空间位置关系
空间中的位置关系

空间中的位置关系空间中的位置关系是指事物在三维空间中的相对位置和相互关系。
在我们日常生活中,我们经常需要描述和了解物体或者人在空间中的位置关系,比如左右、前后、上下等等。
本文将从不同角度探讨空间中的位置关系。
一、方位和方向方位是指一个点所处的位置相对于参照物的位置关系,主要有东、西、南、北四个基本方位。
而方向则是指物体或者人的移动的指向,包括前进、后退、向左、向右等等。
方位和方向是空间中的重要位置关系,可以通过地图、指南针等工具进行标示和表示。
举个例子,想象一下你在一个完全陌生的城市里,你可能会问路人某地如何走,他们往往会告诉你“往东走三个街区然后向北转”,这就是通过方位和方向来描述空间中的位置关系。
二、上下左右上下左右是我们最常见的位置描述词语,用于描述物体或者人在空间中的位置关系。
上下是垂直方向的位置关系,而左右是水平方向的位置关系。
比如,我们说树在房子的左边,鸟儿在树上,这就是通过上下左右来描述它们在空间中的位置关系。
三、前后前后是物体或者人在运动中的相对位置关系。
当我们说有人在我前面排队,或者汽车在我后面行驶时,这就是在通过前后来描述它们在空间中的位置关系。
四、内外内外是指物体或者人相对于一个空间的内部或外部的位置关系。
比如,我们说书在书包里,人在房间内,就是通过内外来描述它们在空间中的位置关系。
五、距离距离是指两个点或者物体之间的空间距离,可以通过长度、时间等单位来表示。
距离也是空间中的一种位置关系,比如我们说两个城市之间的距离是200公里,或者书架离床的距离很近等等。
六、空间关系的应用空间的位置关系在我们的日常生活和实际应用中有着重要的作用。
比如,在建筑设计中,需要考虑各个房间或者设施的位置关系,以便提供合理的使用体验;在交通规划中,需要合理安排道路和交通设施的位置关系,以便提高交通效率;在地图制作中,需要准确标示地理位置关系,以便人们能够快速准确地找到目的地。
七、总结空间中的位置关系是我们在日常生活中经常接触到的内容,通过方位和方向、上下左右、前后、内外以及距离等方式来描述物体或者人在空间中的位置关系。
空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。
空间几何体的位置关系

空间几何体的位置关系在三维空间中,几何体的位置关系是几何学研究的重要内容之一。
了解和掌握几何体的位置关系,对于解决实际问题以及进行几何证明都有着重要的意义。
本文将介绍几种常见的空间几何体的位置关系。
一、点和直线的位置关系1. 点在线上:当一个点与一条直线重合时,我们称该点在线上。
2. 点在线上方或线下方:当一条直线将空间分成上下两部分时,点在直线上方或线下方。
3. 点在线上的延长线上:当一条直线延长后,点位于该直线的延长线上。
二、点和平面的位置关系1. 点在平面上:当一个点与一个平面重合时,我们称该点在平面上。
2. 点在平面之上或之下:当一个平面将空间分成上下两部分时,点在平面之上或之下。
3. 点在平面上的延长线上:当一个点的延长线与平面相交时,我们称该点在平面上的延长线上。
三、直线和直线的位置关系1. 平行线:若两条直线在同一平面上且不相交,则这两条直线称为平行线。
2. 相交线:若两条直线在同一平面上相交,则这两条直线称为相交线。
3. 垂直线:若两条直线在同一平面上相交,且交角为直角,则这两条直线称为垂直线。
四、直线和平面的位置关系1. 平行关系:若一条直线与一个平面平行,则它位于该平面之上、之下或在该平面的内部。
2. 相交关系:若一条直线与一个平面相交,则它有且只有一个交点。
3. 垂直关系:若一条直线与一个平面相交,且交角为直角,则它垂直于该平面。
五、平面和平面的位置关系1. 平行关系:若两个平面无公共交线,并且相互平行,则这两个平面平行。
2. 相交关系:若两个平面有且只有一条公共交线,则这两个平面相交。
3. 垂直关系:若两个平面相交,并且交线与其中一个平面的法线垂直,则这两个平面垂直。
综上所述,空间几何体的位置关系包括点和直线的位置关系、点和平面的位置关系、直线和直线的位置关系、直线和平面的位置关系以及平面和平面的位置关系。
了解和掌握这些位置关系对于学习和应用空间几何学具有重要的意义。
在实际应用中,我们可以根据这些位置关系来解决不同的几何问题,并进行相关的几何证明。
空间平面的位置关系

空间平面的位置关系空间平面的位置关系是指在三维空间中,不同平面之间的相对位置和相互关系。
了解和理解空间平面的位置关系对于几何学和工程等领域的研究具有重要意义。
本文将从水平位置关系、垂直位置关系和倾斜位置关系三个方面探讨空间平面的位置关系。
一、水平位置关系所谓水平位置关系,是指在水平方向上不同平面之间的相对位置。
在三维空间中,我们可以将水平视为地平面方向。
在这种情况下,如果两个平面的法线向量的水平分量相等(即两个平面的倾斜角度相等),则可以说它们在水平位置上是平行的。
相反,如果两个平面的法线向量的水平分量不等,则可以说它们在水平位置上是交叉的。
二、垂直位置关系垂直位置关系是指不同平面之间的垂直关系。
在三维空间中,我们可以将垂直视为垂直于地平面的方向。
如果两个平面的法线向量互相垂直,则可以说它们在垂直位置上是正交的。
正交的平面之间的夹角为90度。
相反,如果两个平面的法线向量不垂直,则可以说它们在垂直位置上是斜交的。
斜交的平面之间的夹角不为90度。
三、倾斜位置关系倾斜位置关系是指在水平和垂直方向上不同平面之间的相对位置。
在三维空间中,我们可以将倾斜视为不平行也不垂直的方向。
如果两个平面既不平行也不垂直,则可以说它们在倾斜位置上是倾斜的。
倾斜的平面之间的夹角可以是任意角度。
在实际应用中,空间平面的位置关系常常与几何图形的相交关系和相切关系有着密切联系。
例如,在建筑设计中,如果两个平面相交,则会产生交线,可以用于确定建筑构件的位置和尺寸。
而如果两个平面相切,则可以用于确定曲面的接触点和接触角度。
在计算机图形学和三维建模等领域,对于空间平面的位置关系的准确描述和计算也是非常重要的。
通过合理的算法和数学模型,可以准确地判断平面之间的位置关系,从而实现各种复杂的图形操作和几何计算。
总结起来,空间平面的位置关系涉及到水平位置关系、垂直位置关系和倾斜位置关系。
这些关系在几何学、工程学和计算机图形学等领域中具有广泛的应用。
空间关系知识点总结

空间关系知识点总结一、空间概念空间是指周围的环境由物质实体所构成的三维空间。
在这个空间中,物体可以相对移动,相对位置也会发生变化。
在空间中,我们可以观察到物体的位置、形状和大小等属性。
空间关系是指事物在空间中的相对位置关系。
空间关系有三种形式,即相对位置、方位和距离。
1.相对位置:相对位置是指两个物体在空间中的相对位置关系。
当我们描述一个事物所处的位置时,一定要以另一事物为基准来描述,这就是相对位置。
例如,A在B的左边,B在A的右边,这是相对位置的描述。
2.方位:方位是指事物在空间中的朝向关系。
方位由四个基本方向组成,即东、西、南、北。
在地理空间中还有东北、东南、西北、西南等方位。
方位是空间中非常重要的关系,能够帮助我们更准确地描述事物在空间中的位置。
3.距离:距离是指两个事物在空间中的间隔距离。
在空间中,物体可以通过距离来描述物体的相对远近。
距离是空间关系中很重要的一个方面,它可以通过度量直线距离、曲线距离来描述物体之间的相对远近。
二、空间语言描述空间关系可以通过语言来进行描述。
语言描述可以帮助我们更加准确地了解物体在空间中的位置、方位以及距离。
在语言描述中,要注意以下几点:1.使用准确的定位词语:在描述空间关系时,要使用准确的定位词语,如“上、下、左、右、前、后”等。
这些词语可以帮助我们更加准确地描述事物在空间中的位置。
2.使用准确的方向词语:在描述方位时,要使用准确的方向词语,如“东、西、南、北”等。
这些词语可以帮助我们更加准确地描述事物在空间中的朝向关系。
3.使用准确的距离词语:在描述距离时,要使用准确的距离词语,如“远、近、远离、靠近”等。
这些词语可以帮助我们更加准确地描述事物在空间中的相对远近关系。
三、空间关系的认知发展儿童对空间关系的认知发展是一个渐进的过程。
在儿童的认知过程中,从最初的“具体视觉参照”到“图形概念”再到“抽象概念”,儿童对空间关系的认知逐渐升级。
1.具体视觉参照:儿童最开始的认知是基于具体的物体进行的。
高一年级数学知识重点:空间两直线的位置关系

2019年高一年级数学学问重点:空间两直线的位置关系学习是一个边学新学问边巩固的过程,对学学问肯定要多加安排,这样才能进步。
因此,为大家整理了2019年高一年级数学学问重点,供大家参考。
空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面重视复习和总结:1、刚好做好复习. 听完课的当天,必需做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是实行回忆式的复习:先把书、笔记合起来,回忆上课时老师讲的内容,分析问题的思路、方法等(也可边想边在草稿本上写一写),尽量想得完整些。
然后打开笔记与书本,比照一下还有哪些没记清的,把它补起来,就能使当天上课内容巩固下来,同时也检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。
学习一个单元后应进行阶段复习,复习方法同刚好复习一样,实行回忆式复习,而后与书、笔记相比照,使其内容完善,而后应做好单元小节。
3、做好单元小结。
单元小结内容应包括以下部分:(1)本单元(章)的学问网络;(2)本章的基本思想与方法(应以典型例题形式将其表达出来);(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其缘由及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
做适量的有不少同学把提高数学成果的希望寄予在大量做题上,这是不妥当的。
空间点线面之间的位置关系

空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角 画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:b A =a α⊂α=∅ αBAβαABαβαβBAAβαBAα=l β= 二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示: 或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面; 推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。
空间位置关系学习空间位置关系的表达和判断

空间位置关系学习空间位置关系的表达和判断空间位置关系是描述不同物体或事物在空间中相对位置的概念。
学习空间位置关系的表达和判断对于我们理解和应用空间概念具有重要的意义。
本文将介绍空间位置关系的基本概念及其表达方式,并探讨如何准确地判断空间位置关系。
一、空间位置关系的基本概念在学习空间位置关系之前,我们需要了解一些基本概念。
首先是“方向”,指的是物体朝向的某个确定的位置,常用的方向词有上、下、左、右、前、后等。
其次是“位置”,是指物体在空间中相对于其他物体或参考点的位置。
再次是“距离”,表示两个物体之间的间隔或接近程度。
二、空间位置关系的表达方式1. 方位词法:方位词法是一种常用的表达空间位置关系的方式。
通过使用方位词,我们可以清晰地描述物体在空间中的位置。
例如,“在左边”、“在右上方”、“在正中间”等。
2. 坐标法:坐标法是一种数学上常用的表达空间位置关系的方式。
通过设定一个固定的坐标系,我们可以用坐标来表示每个物体在该坐标系中的位置。
例如,在二维平面坐标系中,可以用(x, y)来表示一个物体的位置。
3. 图形法:图形法是一种直观的表达空间位置关系的方式。
通过绘制图形或示意图,我们可以更清楚地展示物体在空间中的相对位置。
例如,利用平面地图或建筑图纸等来描述物体的位置关系。
三、准确判断空间位置关系的方法1. 视觉判断法:视觉判断是一种通过观察物体位置和方向来判断空间位置关系的方法。
我们可以通过眼睛观察物体的位置、方向、距离等特征,来判断物体之间的相对位置关系。
2. 使用工具辅助判断法:有时候,我们可以借助一些工具来辅助判断空间位置关系,例如使用直尺、量角器等。
这些工具可以帮助我们更准确地测量和判断物体的空间位置关系。
3. 利用数学计算法:当遇到一些复杂的空间位置关系问题时,我们可以利用数学方法或计算机模拟来进行计算和判断。
通过建立几何模型或编写程序,我们能够准确地判断物体的位置关系。
四、应用案例1. 导航系统:现代导航系统利用卫星定位技术和地图信息,可以帮助我们准确地确定自己的位置和目的地的位置,实现导航功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 空间中直线与直线之间的位置关系整体设计教学分析空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念.三维目标1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系.2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用.3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.重点难点两直线异面的判定方法,以及两异面直线所成角的求法.课时安排1课时教学过程导入新课思路1.(情境导入)在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系.学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样.教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系.思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?图1推进新课新知探究提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理? ⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧.,:;,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线 ③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD —A′B′C′D′中,如图1, BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行. 符号表示为:a ∥b,b ∥c ⇒a ∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. ⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢? 生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a 、b ,在空间中任取一点O ,过点O 分别引a′∥a ,b′∥b ,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5应用示例思路1例1 如图6,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.图6求证:四边形EFGH是平行四边形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,且FG=BD 21. 所以EH ∥FG ,且EH=FG.所以四边形EFGH 为平行四边形. 变式训练1.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD.求证:四边形EFGH 是菱形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,EF ∥AC ,且FG=BD 21,EF=AC 21. 所以EH ∥FG ,且EH=FG.所以四边形EFGH 为平行四边形. 因为AC=BD,所以EF=EH. 所以四边形EFGH 为菱形.2.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD ,AC ⊥BD.求证:四边形EFGH 是正方形.证明:连接EH ,因为EH 是△ABD 的中位线, 所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,EF ∥AC ,且FG=BD 21,EF=AC 21. 所以EH ∥FG ,且EH=FG.所以四边形EFGH 为平行四边形. 因为AC=BD ,所以EF=EH.因为FG ∥BD ,EF ∥AC ,所以∠FEH 为两异面直线AC 与BD 所成的角.又因为AC ⊥BD ,所以EF ⊥EH.所以四边形EFGH 为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法. 例2 如图7,已知正方体ABCD —A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线.(2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.变式训练如图8,已知正方体ABCD—A′B′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.点评:“平移法”是求两异面直线所成角的基本方法.思路2例1 在长方体ABCD—A1B1C1D1中,E、F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.活动:学生先思考或讨论,然后再回答,教师点拨、提示并及时评价学生.证明:如图9,设G是DD1的中点,分别连接EG,GC1.图9∵EG A1D1,B1C1A1D1,∴EG B1C1.四边形EB1C1G是平行四边形,∴EB1GC1.同理可证DF GC1,∴EB1DF.∴四边形EB 1FD 是平行四边形. ∴ED ∥B 1F. 变式训练如图10,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1、AB 的中点,试判断下列各对线段所在直线的位置关系:图10(1)AB 与CC 1; (2)A 1B 1与DC ; (3)A 1C 与D 1B ; (4)DC 与BD 1; (5)D 1E 与CF.解:(1)∵C ∈平面ABCD ,AB ⊂平面ABCD ,又C ∉AB ,C 1∉平面ABCD,∴AB 与CC 1异面.(2)∵A 1B 1∥AB ,AB ∥DC ,∴A 1B 1∥DC.(3)∵A 1D 1∥B 1C 1,B 1C 1∥BC ,∴A 1D 1∥BC ,则A 1、B 、C 、D 1在同一平面内. ∴A 1C 与D 1B 相交.(4)∵B ∈平面ABCD ,DC ⊂平面ABCD ,又B ∉DC ,D 1∉平面ABCD,∴DC 与BD 1异面.(5)如图10,CF 与DA 的延长线交于G ,连接D 1G , ∵AF ∥DC ,F 为AB 中点,∴A 为DG 的中点. 又AE ∥DD 1,∴GD 1过AA 1的中点E.∴直线D 1E 与CF 相交.点评:两条直线平行,在空间中不管它们的位置如何,看上去都平行(或重合).两条直线相交,总可以找到它们的交点.作图时用实点标出.两条直线异面,有时看上去像平行(如图中的EB 与A 1C ),有时看上去像相交(如图中的DC 与D 1B ).所以要仔细观察,培养空间想象能力,尤其要学会两条直线异面判定的方法.例2 如图11,点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=22AD ,求异面直线AD 和BC 所成的角.图11解:设G 是AC 中点,连接EG 、FG.因E 、F 分别是AB 、CD 中点,故EG ∥BC 且EG=BC 21,FG ∥AD ,且FG=AD 21.由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为所求.由BC=AD 知EG=GF=AD 21,又EF=22AD,由勾股定理可得∠EGF=90°. 点评:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角.通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系. 变式训练设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB=212,CD=24,且HG·HE·sin ∠EHG=312,求AB 和CD 所成的角. 解:如图12,由三角形中位线的性质知,HG ∥AB ,HE ∥CD ,图12∴∠EHG 就是异面直线AB 和CD 所成的角. 由题意可知EFGH 是平行四边形,HG=2621=AB ,HE=3221=CD , ∴HG·HE·sin ∠EHG=612sin ∠EHG. ∴612sin ∠EHG=312. ∴sin ∠EHG=22.故∠EHG=45°. ∴AB 和CD 所成的角为45°. 知能训练如图13,表示一个正方体表面的一种展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有对____________.图13答案:三拓展提升图14是一个正方体的展开图,在原正方体中,有下列命题:图14①AB与CD所在直线垂直;②CD与EF所在直线平行;③AB与MN所在直线成60°角;④MN与EF所在直线异面.其中正确命题的序号是()A.①③B.①④C.②③D.③④答案:D课堂小结本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理.作业课本习题2.1 A组3、4.设计感想空间中直线与直线的位置关系是立体几何的基础,本节通过空间模型让学生直观感受两直线的位置关系,进一步培养学生的空间想象能力.两直线的异面关系是本节的重点和难点,本节选用大量典型题目训练学生求两异面直线所成的角,使学生熟练掌握直线与直线的位置关系.另外,本节加强了三种语言的相互转换,因此这是一节值得期待的精彩课例.。