古诺双寡头模型
第四章基本寡头模型

每家企业再选择产量时,假定对方产出不变
2、反映函数曲线
企业1的最优反映函数曲线:
企业1对企业2的产量进行预测,然后根 据预测来决定自己的最优产量。 行业市场需求曲线:
p a b( y1 y 2)
ac
企业1的边际成本 :
MC1 c 0
假定企业1预测企业2的生产量为
在伯特兰模型均衡处,价格等于边际成本, 市场总产量就为完全竞争产量,每个企业生产 完全竞争产量的一半,且企业利润为零。 行业内有多家成本相同企业时的伯特兰模 型与只有两家企业时结果是相同的,价格竞争 使市场价格最终达到边际成本水平,伯特兰模 型结果与行业内企业数量无关,只要这些企业 的成本都相同。
企业1的成本结构:TC cy 1,c 表示企业1的边际成本
:
c 企业2的成本结构:TC cy 2 , 表示企业2的边际成本
c c
市场需求曲线为:
P a b( y1 y2 )
考虑企业2的反应函数曲线: 假定企业2推测企业1的产量是 y1 ,那么企 业2所面临的需求曲线为剩余需求曲线D1 D1 ,它 根据边际成本等于边际收益原则,由边际成本 曲线 c 与剩余MR曲线的交点确定产量 y2。 由下图可以看出 y2 y2
y2 ,
则在每一市场价格下企业1所面临的需求
y 2 单位的产量, 业绩行业需求曲线DD需求曲线向左移动 y 2
量就是市场需求量减去 个单位。
企业1的剩余需求曲线表示了企业1在需 求不能在企业2处得到满足的那些消费者拥有 垄断的地位。那么,确定企业1的最优产量决 策类似于在垄断条件下寻找最优,利润最大 化的最优决策条件是:MR=MC。
从上述数学结论可以清楚地看出,企 业的均衡产量和市场份额与其边际成本成 反比,与其竞争对手边际成本成正比。也 就是说,企业边际成本越高,其均衡产量 就越小,市场份额也就越小。
BertrandandStackelberg古诺模型简介

Bertrand Model(贝特兰德模型)该模型是法国经济学家Joseph Louis François Bertrand (1822-1900)提出的。
与Cournot模型相比,在Cournot模型里参加博弈的双方以产量作为决策的变量,而在Bertrand模型中参加该博弈的双方都以价格作为决策变量。
这一改变使博弈的市场均衡完全不同于Cournot均衡。
它是关于双寡头产商价格竞争的一种模型,会导致每个产商的定价采用完全竞争的情况下的价格,即所谓的边际成本定价法(marginal cost pricing)。
Bertrand模型有以下假定:1、有多个产商生产同类产品(homogeneous products)2、产商间互不合作3、产商有相同的边际成本(marginal cost),且边际成本函数连续(consistant)4、需求是线性的5、产商通过并只通过价格来竞争(compete in price),并同时决定各自的价格,来补给需求量6、产商的行为都是有战略考虑的7、消费者倾向于买更便宜的产品;如果两个产商的同类产品定价一样,则消费者会各买一半通过价格竞争(competing in price)是说产商可以轻松改变补给量。
但一旦产商确定了价格,就很难(如果说不可能太绝对了)改变它。
如果所有产商都遵循这种逻辑,均衡(equilibrium)就建立起来了,并且没有一个产商能通过改变价格来获取好处,这就使得产品价格等于边际成本。
Bertrand悖论Bertrand均衡的含义在于,如果同业中的两家企业经营同样的产品,且成本一样,则价格战必定使每家企业按P= MC的价格经营,即只获取正常利润。
Bertrand均衡的结论告诉人们,只要市场上有两个或两个以上生产同样产品的企业,则没有一个企业可以控制市场价格获取垄断利润。
但是这个结论是很难令人信服的。
我们看到市场间的价格竞争事实上往往并没有使均衡价格降到等于边际成本这一水平上,而是高于边际成本,企业仍然获得超额利润。
古诺模型

古诺模型也称为古诺双寡头模型或双寡头模型。
古诺模型是早期的寡头模型。
它是由法国经济学家库诺(Cournot)在1838年提出的。
库诺模型是纳什均衡应用的最早版本,而库诺模型通常用作寡头理论分析的起点。
古诺模型的结论可以很容易地扩展到三个或更多寡头企业的情况。
古诺模型是法国经济学家安托万·奥古斯丁·库尔诺(Antoine Augustin Cournot)于1838年提出的。
古诺模型通常用作寡头理论分析的起点。
古诺模型是只有两个寡头的简单模型,也称为“双寡头模型”或双寡头理论。
该模型解释了相互竞争但彼此不协调的制造商的生产决策如何相互影响,从而在完美竞争和完美垄断之间产生了平衡结果。
古诺模型的结论可以很容易地扩展到三个或更多寡头企业的情况。
价格竞争的古诺模型假设两个寡头生产的产品可以互换并且具有固定成本40元的差异,并且假设没有可变成本且边际成本为0。
两个寡头面临的市场需求是如下:D1:Q1 = 24–4p1 + 2p2,D2:Q2 = 24–4p2 + 2p1。
因此,寡头1的利润为π1 = p1q1–40 = 24p1–4p12 + 2p2p2–40,因此,利润最大化,dπ1 / dp1 = 24–8p1 + 2p2 = 0,并且反应函数P1 = 3解决了寡头垄断1的+ P2 / 4。
同样,寡头2的反应函数为P2 = 3 + P1 /4。
因此,求解均衡价格P1 = P2 = 4,均衡输出Q1 = Q2 =16,求解均衡利润π1=π2= 24。
寡头不串通而达到的这种平衡称为古诺平衡。
如果寡头之间存在共谋以最大化联合利润,则获得的均衡就是共谋均衡。
可以计算出共谋均衡点P1 = P2 = 6,Q1 = Q2 = 12,π1=π2= 32,利润高于古诺均衡。
双寡头垄断模型的博弈分析

双寡头垄断模型的博弈分析用博弈论的视角,通过对古诺模型、斯塔克伯格模型、串谋的比较分析,得出在双寡头垄断市场中合作协议是缺乏约束力的,不能达到低产高收的目标。
只有通过只有在技术领域深度合作,或者通过股权收购等方式使双方利益紧密结合起来才能实现真正的合作达到双赢的目的。
标签:双寡头垄断模型;博弈;合作1 双寡头垄断模型1.1 古诺模型古诺模型是法国经济学家古诺1838年引入的一个简单的双寡头模型。
它的假设前提是:(1)市场上只有A、B两家厂商生产销售产品;(2)两家厂商的生产成本为零;(3)市场的需求曲线是线性的;(4)两家厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量。
上述假设前提也可以用如下方式表述:市场供给Q=qA+qB;TCA=TCB=0;P=a-bQ。
则厂商A的利润πA=TRA-TRC=qA×p(Q),而厂商B的利润πB=TRB-TCB=qB×P(Q)。
由于两家厂商均采取利润最大化的策略,所以有:πA/qA=-2bqA-bqB(1)πB/qB=-2bqB-bqA(2)由上述(1)、(2)两式便可得到A、B两厂商的反应函数:qA=a-bqB2b(3)qB=a-bqA2b(4)联立(3)、(4)式可以解出:qA=qB=a/3b;p=a/3;Q=2a/3b。
所以πA1=πB1=a2/9b。
1.2 斯塔克伯格模型与古诺模型假设中的两厂商同时行动不同,斯塔克伯格模型强调有一家主导厂商先行动,另外一家厂商则根据主导厂商的策略选择自己的利润最大化产量。
(1)厂商A为主导厂商,厂商B为跟随厂商。
利用前文中的方法同样可以求出厂商B的反应函数为qB=(a-bqA)2b,则πA=P(Q)×qA=[a-b(qA+qB)]×qA=a2qA-b2q A2πA/qA=a2-bqa(5)解得:qA=a/2b,qB=a/4b;P=a/4;Q=3a/4b。
所以πB2=a2/16b。
古诺模型名词解释

古诺模型名词解释
一、名词解释
古诺模型又称双寡头模型,该模型阐述了相互竞争而没有相互协调的厂商的产量决策是如何相互影响的,从而产生一个位于完全竞争和完全垄断之间的均衡结果。
古诺模型是价格竞争,寡头市场古诺均衡时,市场总产偏高低于完全竞争市场,价格水平高于边际成本。
二、扩展阅读
古诺模型又称古诺双寡头模型(Cournot duopoly model),或双寡头模型(Duopoly model),古诺模型是早期的寡头模型。
它是由法国经济学家古诺于1838年提出的。
是纳什均衡应用的最早版本,古诺模型通常被作为寡头理论分析的出发点。
古诺模型是一个只有两个寡头厂商的简单模型,该模型也被称为“双头模型”。
古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。
古诺模型假定一种产品市场只有两个卖者,并且相互间没有任何勾结行为,但相互间都知道对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为双头垄断理论。
古诺模型

厂商预期它的选择,令
y1
y1e
,y2
y
e 2
可得
二元一次方程组:
y1
a
by2 2b
y2
a
by1 2b
将 y1 y2代入方程得:
y1*
a 3b
y
* 2
a 3b
整个行业的总产量:
y1*
y
* 2
2a 3b
趋向均衡的调整
y2 =厂商2
的产量
y
* 2
反应曲线 f1y2
yt4 1
,
y t4 2
yt2 1
量)
厂商1决定生产 y1(利润最大化产量)
于是总产量: y y1 y2e
价格则为: py p y1 y2e
利润最大化:
p y y c y max y1
1
e 2
1
关于厂商2的产量的任何既定预测
ye 2
而言,厂商1
都有某个最优的产量选择 y1 .
于是可得:
y1
f1
ye 2
同理可导出厂商2的反应曲线:
y 2
f 2 y1e
一般来说,厂商1的最优产量水平
y1和厂商2预期的
产量水平 y1e并不相同。
古诺均衡:
假定厂商1的产量是 y1* ,厂商2的最优产量水
平就是
y
* 2
,假定厂商2的产量是
y
* 2
,厂商1
的最优产量水平就是 y1* 。
换而言之,产量选择满足:
y1*
f1
y
* 2
y
* 2
f2
y1*
,
yt2 2
y1t3
,
y
古诺模型及其推广应用

厂商 数量
1
整个市场 单个厂商 全部容量 的均衡数
量
M
M /2
全部厂商 的均衡总 量
M /2
商品的 价格
M /2
2
M
M /3 2M /3 M /3
n
M M /n+1 nM /n+1 M /n+1
∞
M
0
M
0
第九页,课件共有9页
第六页,课件共有9页
此时,P=M - Q=M-(Qa+Qb)=M /3
A和B不勾结时的利润之和为M /3× M /3 ×2 =2M ×M /9; A和B勾结时的利润为M /2× M /2 =M × M /4
第七页,课件共有9页
四、古诺模型结论的推广
以上双头古诺模型的结论可以推广。令寡头厂 商的数量为n,市场需求曲线为P=M -Q=
M -(Q1+Q2+…+Qn)则得到一般的结论如下: 每个寡头厂商的均衡产量=M/(n+1) 行业的均衡总产量=Mn/(n+1) 价格P= M/(n+1),利润之和为:
M ×M ×n /(n+1) × (n+1)
第八页,课件共有9页
五、四个市场结构的效率比较
市场 结构
垄断市 场 双头
垄断竞 争市场 完全竞 争市场
古诺模型及其推广应用
第一页,课件共有9页
第七章 不完全竞争市场
第一节 垄断
第二节 垄断竞争 第三节 寡头
第四节 博弈论初步
寡头市场的特征
古诺模型
斯威齐模型
第二页,课件共有9页
古诺模型
一、什么是古诺模型 古诺模型又称古诺双寡头模型(Cournot duopoly model),或双寡头模型(Duopoly model),古诺模型是早期的寡头模型。它是由 法国经济学家古诺于1838年提出的。是纳什均 衡应用的最早版本,古诺模型通常被作为寡头 理论分析的出发点。古诺模型是一个只有两个 寡头厂商的简单模型,该模型也被称为“双头 模型”。
假设有两个寡头垄断厂商的行为遵循古诺模型

假设有两个寡头垄断厂商的行为遵循古诺模型,它们的成本函数分别为:=0.1Q+20 Q1+100000TC=0.4Q+32 Q2+20000TC这两个厂商生产一同质产品,其市场需求函数为:Q=4000-10P,试求:(1)厂商1和厂商2的反应函数。
(2)均衡价格和厂商1和厂商2的均衡产量。
(3)厂商1和厂商2的利润。
解:(1)要求厂商1和厂商2的反应函数,须先求二厂商的利润函数。
已知市场需求函数为Q =4000-10P ,可得P =400-0.1Q ,又因为Q = Q 1+ Q 2,因此,P =400-0.1Q =400-0.1(Q 1+ Q 2)。
因此,二厂商的利润函数分别为:π1=TR 1- TC 1= PQ 1- TC 1=[400-0.1(Q 1+ Q 2)] Q 1-(0.1 Q 21+20 Q 1+100000)=400 Q 1-0.1 Q 21-0.1 Q 1 Q 2-0.1 Q 21-20 Q 1-100000π2=TC 2- TC 2= PQ 2- TC 2=[400-0.1(Q 1+ Q 2)] Q 2-(0.4 Q 21+32 Q 1+20000)=400 Q 2-0.1 Q 22-0.1 Q 1 Q 2-0.4 Q 21-32 Q 2-20000要使厂商实现利润极大,其必要条件是:11d πd Q =400-0.2Q 1-0.1Q 2-0.2 Q 1-20=0 (8—1) 22d πd Q =400-0.2Q 2-0.1Q 1-0.2Q 2-32=0 (8—2) 整理(8—1)式可得厂商1的反应函数为:Q 1=950-0.25 Q 2同样,整理(8—2)式可得厂商2的反应函数为:Q 2=368-0.1 Q 1(2)从两厂商的反应函数(曲线)的交点可求得均衡产量和均衡价格。
为此,可将上述二反应函数联立求解:12219500.253680.1Q Q Q Q =-⎧⎨=-⎩ 解上述方程组可得:Q 1=880,Q 2=280,Q =880+280=1160P =400-0.1×1160=284。