究生入学考试中,与中值有关的问题一直是考试中得分最少的题,因此如何让学生更好的理解与掌握定理,灵活有效的使用定理,一直是我在授课过程中觉得比较难把握的。
在授课和答疑过程中也曾经积累了一些想法,但是这些想法都比较零碎。
乐老师在培训过程中对中值定理证明问题中辅助函数构造的讲解,对我帮助最大。
借这次机会将我对七大定理教学过程中的体会总结如下。
第一,七大定理的归属。
零点定理与介值定理属于闭区间上连续函数的性质。
三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。
积分中值定理属于积分范畴,但其实也是微分中值定理的推广。
第二,对使用每个定理的体会。
学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。
关键在于是对哪个函数在哪个区间上使用哪个中值定理。
1.使用零点定理问题的基本格式是“证明方程f(x)=0在a,b 之间有一个(或者只有一个)根”。
从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。
应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。
2.介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。
3.用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。
正如乐老师在培训过程中所说,应用微分中值定理主要难点在于构造适当的函数。
曾经在以往授课过程中总结了一点构造函数的方法,这次经过培训,我对构造函数的方法有了进一步的掌握,感觉乐老师讲述的方法便于记忆,更便于学生理解。
考研数学中值定理专题讲义

本期内容是微分中值定理(罗尔定理,拉格朗日中值定理,柯西中值定理, 泰勒中值定理)证明题。是重点也是难点。
特点:考频很高(尤其是数二),出大题的可能性很大,综合性很强(可以和 极限,介值定理,不等式,单调性,极限的保号性,积分中值定理,变上限积分 函数等知识点相结合)。学生须具备较强的分析能力,甚至是构造性思维,区分 度很高。
和函数的奇偶性结合起来考查。 (4)找到两个端点使得 F (a) F (b) :
可以找到 F (a) F (a) (5)应用罗尔中值定理证明结论:
存在 (a, a)使得F( ) [ f ( ) 2 f ( )]e2 0
6
完整的证明过程:
令 F (x) ex2 f (x) 易知 F (x) 在[a, a] 上连续,在 (a, a) 内可导 F (a) F (a)
整理得:
(0,1)使得F( )
f (x)dx f ( ) 0
0
0 f (x)dx f ( )
二、拉格朗日中值定理
1、定理内容
如果函数 f (x) 满足
(1) 在闭区间[a,b] 上连续
(2) 在开区间 (a,b) 内可导
那么在 (a,b) 内至少有一点 (a,b) ,使等式
成立
f (b) f (a) f ( )(b a)或者 f (b) f (a) f ( ) ba
因为 f (c) f (3) 1, f (x)在[c,3]上连续,在 (c,3) 内可导,所以由罗尔定理: (c,3) (0,3),使得f ( ) 0
4
题目 3:(辅助函数是 F(x) xn f (x) ) 设函数 f (x) 在[0, a] 上连续,在 (0, a) 内可导, f (a) 0 ,试证 (0, a) ,
考研数学高数有哪些中值定理的复习重点

考研数学高数有哪些中值定理的复习重点考研数学高数有哪些中值定理的复习重点高等数学七大中值定理是大家在学习过程中认为最难的部分,而中值定理一般是考试中必考的,得分率不高,希望考生好好把握。
店铺为大家精心准备了考研数学高数7大中值定理的复习要点,欢迎大家前来阅读。
考研数学高数7大中值定理重点详解七大定理的归属。
零点定理与介值定理属于闭区间上连续函数的性质。
三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。
积分中值定理属于积分范畴,但其实也是微分中值定理的推广。
对使用每个定理的体会学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。
关键在于是对哪个函数在哪个区间上使用哪个中值定理。
1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。
从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。
应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。
2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。
3、用微分中值定理说明的问题中,有两个主要特征:含有某个函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。
应用微分中值定理主要难点在于构造适当的函数。
在微分中值定理证明问题时,需要注意下面几点:(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。
2017考研数学必背高数定理必考点

2017考研数学:必背高数定理必考点考研数学的题型和分值近几年没有转变,因此,对于考生来讲,认真的研读考研数学真题对于把握做题思路及命题人的出题点是很有必要的,下面凯程考研小编就为大家整理了一些考研数学真题的解题技能,供大家参考,希望能够给大家带来启发,帮忙大家更好的备考考研数学!对于选择题来讲,只有一个正确选项,其余三个都是干扰项,做题的时候只需给出正确选项的字母即可,不用给出推导进程,选对得满分,选错或不选均得0分,不倒扣分。
在做选择题的时候大家仍是有很多方式可选的,常常利用的方式有:代入法、排除法、图示法、逆推法、反例法等。
若是考试的时候大家发觉哪一种方式都不奏效的话,大家还能够选择猜想法,至少有25%的正确性。
选择题属于客观题,答案是唯一的,而且考研数学考试中的多选题也是以单选的形式出现的,最终的答案只有一个,评分是不偏不倚的。
选择题的难度一般都是适中的,均为中等难度,没有特别难的,也没有一眼就可以看出选项的题目。
选择题主要考查的是考生对大体的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。
所以选择题对于考生来讲,要么依托扎实的知识得分,要么靠自身的运气得分,这32分要想稳拿需要考生在温习的时候深切试探,不能主观臆想,要试探与动手相结合才行。
填空题的答案也是唯一的,做题的时候给出最后的结果就行,不需要推导进程,一样也是答对得满分,答错或不答得0分,不倒扣分。
这一部份的题目一般是需要必然技能的计算,但不会有太复杂的计算题。
题目的难度与选择题八两半斤,也是适中。
填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三大体:大体概念、大体原理、大体方式和一些大体的性质。
做这24分的题目时需要认真审题,快速计算,而且需要有融会贯通的知识作为保障。
解答题的分值较多,占总分的60%多,类型也较复杂,有计算题、证明题、实际应用题等,而且一般情形下每道大题都会有多种解题方式或证明思路,有的乃至有初等解法,得分率不容易控制,所以考试在做解答题是尽可能用与《考试大纲》中规定的考试内容和考试目标相一致的解题方式和证明方式,每一步的表述要清楚,每题的分值与完成该题所花费的时刻和考核目标是有关系的。
[考研数学]中值定理
![[考研数学]中值定理](https://img.taocdn.com/s3/m/faea6c2466ec102de2bd960590c69ec3d5bbdb96.png)
[考研数学]中值定理⽤书:张宇考研数学基础30讲下多为摘录。
条件/表述部分不完全准确(实际上条件归于表述,但为了观察相似的条件所以单独列出了。
)定理的推导(常考证明)和条件细节⾮!常!重!要!可补充内容:证明、⼏何意义、对⽐=总结/不保证对的个⼈理解。
=我先挖个坑在这⾥。
不要让⼏何直观,蒙蔽了我们的双眼。
—柯西有界与最值定理条件:设f(x)在[a,b]上连续,则:表述:m⩽f(x)⩽M。
其中,m,M为f(x)在[a,b]上的最⼩值和最⼤值。
证明:介值定理条件:设f(x)在[a,b]上连续,则:表述:当m⩽µ⩽M时,存在ξ∈[a,b],使得f(ξ)=µ。
证明:(离散)平均值定理条件:设f(x)在[a,b]上连续,则:表述:当a<x1<x2<⋯<x n<b时,在[x1,x n]内⾄少存在⼀个点ξ,使得f(ξ)=f(x1)+f(x2)+⋯+f(x n)n。
证明:借助介值定理证明。
m⩽f(x i)⩽M,(i=1,2,…,n)nm⩽Σf(x i)⩽nMm⩽f(x1)+f(x2)+⋯+f(x n)n⩽M令µ=f(x1)+f(x2)+⋯+f(x n)n,存在ξ∈[x1,x n],使得f(ξ)=µ=f(x1)+f(x2)+⋯+f(x n)n=1n∑ni=1f(x i)平均值定理的ξ常见闭区间。
(函数)零点定理条件:设f(x)在[a,b]上连续,则:表述:当f(a)⋅f(b)<0时,存在ξ∈(a,b),使得f(ξ)=0。
证明:借助介值定理和最值定理推导。
f(a)⋅f(b)<0说明f(a)与f(b)异号故m<0且M>0则m<0<M,存在ξ∈(a,b),使得f(ξ)=0。
前四条有共⽤条件:f(x)在[a,b]上连续。
连续即不间断。
所以端点不是间断点。
出现函数值为零的条件,可以考虑⽤介值定理与零点存在定理做。
延伸:推⼴的零点定理若f(x)在(a,b)上连续,lim,\alpha \cdot \beta< 0 时,则f(x)在(a,b)内⾄少有⼀个根。
中值定理详细讲解

则 (a,b),使等式
f '() g'()
f (b) g(b)
f (a) g(a)
成立.
例7 设f(x)在[a,b]连续,在(a,b)可导,证 (a,b) 使eab[ f (b) f (a)] (eb ea )e f ( )
四、小结
罗尔定理、拉格朗日中值定理及柯西中值定理 之间的关系;
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
例:
若
lim
xa
f
(x) f (a) (x a)2
1 ,则f (x)在x 2
a处取的( A
)
(A)极大值; (B)极小值;
定理 4.1 (费马定理) 设f(x)在x0取得极值,若f (x)在x0可导,则f (x0 ) 0
定义 : 满足f(x0 ) 0的点x0称为驻点
证 f (x) arcsin x arcsin 1 x2在[0,1]连续
f (x)
1 ( 1 x2
1 x2
2
2x 1 x2
)
0.
x (0,1)
f (x) C, x [0,1]
又f (0) arcsin 0 arcsin 1 0 , 22
即C . 2
arcsin x arccos x . 2
二、试证明对函数 y px 2 qx r 应用拉氏中值定理
时所求得的点 总是位于区间的正中间 . 三、证明等式arcsin 1 x2 arctan x
1 x2 2 ( x (0,1) ) . 四、设a b 0 ,n 1 ,证明
nb n1 (a b) a n bn na n1 (a b) .
证:作辅助函数
F(x) f (x) f (a) f (b) f (a) (x a). ba
2017考研数学 高数必考定理之中值定理与导数的应用

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。
中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。
同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。
中公考研小编整理了高数必考定理之中值定理与导数的应用,供2017考研的同学参考,帮助考生在备考的初期阶段整理总结此部分的内容。
1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。
4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式。
5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。
6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017考研数学七大中值定理精讲
来源:文都图书
高数占据了考研数学的半壁江山,而在高等数学中七大中值定理(零点定理、介值定理、三大微分中值定理、泰勒定理与积分中值定理)是学生在学习过程中认为最难的部分。
七大定理的难主要在于难
理解、难应用。
在历次考试,包括研究生入学考试中,与中值有关的问题一直是考试中得分最少的题,我们应如何更好的理解与掌握定理,灵活有效的使用定理呢?我们来详细的分析一下这几大定理。
第一,七大定理的归属。
零点定理与介值定理属于闭区间上连续函数的性质。
三大中值定理与泰勒定理同属于微分中值定理,并且所包含的内容递进。
积分中值定理属于积分范畴,但其实也是微分中值定理的推广。
第二,对使用每个定理的体会。
学生在看到题目时,往往会知道使用某个中值定理,因为这些问题有个很明显的特征—含有某个中值。
关键在于是对哪个函数在哪个区间上使用哪个中值定理。
1、使用零点定理问题的基本格式是“证明方程f(x)=0在a,b之间有一个(或者只有一个)根”。
从题目中我们一目了然,应当是对函数f(x)在区间[a,b]内使用零点定理。
应当注意的是零点定理只能说明零点在某个开区间内,当要求说明根在某个闭区间或者半开半闭区间内时,需要对这些端点做例外说明。
2、介值定理问题可以化为零点定理问题,也可以直接说明,如“证明在(a,b)内存在ξ,使得f(ξ)=c”,仅需要说明函数f(x)在[a,b]内连续,以及c位于f(x)在区间[a,b]的值域内。
3、用微分中值定理说明的问题中,有两个主要特征:含有某个
函数的导数(甚至是高阶导数)、含有中值(也可能有多个中值)。
应用微分中值定理主要难点在于构造适当的函数。
在微分中值定理证明问题时,需要注意下面几点:
(1)当问题的结论中出现一个函数的一阶导数与一个中值时,肯定是对某个函数在某个区间内使用罗尔定理或者拉格朗日中值定理;
(2)当出现多个函数的一阶导数与一个中值时,使用柯西中值定理,此时找到函数是最主要的;
(3)当出现高阶导数时,通常归结为两种方法,对低一阶的导函数使用三大微分中值定理、或者使用泰勒定理说明;
(4)当出现多个中值点时,应当使用多次中值定理,在更多情况下,由于要求中值点不一样,需要注意区间的选择,两次使用中值定理的区间应当不同;
(5)使用微分中值定理的难点在于如何构造函数,如何选择区间。
对此我的体会是应当从需要证明的结论入手,对结论进行分析。
我们总感觉证明题无从下手,我认为证明题其实不难,因为证明题的结论其实是对你的提示,只要从证明结论入手,逐步分析,必然会找到证明方法。
4、积分中值定理其实是微分中值定理的推广,对变上限函数使用微分中值定理或者泰勒定理就可以得到积分中值定理甚至类似于
泰勒定理的形式。
因此看到有积分形式,并且带有中值的证明题时,一定是对某个变上限积分在某点处展开为泰勒展开式或者直接使用
积分中值定理。
当证明结论中仅有积分与被积函数本身时,一般使用积分中值定理;当结论中有积分与被积函数的导数时,一般需要展开变上限积分为泰勒展开式。
通过我们对七大中值定理的分析,同学们是不是有茅塞顿开的感觉啊,了解了这些知识点的运用方法及其注意事项之后,我们还要学会运用在实践中,多做强化练习,比如汤家凤编写的《2017考研数学硕士研究生入学考试高等数学辅导讲义》这本书就有很多练习题,并且附有详细的解答,对于一些经典的题型也有重点讲解哦,好好利用吧,祝同学们考试顺利,加油。