粉体工程
粉体工程课件

陶瓷行业应用
药物制备
粉体工程技术在制药行业中广泛应用于药物制备,如中药和西药的生产。粉体工程技术通过控制药物的粒度和释放性能,可以提高药物的生物利用度和治疗效果。
药物剂型设计
粉体工程技术也用于药物剂型的设计,如颗粒剂、片剂、胶囊剂等。通过粉体工程技术的处理,可以调节药物的释放速度和作用方式,满足不同治疗需求。
离心筛分
利用液体将物料湿润,然后通过筛孔分离不同粒度的物料的过程。
湿法筛分
筛分技术
干法混合
湿法混合
气流混合
振动混合
混合技术
01
02
03
04
利用机械力将不同粒度的物料混合均匀的过程,如搅拌、搅拌磨等。
利用液体将不同粒度的物料混合均匀的过程,如捏和、乳化等。
利用高速气流将不同粒度的物料混合均匀的过程,如流化床、喷射混合等。
WATCHING
感谢您的观看
粉体表面改性技术
粉体可作为填料添加到高分子材料中,提高材料的力学性能、阻隔性能和加工性能等。
高分子复合材料
利用陶瓷粉体制备出高性能的陶瓷复合材料,如陶瓷基复合材料、纳米陶瓷复合材料等。
陶瓷复合材料
金属粉体与其他金属或非金属材料复合,制备出具有优异性能的金属复合材料。
金属复合材料
粉体在复合材料中的应用
02
03
04
05
06
粉体工程安全防护
粉体工程环保措施
总结词:了解粉体工程对环境的影响,掌握环保措施,保护环境。
了解粉体工程中产生的污染物及其对环境的影响。
学习如何合理选用环保设备,降低污染物排放。
详细描述
掌握环保设备的运行原理和使用方法。
定期进行环保监测,确保排放物符合国家标准。
粉体工程-粉体分级课件

气流分级设备
01
02
03
气流分级机
利用高速气流将颗粒物料 进行分级,适用于超细粉 体的制备。
旋风分离器
利用离心力原理,将不同 粒度的物料进行分离,适 用于颗粒较粗的物料。
袋式除尘器
利用过滤原理,将颗粒物 料进行分离,适用于颗粒 较细的物料。
惯性分级设备
惯性分级器
利用惯性力原理,将不同粒度的物料进行分离,适用于颗粒较粗的物料。
分级技术的发展趋势
高效能化
随着科技的发展,粉体分 级设备不断向高效能化发 展,提高分级效率,降低 能耗。
智能化
引入智能化技术,如物联 网、大数据和人工智能等, 实现分级过程的自动化和 智能化控制。
环保化
随着环保意识的提高,粉 体分级技术向环保化发展, 减少对环境的污染和破坏。
分级技术的挑战与机遇
挑战
粉体分级过程中易产生粉尘污染,对操作人员的健康造成影 响;同时,分级精度和稳定性也是分级技术面临的挑战。
机遇
随着科技的不断进步和市场需求的增加,粉体分级技术面临 巨大的发展机遇。例如,在新能源、新材料等领域,粉体分 级技术的应用前景广阔。
分级技术的未来展望
创新发展
加强粉体分级技术的创新研究,推动 分级技术的进步和发展。
进料控制
控制进料速度,保持粉体流量稳定,确保分 级效果。
质量检测
对分级后的粉体进行质量检测,如粒度、含 水量等,确保质量达标。
分级后的处理
收集粉体
将分级后的粉体收集起来,进行后续 处理或储存。
清理设备
ቤተ መጻሕፍቲ ባይዱ对分级设备进行清理,去除残留粉体, 为下次分级做准备。
记录数据
记录分级过程中的数据,如进料量、 分级效果等,便于分析和改进。
《粉体工程》(第一章-第四章)

苏州大学材料与化学化工学部 沈风雷
1
目 录
概述 粉体粒度分析及测量 粉体填充与堆积及作用力 粉体的流变学 粉碎过程及设备 颗粒流体力学 粉体的气力输送及设备 分级、分离及设备 混合与造粒 粉体输送设备 粉体喂粒及计量设备
2
第一章 概述
粉体工程的起源
8
粉体的形态
有认为是粉体是物质第四态 具有固体的性质 在一定的条件下,可以认为具有液体和气 体的性质
9
研究内容
粉体工程是以粉体物料为研究对象,研究 其性质、加工处理技术的跨学科、跨行业 的综合类工程科学。 可以分为
粉体科学:粉体几何形态、粉体力学、粉体化
学、气溶胶、粉体的润湿、粉体测定及其它 特性。 粉体技术:粉体分离、粉体均化、粉体制造、 粉体储存、粉体输送
md 3 D md 3
1
(2-4)
29
在实际应用中,常用两个系列的平均径,以个 数为基准加以说明: nd (2-5) (一) 1, 0 D
10
制备方法
气相法 液相法 固相法
电 阻 加 热 法
化 学 火 焰 法
等 离 子 法
激 光 法
溶 乳 溶 熔 喷 液 液 胶 盐 雾 凝 合 干 法 法 胶 成 燥 法 法 法 -
热 烧 还 机 机 分 结 原 械 械 解 法 化 化 粉 合 学 碎 法 法 法 法 -
11
意 义
提高工业产品的质量与控制水平
34
图2-7 粒度分布示意图
35
粒度分布的表达方式
频率分布
f f1 (d )
R f 2 (d ) D f 3 (d )
粉体工程概论

概论一、粉体工程研究的内容上世纪50年代初期,粉体工程这一名词首先出现在日本。
其实,粉体从古至今一直与人类的生产和生活有着十分密切的关系。
众所周知,陶器—作为第一种人造材料早在新石器时代就已问世,而它的生产除了与火有必然的联系外,与粉末也是分不开的。
早在明代宋应星的《天工开物》一书中,就对一些原始的粉体工艺加工过程进行了详细的总结和描述。
现在粉体工程学已经发展成为一门跨学科、跨行业的综合性极强的技术科学,粉体的应用遍及材料、冶金、化学工程、矿业、机械、建筑、食品、医药、能源、电子及环境工程等诸多领域。
粉体研究的目的:提高工业产品的质量与控制水平。
粉体颗粒的大小及粒度分布对产品质量影响非常大。
如在水泥中,粗细颗粒的比例、颗粒的形状对产品性能有着极大的影响;医药行业中的某些药剂,可以通过细化来改变药剂的用量和吸收性;颜料颗粒的大小对被涂物体表面的遮盖力影响极大,当颗粒细到约等于可见光波长(0.4~0.7μm)的0.4—0.5倍时,颗粒对入射光的散射能力最大,此时颜料具有较高的遮盖力,当颗粒直径小于可见光波长的1/2时,因发生光的衍射,遮盖力明显下降,颜料具有透明性;复印机所用墨粉的粒度一般在8~12μm,6~20μm的颗粒应该占到75%以上,小于这个数值,复印时变黑,大于这一数值,字体印不上去。
再者,就是粉体的表面改性,如白云母经过氧化钛、氧化铬、氧化铁、氧化锆等金属氧化物进行表面改性后,用于化妆品、塑料。
颗粒的分类1 原级颗粒最先形成粉体物料的颗粒,称为原级颗粒(又称一次颗粒或基本颗粒)。
从宏观上来看,原级颗粒是构成粉体的最小单元,这些原级颗粒的形状,有立方体的、球状、针状、不规则晶体状的。
粉体物料的性能都与其分散状态,即与它的单独存在的颗粒大小和形状有关,真正能反映出粉体物料固有性能的,就是的它的原级颗粒。
2. 聚集体颗粒聚集体颗粒是由许多原级颗粒依靠某种化学力与其表面相连而堆积起来,又称二次颗粒。
粉体工程总结范本

粉体工程总结范本近年来,我国粉体工程行业发展迅速,取得了显著的成果。
在工程设计、设备制造、工艺技术等方面,取得了很多创新和突破,为我国粉体工程行业的发展做出了卓越贡献。
本文将从粉体工程的概念、发展现状、问题与挑战、解决方案等方面进行总结讨论。
一、粉体工程的概念及发展现状粉体工程是将固体颗粒物料进行处理、加工、传输、存储等一系列工艺过程的科学技术领域。
它是研究和解决固体粉体在工业生产中存在的问题的一门学科。
随着我国经济的快速发展和工业化进程的加快,粉体工程行业蓬勃发展。
目前,我国粉体工程行业已具备了比较完善的产业链,形成了较为成熟的市场体系。
二、粉体工程的问题与挑战尽管我国粉体工程行业取得了快速发展,但仍存在一些问题和挑战。
首先,技术水平还不够高。
虽然在一些领域中我国粉体工程技术已经达到了国际先进水平,但与发达国家相比,整体水平仍有差距。
其次,产业结构亟待优化。
我国粉体工程行业的产业结构相对单一,缺乏差异化竞争优势。
产业链条上的各个环节之间缺乏有效的协同与合作,导致整个行业的发展受到限制。
再次,环保要求越来越高。
随着环保意识的提升,政府对粉体工程行业的环保要求不断加强,而一些企业在环保设备和技术方面仍存在不足。
最后,人才队伍建设亟待加强。
粉体工程行业的技术要求高,需要一批专业化、高素质的技术人员。
当前我国粉体工程行业的人才紧缺问题还没有彻底解决。
三、解决方案为了解决上述问题和挑战,我认为应该采取以下措施:首先,加强技术创新。
加大对粉体工程技术研发的投入,提高技术研发的效率和质量。
加强与国内外先进企业、研究机构的合作,共同推动技术创新。
其次,优化产业结构。
加强上下游企业之间的合作与协同,形成完整的产业链。
鼓励企业加大技术投入,提高产品的附加值。
加强自主创新,提高核心竞争力。
再次,加强环保工作。
企业要提高环保意识,积极采取先进的环保设备和技术,切实做好废气、废水、废渣的处理和综合利用。
最后,加强人才队伍建设。
粉体工程师岗位职责

粉体工程师岗位职责粉体工程师是一种新兴的工程领域,其职责包括对粉体物料的生产、加工、存储、运输等各个环节进行研究与处理。
下面是粉体工程师的岗位职责介绍:1. 粉体生产的研究与优化粉体工程师负责对粉体生产流程进行研究和优化。
需要掌握各类粉体生产技术以及设备操作等相关知识,确保生产过程顺畅并有收益。
同时,粉体工程师还需要结合产品市场需求和现有技术水平,提出新的工艺流程改进方案,以提高生产效率和质量。
2. 粉体加工技术的研发与改进粉体工程师需要对各种粉体加工技术进行研发和改进,以提高设备的加工效率、设备稳定性和产品的质量。
需掌握颗粒物料的物理化学及流体力学知识,了解和掌握颗粒物料的表观性质和加工过程及影响因素,为提升加工工艺、优化设备和降低成本、提供技术改进方案等提供科学依据。
3. 粉体物料的测试与分析粉体工程师需要掌握各种粉体物料的检测和分析方法,以评估物料粒度、质量、流动性、稳定性等主要性能,同时还要通过数据分析、软件模拟等方法,对粉体物料进行优化设计和改进。
4. 设备的研究与开发粉体工程师需要对各种颗粒物料设备进行研究和开发,以满足不同用户需求。
同时,需要分析和评估现有设备的性能、工作原理、优化改进的方案和方法等,与供应商和用户进行技术交流和合作,提供适合的设备和方案。
5. 安全规范和合规性的评估和监测粉体工程师要关注设备安全性和合规性,制定或参与建设和完善生产安全管理制度、培训人员和技术检查等,普及安全知识,提高生产安全水平。
同时要关注环保、再生资源等可持续发展问题,确保生产过程与环保标准相符。
总之,粉体工程师需要有扎实的理论基础、紧跟科技进步的步伐,以较高的敏感性发现生产中的问题,并能提出相应的解决方案。
他们需要在不断探索的领域不断更新知识、改进方案和提供优质服务,将科学的理论和技术转换为实际的应用。
粉体工程课件(ppt 54张)

16.02.2019
颗粒大小决定(影响): e.g. 水泥的凝结时间、强度; 结构陶瓷的强度、韧度; 功能材料的功能; 催化剂的活性; 食品的味道; 药物的药力; 颜料的着色力;
9
e.g.陶瓷材料性能由: a.材料组分; b.显微结构--粉体特性(颗粒度、形状、团聚 状态、相组分); 亚微米―纳米级超细粉,加速烧结过程中动力 学过程,降低烧结时间,改善烧结体性能; e.g.水泥工艺是两磨一烧,水泥性能由 a.材料组成(煅烧); b.颗粒度(颗粒大小及分布); 水泥(溶胶-凝胶法,DSP)
16.02.2019
13
粉体技术所涉及到的行业和产品应用
食品 颜料 能源 粮食加工、面粉蛋白分离、调味料、保健食品、食品 添加剂、 偶氮颜料、酞青系列颜料、氧化铁系列颜料、氧化铬 系列 煤粉燃烧、固体火箭推进剂、水煤浆、
电子
电子浆料、电子塑封料、集成电路基片、电子涂料、 荧光粉、铁氧体
16.02.2019
14
粉体技术所涉及到的行业和产品应用
建材 精细 陶 瓷 环保 机械 水泥、建筑陶瓷生产、复合材料、木粉 原料细化处理、梯度材料、金属与陶瓷复合材料、颗 粒表面改性 脱硫用超细碳酸钙、固体废弃物的再生利用、各类粉 状污水处理剂 粒度砂、微粉磨料、超硬材料、固体润滑剂、铸造型 砂
16.02.2019
15
DSP水泥;densified systems containing homogeneous 16.02.2019 arranged ultrafine particle;DSP cement
10
非金属矿行业对国民经济和社会就业的贡献和影响不 断提高,2000年非金属矿工业总产值已达548.82亿元, 超过金属矿工业总产值(435.34亿元)。非金属矿产 品与金银铜铁一样,是社会发展不可缺少的重要物质 资料。在出口方面,非金属矿产品是我国改革开放以 来出口创汇增长最快的产品;其巨大贡献是不争的事 实。非金属矿产品在"六五”期间出口12.5亿美元,"七 五"期间达到25.7亿美元,"八五"期间超过53.7亿美元, "九五"期间超过100亿美元。2000年出口创汇24.29亿 美元,2001年达到28亿美元,2002年继续保持增长 势头。件
粉体工程

1、粉体是是由无数相对较小的的颗粒状物质组成的一个集合体。
粉体既有固体的性质,也有液体的性质,有时还有气体的性质。
凡从粉磨机中卸出的物料即为产品,不带检查筛分或选粉设备的的粉磨流程称为开路流程。
凡带检查筛分或选粉设备的粉磨流程称为闭路流程。
开路适用于粉磨产品粒度较大,闭路适用于粉磨产品粒度较小。
2、颚角(钳角):颚式破碎机动颚与定颚之间的夹角α称为钳角。
减小钳角可增加破碎机的生产能力,但会导致破碎比减小;反之,增大钳角虽可增大破碎比,但会降低生产能力,同时,落在颚腔中的物料不易夹牢,有被推出机外的危险。
反击式破碎机工作原理:机器工作时,在电动机的带动下,转子高速旋转,物料进入板锤作用区时,与转子上的板锤撞击破碎,后又被抛向反击装置上再次破碎,然后又从反击衬板上弹回到板锤作用区重新破碎,此过程重复进行,物料由大到小进入一、二、三反击腔重复进行破碎,直到物料被破碎至所需粒度,由出料口排出。
调整反击架与转子之间的间隙可达到改变物料出料粒度和物料形状的目的。
石料由机器上部直接落入高速旋转的转盘;在高速离心力的作用下,与另一部分以伞型方式分流在转盘四周的飞石产生高速碰撞与高密度的粉碎,石料在互相打击后,又会在转盘和机壳之间形成涡流运动而造成多次的互相打击、摩擦、粉碎,从下部直通排出。
形成闭路多次循环,由筛分设备控制达到所要求的粒度。
结构单转子反击式破碎机的构造,料块从进料口喂入,为了防止料块在破碎时飞出,在进料口进料方向装有链幕。
喂入的料块落在篦条筛的上面,细小料块通过篦缝落到机壳的下部,大块的物料沿着筛面滑到转子上。
在转子的圆周上固定安装着有一定高度的板锤,转子由电动机经V 型皮带带动作高速转动。
落在转子上面的料块受到高速旋转的板锤的冲击,获得动能后以高速向反击板撞击,接着又从反击板上反弹回来,在破碎区中又同被转子抛出的物料相碰撞。
由 条筛、转子、反击板以及链幕所组成的空间称为第一冲击区;由反击板与转子之间组成的空间是第二冲击区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
2020/8/30
粉末的表征与测量
颗粒大小和形状表征 粉体特性的表征 粉体的粒度与比表面测定
2020/8/30
颗粒大小和形状表征
§1.1颗粒大小和形状表征
材料的机械、物理和化学性质描述了组成 材料的物质组态的基本特性,当物质被“分割 ”成为粉体之后,上述三类性质则不能全面描 述材料的性质,必须对粉体材料的组成单元 ——颗粒,进行详细描述。颗粒的大小和形 状是粉体材料最重要的物性特性表征量。
粉体工程
2020/8/30
绪论
粉体工程学科的形成 粉体工程的应用范围
2020/8/30
2020/8/30
绪论
颗粒
粉体
绪论
Fine particle 颗粒 从个体颗粒出发,称为颗粒学 Powder 粉体 从集合粉体出发,称为粉体工程学
2020/8/30
粉体工程所涉及的行业
绪论
2020/8/30
2020/8/30
球形度
颗粒大小和形状表征 颗粒形状
与颗粒等体积的球的表面积与颗粒的表面积之比
可以看出:
1.
;
2. 颗粒为球形时,
达最大值。
2020/8/30
一些规则形状体的球形度:
颗粒大小和形状表征 颗粒形状
2020/8/30
扁平度m与延伸度n
颗粒大小和形状表征 颗粒形状
一个任意形状的颗粒,测得该颗粒的长、宽、高为l、b、h ,定义方法与前面讨论颗粒大小的三轴径规定相同,则:
高度h:颗粒最低势能态时正视投影图的高度 宽度b:颗粒俯视投影图的最小平行线夹距 长度l:颗粒俯视投影图中与宽度方向垂直的平行线夹距
2020/8/30
颗粒大小和形状表征 颗粒大小
h
b l
2020/8/30
三轴平均径计算公式
三轴算术平均值:
立体图形的算术平均
颗粒大小和形状表征 颗粒大小
三轴调和平均径:
对于一个颗粒,随方向而异,定向径可取其所有方向的平 均值;对取向随机的颗粒群,可沿一个方向测定。
2020/8/30
当量径
颗粒大小和形状表征 颗粒大小
颗粒与球或投影圆有某种等量关系的球或投影圆的直径
2020/8/30
等效圆球体积直径
颗粒大小和形状表征 颗粒大小
等体积球当量径 与颗粒同体积球的直径
等表面积球当量径 与颗粒等表面积球的直径
2020/8/30
§1.2 粉体的特性表征
1 粉体的平均粒径 2 粒度分布 3 粒度测定 4 粉体的比表面积与测量原理
2020/8/30
粉体的平均粒径 粉体平均粒径计算公式
粉体的特性表征 粉体的平均粒径
2020/8/30
粉体的特性表征 粉体的平均粒径
2020/8/30
粒度分布
粉体的特性表征
2020/8/30
2020/8/30
颗粒大小和形状表征 颗粒大小
等效重量直径
等效体积直径
等效表面积直径
颗粒大小和形状表征 颗粒大小
以上各种粒径是纯粹的几何表征量,描述 了颗粒在三维空间中的线性尺度。在实际粉 末颗粒测量中,还有依据物理测量原理,例 如运动阻力,介质中的运动速度等获得的颗 粒粒径,这时的粒径已经失去了通常的几何 学大小的概念,而转化为材料物理性能的描 述。因此,除球体以外的任何形状的颗粒并 没有一个绝对的粒径值,描述它的大小必须 要同时说明依据的规则和测量的方法。
2020/8/30
颗粒的形状
颗粒大小和形状表征
颗粒的形状对粉体的物理性能、化学性能、输运 性能和工艺性能有很大的影响。例如,球形颗粒粉 体的流动性、填形性好,粉末结合后材料的均匀性 高。涂料中所用的粉末则希望是片状颗粒,这样粉 末的覆盖性就会较其他形状的好。科学地描述颗粒 的形状对粉体的应用会有很大的帮助。同颗粒大小 相比,描述颗粒形状更加困难些。为方便和归一化 起见,人们规定了某种方法,使形状的描述量化, 并且是无量纲的量。这些形状表征量可统称为形状 因子,主要有以下几种:
扁平度
延伸度
2020/8/30
形状系数
颗粒大小和形状表征 颗粒形状
若以Q表示颗粒的几何特征,如面积、体积,则Q与颗粒粒径 d的关系可表示为:
式中,k即为形状系数。对于颗粒的面积和体积 描述,k有两种主要形式,分别为:
2020/8/30
形状系数
•表面形状因子
颗粒大小和形状表征 颗粒形状
(j表示征对于该种粒径的规定)
与颗粒外接长方体比表面积相等的球的 直径或立方体的一边长
三轴几何平均径:
与颗粒外接长方体体积相等的立方体的棱长
2020/8/30
定向径
颗粒大小和形状表征 颗粒大小
沿一定方向的颗粒的一维尺度。定向径包括三种
2020/8/30
S1 S2
颗粒大小和形状表征 颗粒大小
定向最大径
Martin径
Feret径
与π的差别表示颗粒形状对于球形的偏离
2020/8/30
形状系数
•体积形状因子
颗粒大小和形状表征 颗粒形状
与 的差别表示颗粒形状对于球形的偏离
2020/8/30
形状系数
•比表面积形状系数
颗粒大小和形状表征 颗粒形状
表面形状因子与体积形状因子的比值
2020/8/30
一些规则几何体的形状因子
颗粒大小和形状表征 颗粒形状
2020/8/30
颗粒大小和形状表征 颗粒大小
比表面积球当量径 与颗粒具有相同的表面积对体积之 比,即具有相同的体积比表面的球的直径
投影圆当量径Heywood径 与颗粒投影面积相等的圆的直径
等周长圆当量径 与颗粒投影圆形周长相等的圆的直径
2020/8/30
最长直径
最短直径
等效沉降速率直径 筛分直径
2020/8/30
颗粒的大小
颗粒大小和形状表征 颗粒大小
直径D 直径D、高度H ?
2020/8/30
颗粒大小和形状表征 颗粒大小
人为规定了一些所谓尺寸的表征方法
三轴径 定向径 当量径
2020/8/30
三轴径
Hale Waihona Puke 颗粒大小和形状表征 颗粒大小
设,图中颗粒处于一水小平面上,其正视和俯视 投影图如图所示。这样在两个投影图中,就能定 义一组描述颗粒大小的几何量:高、宽、长,定 义规则如下
例:以显微镜观察测量粉体的Feret径(测量总数为1000个)
2020/8/30
频度%
2020/8/30
粒度
频度%
2020/8/30
粒度
正态分布 :
(–∞d+∞)
——中位径,统计学中的数学期望值 ——标准偏差
2020/8/30
粒度测定
1.筛分析法 (>40μm)
2020/8/30
国际标准筛制:Tyler(泰勒)标准 单位:目 目数为筛网上1英(25.4mm)寸长度内的网孔 数