2020届高三物理二轮复习第二篇题型分类练计算题标准练(三)

合集下载

高三物理二轮复习第二篇题型专项突破计算题标准练四word版本

高三物理二轮复习第二篇题型专项突破计算题标准练四word版本

计算题标准练(四)满分32分,实战模拟,20分钟拿下高考计算题高分!1.(12分)如图甲所示,有一倾角为30°的光滑固定斜面,斜面底端的水平面上放一质量为M 的木板,开始时质量为m=1kg的滑块在水平向左的力F作用下静止在斜面上,今将水平力F 变为水平向右,当滑块滑到木板上时撤去F(假设斜面与木板连接处用小圆弧平滑连接)。

此后滑块和木板在水平面上运动的v -t图象如图乙所示,g取10m/s2,求:(1)水平作用力F的大小。

(2)滑块开始下滑时的高度。

(3)木板的质量。

【解析】(1)开始F向左时,滑块受到水平推力F、重力mg和支持力N处于平衡,如图所示水平推力:F=mgtanθ=1×10×=N(2)由图乙知,滑块滑到木板上时速度为v1=10m/s由牛顿第二定律得mgsinθ+Fcosθ=ma代入数据得a=10m/s2则滑块下滑的位移为x==5m则下滑时的高度h=xsinθ=5×=2.5m(3)设在整个过程中,地面对木板的摩擦力为f,滑块与木板间的摩擦力为f1,由图乙知,滑块刚滑上木板时加速度为a1==-4m/s2对滑块:-f1=ma1①此时木板的加速度:a2==1m/s2对木板:f1-f=Ma2②当滑块和木板速度相等,均为2m/s之后,在一起做匀减速直线运动,加速度为a3==-1m/s2对整体:-f=(m+M)a3③联立①②③带入数据解得:M=1.5kg答案:(1)N (2)2.5m (3)1.5kg2.(20分)如图光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m、电阻为r的金属杆。

在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为B0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降。

运动过程中金属杆始终与导轨垂直且接触良好,(忽略所有摩擦,重力加速度为g),求:(1)电阻R中的感应电流方向。

2020届高考物理二轮复习 专题强化练(含解析)【共18套150页】

2020届高考物理二轮复习 专题强化练(含解析)【共18套150页】

本套资源目录2020届高考物理二轮复习专题强化练一力与物体的平衡含解析2020届高考物理二轮复习专题强化练七碰撞与动量守恒定律含解析2020届高考物理二轮复习专题强化练三力与曲线运动含解析2020届高考物理二轮复习专题强化练九磁场及带电粒子在磁场中的运动含解析2020届高考物理二轮复习专题强化练二力与直线运动含解析2020届高考物理二轮复习专题强化练五功和功率动能定理含解析2020届高考物理二轮复习专题强化练八电场及带电粒子在电场中的运动含解析2020届高考物理二轮复习专题强化练六机械能守恒定律功能关系含解析2020届高考物理二轮复习专题强化练十一直流电路与交流电路含解析2020届高考物理二轮复习专题强化练十七选修模块含解析2020届高考物理二轮复习专题强化练十三三大观点解决电磁感应问题含解析2020届高考物理二轮复习专题强化练十二电磁感应规律及其应用含解析2020届高考物理二轮复习专题强化练十五力学实验含解析2020届高考物理二轮复习专题强化练十八选修模块含解析2020届高考物理二轮复习专题强化练十六电学实验含解析2020届高考物理二轮复习专题强化练十四近代物理初步含解析2020届高考物理二轮复习专题强化练十带电粒子在复合场中的运动含解析2020届高考物理二轮复习专题强化练四万有引力定律与航天含解析专题强化练(一)考点1 物体的受力分析1.(2019·浙江卷)如图所示,小明撑杆使船离岸,则下列说法正确的是( )A.小明与船之间存在摩擦力B.杆的弯曲是由于受到杆对小明的力C.杆对岸的力大于岸对杆的力D.小明对杆的力和岸对杆的力是一对相互作用力解析:小明与船之间存在静摩擦力,A正确;杆的弯曲是由于受到小明对杆的作用力,B错误;杆对岸的力与岸对杆的力是作用力与反作用力,大小相等,C错误;小明对杆的力和岸对杆的力受力物体都是杆,两者不是作用力与反作用力,故D错误.答案:A2.(2018·商丘一模)如图所示,物体B与竖直墙面接触,在竖直向上的力F的作用下,A、B均保持静止,则物体B的受力个数为( )A.2个B.3个C.4个D.5个解析:物体A处于静止状态,其受到的合外力为零,受力分析如甲图所示;对物体A、B整体受力分析如图乙所示,竖直墙面对物体B没有弹力作用,则墙面也不会提供静摩擦力;对物体B受力分析,如图丙所示,则物体B受到4个力的作用,选项C正确.答案:C3.(2019·柳州模拟)两个质量相同的直角楔形物体a和b,分别在垂直于斜边的恒力F1和F2作用下静止在竖直墙面上,如图所示,下列说法正确的是( )A.a、b一定都受四个力的作用B.a、b所受摩擦力的方向都是竖直向上C.F2一定小于F1D.F1、F2大小可能相等解析:对a受力分析如图甲:除摩擦力外的三个力不可能平衡,故一定有摩擦力,摩擦力方向竖直向上,故a受四个力;除摩擦力外对b受力分析如图乙:除摩擦力外,F N、F2、mg三力有可能平衡,沿竖直方向和水平方向分解F2,设F2与竖直方向夹角为α则有:F2cos α=mg,F2sin α=F N,解得F2=mgcos α;(1)若F2=mgcos α没有摩擦力,此时b受3个力;(2)若F2>mgcos α,摩擦力向下,b受四个力;(3)若F2<mgcos α,摩擦力向上,b受四个力;F1和F2没有必然的联系,有可能相等,但也有可能不等,故D正确,A、B、C错误.答案:D考点2 共点力的平衡4.(2019·江苏卷)如图所示,一只气球在风中处于静止状态,风对气球的作用力水平向右.细绳与竖直方向的夹角为α,绳的拉力为T,则风对气球作用力的大小为( )A.F Tsin αB.F Tcos αC .F T sin αD .F T cos α解析:以气球为研究对象,受力分析如图所示,则由力的平衡条件可知,气球在水平方向的合力为零,即风对气球作用力的大小为F =F T sin α,C 正确,A 、B 、D 错误.答案:C5.(多选)(2019·烟台调研)如图所示,将一劲度系数为k 的轻弹簧一端固定在内壁光滑的半球形容器底部O ′处(O 为球心),弹簧另一端与质量为m 的小球相连,小球静止于P 点.已知容器半径为R 、与水平地面之间的动摩擦因数为μ,OP 与水平方向的夹角为θ=30°.下列说法正确的是( )A .轻弹簧对小球的作用力大小为32mg B .容器相对于水平地面有向左的运动趋势 C .容器和弹簧对小球的作用力的合力竖直向上 D .弹簧原长为R +mgk解析:对小球受力分析,如图所示,因为θ=30°,所以三角形OO ′P 为等边三角形,由相似三角形法得F N =F =mg ,所以A 项错误;由整体法得,容器与地面间没有相对运动趋势,B 项错误;小球处于平衡状态,容器和弹簧对小球的作用力的合力与重力平衡,故C 项正确;由胡克定律有F =mg =k (L 0-R ),解得弹簧原长L 0=R +mg k,D 项正确.答案:CD考点3 动态平衡6.(多选)(2019·新乡模拟)如图所示,木板P下端通过光滑铰链固定于水平地面上的O点,物体A、B叠放在木板上且处于静止状态,此时物体B的上表面水平.现使木板P 绕O点缓慢旋转到虚线所示位置,物体A、B仍保持静止,与原位置的情况相比( )A.B对A的支持力不变B.B对A的支持力减小C.木板对B的支持力增大D.木板对B的摩擦力增大解析:开始时,A只受到重力和支持力作用而处于平衡状态,所以B对A的支持力与A的重力大小相等、方向相反,A不受B的摩擦力作用,P转动后,A受到重力、B对A的支持力和摩擦力作用而平衡,此时B对A的支持力和摩擦力的合力与A的重力大小相等,所以B对A的支持力一定减小了,B正确,A错误;以整体为研究对象,受到总重力G、板的支持力F N和摩擦力F f作用,设板的倾角为θ,由平衡条件有F N=G cos θ,F f=G sin θ,θ减小,F N增大,F f减小,C正确,D错误.答案:BC7.(多选)(2019·潍坊调研)如图所示,倾角为θ的斜面体c置于水平地面上,小物块b置于斜面上,通过细绳跨过光滑的定滑轮与沙漏a连接,连接b的一段细绳与斜面平行.在a中的沙子缓慢流出的过程中,a、b、c都处于静止状态,则( )A.b对c的摩擦力一定减小B.b对c的摩擦力方向可能平行斜面向上C.地面对c的摩擦力方向一定向右D.地面对c的摩擦力一定减小解析:若m a g>m b g sin θ,则b对c的摩擦力平行于斜面向上,且随a中的沙子缓慢流出,b对c的摩擦力减小;若m a g<m b g sin θ,则b对c的摩擦力平行于斜面向下,且随a中的沙子缓慢流出,b对c的摩擦力增大,A错误,B正确;以b、c为整体受力分析,应用平衡条件可得,地面对c的摩擦力方向一定水平向左,且F f=m a g cos θ,随m a的减小而减小,C错误,D正确.答案:BD8.(多选)(2019·西安模拟)如图所示,一根绳子一端固定于竖直墙上的A 点,另一端绕过动滑轮P 悬挂一重物B ,其中绳子的PA 段处于水平状态,另一根绳子一端与动滑轮P 的轴相连,在绕过光滑的定滑轮Q 后在其端点O 施加一水平向左的外力F ,使整个系统处于平衡状态,滑轮均光滑、轻质,且均可看作质点,现拉动绳子的端点O 使其向左缓慢移动一小段距离后达到新的平衡状态,则该平衡状态与原平衡状态相比较( )A .拉力F 增大B .拉力F 减小C .角θ不变D .角θ减小解析:以动滑轮P 为研究对象,AP 、BP 段绳子受的力始终等于B 的重力,两绳子拉力的合力在∠APB 的角平分线上,拉动绳子后,滑轮向上运动,两绳子夹角减小,两拉力的合力增大,故F 增大,A 项正确,B 项错误;PQ 与竖直方向夹角等于∠APB 的一半,故拉动绳子后角θ减小,C 项错误,D 项正确.答案:AD9.(2019·商丘模拟)如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔.质量为m 的小球套在圆环上.一根细线的下端系着小球,上端穿过小孔用手拉住.现拉动细线,使小球沿圆环缓慢上移.在移动过程中手对线的拉力F 和轨道对小球的弹力F N 的大小变化情况是( )A .F 不变,F N 增大B .F 不变,F N 减小C .F 减小,F N 不变D .F 增大,F N 减小解析:小球沿圆环缓慢上移过程中,受重力G 、拉力F 、弹力F N 三个力处于平衡状态.小球受力如图所示,由图可知△OAB ∽△F N AF ,即:G R =F AB =F NR,当A 点上移时,半径R 不变,AB 长度减小,故F 减小,F N 不变,故选项C 正确.答案:C10.(多选)(2019·威海一中摸底)如图所示,质量均为m 的小球A 、B 用劲度系数为k 1的轻弹簧相连,B 球用长为L 的细绳悬于O 点,A 球固定在O 点正下方,当小球B 平衡时,所受绳子的拉力为F T 1,弹簧的弹力为F 1;现把A 、B 间的弹簧换成原长相同但劲度系数为k 2(k 2>k 1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时小球B 所受绳子的拉力为F T 2,弹簧的弹力为F 2.则下列关于F T 1与F T 2、F 1与F 2大小之间的关系,正确的是( )A .F T 1>F T 2B .F T 1=F T 2C .F 1<F 2D .F 1=F 2解析:以小球B 为研究对象,分析受力情况,如图所示.由平衡条件可知,弹簧的弹力F 和绳子的拉力T 的合力F 合与重力mg 大小相等,方向相反,即F 合=mg ,作出力的合成图如图,由力三角形与几何三角形相似得:mg AO =F AB =F TOB.当弹簧劲度系数变大时,弹簧的压缩量减小,故AB 长度增加,而OB 、OA 的长度不变,故F T 1=F T 2,F 2>F 1,A 、D 错误,B 、C 正确.答案:BC考点4 电学中的平衡问题11.(2018·重庆高三测试)如图所示,在倾角为30°的光滑斜面上,垂直纸面放置一根长为L 、质量为m 的直导体棒,导体棒中电流为I .要使导体棒静止在斜面上,需要外加匀强磁场的磁感应强度B 的最小值为( )A.mg 2ILB.3mg 2ILC.mg ILD.3mg IL解析:平衡状态下导体棒受三个力,重力为恒力,支持力的方向不变,安培力的大小和方向不确定;由动态平衡知当安培力F 平行于斜面向上时安培力最小,则B 最小,即BIL =mg sin 30°,B =mg2IL,由左手定则知B 的方向垂直于斜面向下.答案:A12.(2019·青岛模拟)如图,绝缘光滑圆环竖直放置,a 、b 、c 为三个套在圆环上可自由滑动的空心带电小球,已知小球c 位于圆环最高点,ac 连线与竖直方向成60°角,bc 连线与竖直方向成30°角,三个小球均处于静止状态.下列说法正确的是( )A .a 、b 、c 小球带同种电荷B .a 、b 小球带异种电荷,b 、c 小球带同种电荷C .a 、b 小球电量之比为36D .a 、b 小球电量之比为39解析:对c 小球受力分析可得,a 、b 小球必须带同种电荷,c 小球才能平衡.对b 小球受力分析可得,b 、c 小球带异种电荷,b 小球才能平衡.故A 、B 项错误;对c 小球受力分析,将力正交分解后可得:kq a q c r 2ac sin 60°=k q b q cr 2bcsin 30°,又r ac ∶r bc =1∶3,解得q a ∶q b =3∶9.故C 项错误,D 项正确.答案:D专题强化练(七)考点1 冲量与动量定理的应用1.(2019·太原模拟)如图所示是一种弹射装置,弹丸的质量为m ,底座的质量为3m ,开始时均处于静止状态.当弹丸以速度v (相对于地面)发射出去后,底座的速度大小为v4,在发射弹丸过程中,底座受地面的摩擦力的冲量为( )A .零 B.mv4,方向向右C.mv3,方向向右D.3mv4,方向向左 解析:设向右为正方向,对弹丸,根据动量定理:I =mv ,力的作用是相互的,则弹丸对底座的作用力的冲量为:-mv ,对底座,根据动量定理:I f +(-mv )=-3m ·v4得:I f=mv4,为正表示方向向右,故B 正确,A 、C 、D 错误. 答案:B2.(多选)(2018·福建四校二次联考)如图所示,足够长的固定光滑斜面倾角为θ,质量为m 的物体以速度v 从斜面底端冲上斜面,达到最高点后又滑回原处,所用时间为t .对于这一过程,下列判断正确的是( )A .斜面对物体的弹力的冲量为零B .物体受到的重力的冲量大小为mgtC .物体受到的合力的冲量大小为零D .物体动量的变化量大小为mg sin θ·t解析:斜面对物体的弹力的冲量大小为:I =F N t =mg cos θ·t ,弹力的冲量不为零,故A 错误;物体所受重力的冲量大小为:I G =mg ·t ,物体受到的重力的冲量大小不为零,故B 正确;物体受到的合力的冲量大小为mgt sin θ,不为零,C 错误;由动量定理得,动量的变化量大小Δp =I 合=mg sin θ·t ,D 正确.答案:BD3.(多选)(2019·曲靖模拟)如图所示,木板B 放在光滑的水平面上,滑块A 在木板上从右向左运动,刚滑上木板B的最右端时,其动能为E1,动量大小为p1;滑到木板B的最左端时,其动能为E2,动量大小为p2;A、B间动摩擦因数恒定,则该过程中,滑块A的平均速度大小为()A.E1+E2p1+p2B.E2-E1p2-p1C.E1p1+E2p2D.E1p1-E2p2解析:设当滑块A从木板右端滑到左端时,经过的时间为t,发生的位移为x,则由动能定理得E2-E1=-F f x;由动量定理得p2-p1=-F f t,解得v=xt=E2-E1p2-p1;选项B正确,A错误;因E1p1=12mv21mv1=v12,E2p2=12mv22mv2=v22,因滑块A做匀变速直线运动,则平均速度v=v1+v22=E1p1+E2p2,选项C正确,D错误.答案:BC4.(2018·马鞍山模拟)质量为2 kg的小物块静止于光滑水平面上,从某一时刻开始,小物块所受的水平冲量与时间的关系如图所示,则在6 s内物块的位移为( )A.0 B.3 m C.6 m D.12 m解析:由图可知0~3 s内以及3~6 s内物块受到的冲量都是与时间成线性关系,可知在0~3 s内和3~6 s内物块受到的力都不变,物体做匀变速直线运动,在0~3 s内物块做初速度等于0的匀加速直线运动,在3~6 s内物块做匀减速直线运动,由运动的对称性可知,6 s末物块的速度又等于0.在0~3 s末,根据动量定理可得I=Δp=mv,所以v=Im=42m/s=2 m/s,所以小物块在6 s内的位移x=v2t1+v2·t2=v2·t=22×6 m=6 m.故C正确.答案:C考点2 碰撞和动量守恒定律的应用5.(2019·惠州模拟)质量为1 kg 的物体从距地面5 m 高处自由下落,落在正以5 m/s 的速度沿水平方向匀速前进的小车上,车上装有沙子,车与沙的总质量为4 kg ,地面光滑,则车后来的速度为(g 取10 m/s 2)( )A .4 m/sB .5 m/sC .6 m/sD .7 m/s解析:物体和车作用过程中,两者组成的系统水平方向不受外力,水平方向系统的动量守恒.已知两者作用前,车在水平方向的速度v 0=5 m/s ,物体水平方向的速度v =0;设当物体与小车相对静止后,小车的速度为v ′,取原来小车速度方向为正方向,则根据水平方向系统的动量守恒得:mv +Mv 0=(M +m )v ′,解得:v ′=mv +Mv 0M +m =4×51+4m/s =4 m/s ,故选项A 正确,B 、C 、D 错误.答案:A6.(2019·烟台模拟)在光滑水平面上有三个弹性小钢球a 、b 、c 处于静止状态.质量分别为2m 、m 和2m .其中a 、b 两球间夹一被压缩了的弹簧,两球通过左右两边的光滑挡板束缚着.若某时刻将挡板撤掉,弹簧便把a 、b 两球弹出,两球脱离弹簧后,a 球获得的速度大小为v ,若b 、c 两球相距足够远,则b 、c 两球相碰后( )A .b 球的速度大小为13v ,运动方向与原来相反B .b 球的速度大小为23v ,运动方向与原来相反C .c 球的速度大小为83vD .c 球的速度大小为23v解析:设b 球脱离弹簧的速度为v 0,b 、c 两球相碰后b 、c 的速度分别为v b 和v c ,取向右为正方向,弹簧将a 、b 两球弹出过程,由动量守恒定律得0=-2mv +mv 0,解得v 0=2v ,b 、c 两球相碰过程,由动量守恒定律和机械能守恒得mv 0=mv b +2mv c ,12mv 20=12mv 2b +12·2mv 2c ,联立解得v b =-23v (负号表示方向向左,与原来相反),v c =43v ,故B 正确.答案:B7.(多选)(2019·肇庆模拟)如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞前后A 球动量变化量为-4 kg·m/s,则( )A .左方是A 球,碰前两球均向右运动B .右方是A 球,碰前两球均向左运动C .碰撞后A 、B 两球速度大小之比为2∶5D .经过验证两球发生的碰撞不是弹性碰撞解析:大小相同的A 、B 两球在光滑水平面上发生碰撞,规定向右为正方向,由动量守恒定律可得Δp A =-Δp B ,由题知Δp A =-4 kg·m/s,则得Δp B =4 kg·m/s.由于碰撞前两球均向右运动,所以左方是A 球,右边是B 球,故A 正确,B 错误;碰撞后,两球的动量分别为p A ′=p A +Δp A =6 kg·m/s-4 kg·m/s=2 kg·m/s,p B ′=p B +Δp B =6 kg·m/s +4 kg·m/s=10 kg·m/s,由于两球质量关系为m B =2m A ,那么碰撞后A 、B 两球速度大小之比为v ′A v ′B =p A ′m Ap B ′m B =25,故C 正确;碰撞前系统的总动能为E k =p 2A 2m A +p 2B2m B =18m A +362×2m A =27m A,碰撞后系统的总动能为E ′k =p ′2A 2m A +p 2B2m B =2m A +1002×2m A =27m A,可知碰撞过程系统的动能守恒,所以两球发生的碰撞是弹性碰撞,故D 错误.答案:AC8.(2018·宜昌模拟)如图所示,质量为M 的小车静止在光滑的水平面上,小车AB 段是半径为R 的四分之一光滑圆弧轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点,一质量为m 的滑块在小车上从A 点静止开始沿AB 轨道滑下,然后滑入BC 轨道,最后恰好停在C 点.已知小车质量M =3m ,滑块与轨道BC 间的动摩擦因数为μ,重力加速度为g .则( )A .全程滑块水平方向相对地面的位移R +LB .全程小车相对地面的位移大小x =14(R +L )C .滑块m 运动过程中的最大速度v m =2gRD .μ、L 、R 三者之间的关系为R =4μL解析:设全程小车相对地面的位移大小为x ′,则滑块水平方向相对地面的位移x =R +L -x ′.取水平向右为正方向,由水平方向动量守恒得m xt -Mx ′t =0,即m R +L -x ′t -M x ′t=0,结合M =3m ,解得x ′=14(R +L ),x =34(R +L ),故A 错误,B 正确;滑块刚滑到B 点时速度最大,取水平向右为正方向,由动量守恒定律和机械能守恒分别得0=mv m -Mv 、mgR =12mv 2m +12Mv 2.联立解得v m = 32gR ,故C 错误;对整个过程,由动量守恒定律得0=(m +M )v ′,得v ′=0,由能量守恒定律得mgR =μmgL ,得R =μgL ,故D 错误.答案:B考点3 动量和能量的综合应用9.(2019·株洲质检)如图,长l 的轻杆两端固定两个质量相等的小球甲和乙,初始时它们直立在光滑的水平地面上.后由于受到微小扰动,系统从图示位置开始倾倒.当小球甲刚要落地时,其速度大小为( )A.2glB.glC.2gl 2D .0解析:两球组成的系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,即v =v ′;由机械能守恒定律得:12mv 2+12mv ′2=mgl ,解得:v=gl ,故B 正确.答案:B10.(多选)(2019·铜川模拟)如图所示,质量为M 的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m 的小物块从斜面底端沿斜面向上以初速度v 0开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v ,距地面高度为h ,则下列关系式中正确的是( )A .mv 0=(m +M )vB .mv 0cos θ=(m +M )vC .mgh +12(m +M )v 2=12mv 20D .mgh =12m (v 0sin θ)2解析:小物块上升到最高点时,速度与楔形物体的速度相同,系统水平方向动量守恒,全过程机械能也守恒.以向右为正方向,在小物块上升过程中,由水平方向系统动量守恒得:mv 0cos θ=(m +M )v ,故A 错误,B 正确;系统机械能守恒,由机械能守恒定律得:mgh +12(m+M )v 2=12mv 20,故C 正确,D 错误.答案:BC11.(2019·南昌模拟)有人对鞭炮中炸药爆炸的威力产生了浓厚的兴趣,他设计如下实验,在一光滑水平面上放置两个可视为质点的紧挨着的A 、B 两个物体,它们的质量分别为m 1=1 kg ,m 2=3 kg 并在它们之间放少量炸药,水平面左方有一弹性的挡板,水平面右方接一光滑的14竖直圆轨道.开始A 、B 两物体静止,点燃炸药让其爆炸,物体A 向左运动与挡板碰后原速返回,在水平面上追上物体B 并与其碰撞后粘在一起,最后恰能到达圆弧最高点,已知圆弧的半径为R =0.2 m ,g 取10 m/s 2.求炸药爆炸时对A 、B 两物体所做的功.解析:炸药爆炸后,设A 的速度大小为v 1,B 的速度大小为v 2.取向左为正方向,由动量守恒定律得m 1v 1-m 2v 2=0,A 物体与挡板碰后追上B 物体,碰后两物体共同速度设为v ,取向右为正方向,由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v ,两物体上升到圆弧的最高点时速度为0,两物体的动能转化为重力势能,由机械能守恒定律得12(m 1+m 2)v 2=(m 1+m 2)gR , 炸药爆炸时对A 、B 两物体所做的功W =12m 1v 21+12m 2v 22,联立解得W =10.7 J. 答案:10.7 J12.(2019·廊坊模拟)如图所示,质量M =0.3 kg 的长木板A 放在光滑的水平面上,板长L =1.5 m ,在其左端放一质量m =0.1 kg 的物块B .现给A 和B 以大小相等、方向相反的水平初速度v 0=2 m/s ,使A 开始向左运动、B 开始向右运动.物块与木板间的动摩擦因数为μ,g 取10 m/s 2.(1)要使物块B 不从长木板A 的右端滑落,求动摩擦因数μ的取值范围;(2)若B 恰好不从长木板A 的右端滑落,求B 相对长木板A 滑动过程中发生的对地位移大小.解析:(1)当物块B 滑到木板A 的最右端与木板有共同速度v 时,取水平向左为正方向,根据动量守恒定律得Mv 0-mv 0=(M +m )v ,根据能量守恒定律知12Mv 20+12mv 20=12(M +m )v 2+μmgL , 联立解得v =1 m/s ,μ=0.4,所以要使物块B 不从长木板A 的右端滑落,动摩擦因数μ的取值范围为μ≥0.4; (2)B 相对于A 滑动过程中的加速度大小a =μmg m=μg =4 m/s 2,由运动学公式有2ax =v 20-v 2,解得B 相对长木板A 滑动过程中发生的对地位移x =0.375 m. 答案:(1)μ≥0.4 (2)0.375 m专题强化练(三)考点1 运动的合成与分解1.(2019·六安模拟)小船在400米宽的河中横渡,河水流速是2 m/s ,船在静水中的航速是4 m/s ,要使船的航程最短,则船头的指向和渡河的时间t 分别为( )A .船头应垂直指向对岸,t =100 sB .船头应与上游河岸成60°角,t =20033 sC .船头应垂直指向对岸,t =20033 sD .船头应与下游河岸成60°角,t =100 s解析:当合速度的方向与河岸垂直时,渡河位移最短,设船头与上游河岸方向的夹角为θ,则cos θ=v 水v 船=12,所以θ=60°,渡河的位移x =d =400 m ,根据矢量合成法则有v 合=v 2船-v 2水=42-22m/s =2 3 m/s ,渡河时间t =d v 合=40023 s =20033s ,故B 正确,A 、C 、D 错误.答案:B2.(2019·济宁模拟)如图所示,细线一端固定在天花板上的O 点,另一端穿过一张CD 光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边缘.现将CD 光盘按在桌面上,并沿桌面边缘以速度v 匀速移动,移动过程中,CD 光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为( )A .v sin θB .v cos θC .v tan θ D.vtan θ解析:将光盘水平向右移动的速度v 分解为沿细线方向的速度和垂直于细线方向的速度,而小球上升的速度大小与速度v 沿细线方向的分速度大小相等,故可得:v 球=v sin θ,A 正确.答案:A3.(2019·临汾模拟)一物体由静止开始自由下落,一小段时间后突然受一恒定水平向右的风力的影响,但着地前一段时间内风力突然停止,则其运动的轨迹可能是( )解析:当有水平向右的风时,会产生水平向右的加速度,轨迹向右弯曲,风力停止时,合力向下,且轨迹不能急折,故C 项正确.答案:C考点2 平抛运动4.(多选)(2019·株洲模拟)将一小球以水平速度v 0=10 m/s 从O 点向右抛出,经 3 s 小球恰好垂直落到斜面上的A 点,不计空气阻力,g 取10 m/s 2,B 点是小球做自由落体运动在斜面上的落点,如图所示,以下判断正确的是( )A .斜面的倾角约是30°B .小球的抛出点距斜面的竖直高度约是15 mC .若将小球以水平速度v ′0=5 m/s 向右抛出,它一定落在AB 的中点P 的上方D .若将小球以水平速度v ′0=5 m/s 向右抛出,它一定落在AB 的中点P 处 解析:设斜面倾角为θ,对小球在A 点的速度进行分解有tan θ=v 0gt,解得θ=30°,A 项正确;小球距过A 点水平面的距离为h =12gt 2=15 m ,所以小球的抛出点距斜面的竖直高度肯定大于15 m ,B 项错误;若小球的初速度为v 0′=5 m/s ,过A 点作水平面,小球落到水平面的水平位移是小球以初速度v 0=10 m/s 抛出时的一半,延长小球运动的轨迹线,得到小球应该落在P 、A 之间,C 项正确,D 项错误.答案:AC5.(2019·广东四校联考)从同一高度同时将a 、b 两个完全相同的小球分别竖直上抛和斜上抛,它们的初速度大小相同;若不计空气阻力,则以下说法中正确的是( )A .在空中运动的过程中,两球的加速度相同B .两球触地时的瞬时速率不同C .两球在空中运动的时间相同D .两球运动的位移相同解析:两球在空中都只受重力作用,两球的加速度都为重力加速度g ,A 项正确;因两球都只受重力,则机械能均守恒,据机械能守恒定律有12mv 20+mgh =12mv 2t ,可知两球触地时的速率相同,B 项错误;因两球以相同的速率分别竖直上抛和斜上抛,则知两球在空中运动时间不同,C 项错误;因两球初始时运动方向不同,则它们发生的位移不同,D 项错误.答案:A6.(多选)(2018·天水二模)如图所示,某一运动员从弧形雪坡上沿水平方向飞出后,又落回到斜面雪坡上.若斜面雪坡的倾角为θ,飞出时的速度大小为v 0,不计空气阻力.运动员飞出后在空中的姿势保持不变.重力加速度为g ,则()A .如果v 0不同,则该运动员落到雪坡时的速度方向也就不同B .不论v 0多大,该运动员落到雪坡时的速度方向都是相同的C .运动员在空中经历的时间是2v 0tan θg D.运动员落到雪坡时的速度大小是v 0cos θ解析:设在空中飞行时间为t ,运动员竖直位移与水平位移之比y x =12gt 2v 0t =gt 2v 0=tan θ,则有飞行的时间t =2v 0tan θg,故C 正确;竖直方向的速度大小为v y =gt =2v 0tan θ,运动员落回雪坡时的速度大小v =v 20+v 2y =v 01+4tan 2θ,故D 错误;设运动员落到雪坡时的速度方向与水平方向夹角为α,则tan α=v y v x =2v 0tan θv 0=2tan θ,由此可知,运动员落到雪坡时的速度方向与初速度方向无关,初速度不同,运动员落到雪坡时的速度方向相同,故A 错误,B 正确.答案:BC考点3 圆周运动7.(2019·惠州模拟)如图所示,一个菱形框架绕着过对角线的竖直轴匀速转动,在两条边上各有一个质量相等的小球套在上面,整个过程小球相对框架没有发生滑动,A 与B 到轴的距离相等,则下列说法正确的是( )A .框架对A 的弹力方向垂直框架向下B .框架对B 的弹力方向可能垂直框架向下。

重庆2020人教高考物理二轮实验和计算题选练三及答案

重庆2020人教高考物理二轮实验和计算题选练三及答案

重庆2020人教高考物理二轮实验和计算题选练三及答案1、现有一电池,电动势E 约为5 V,内阻r 约为50 Ω,允许通过的最大电流为50 mA.为测定该电池的电动势和内阻,某同学利用如图甲所示的电路进行实验.图中R为电阻箱,阻值范围为0~999.9 Ω,R0为定值电阻,V为理想电压表.(1)可供选用的R0有以下几种规格,本实验应选用的R0的规格为________(填选项序号字母).A.15 Ω 1.0 W B.50 Ω0.01 WC.60 Ω 1.0 W D.1 500 Ω 6.0 W(2)按照图甲所示的电路图,将图乙所示的实物连接成实验电路.(3)连接好电路,闭合开关S,调节电阻箱的阻值,记录阻值R和相应的电压表示数U,测得多组实验数据,并作出如图丙所示的1U-1R关系图象,则电动势E=________V,内阻r=________Ω.(结果均保留2位有效数字) 【参考答案】(1)C(2)见解析(3)5.0 V53 Ω解析:(1)分析题意可知,电路中允许通过的最大电流为50 mA,根据闭合电路欧姆定律可知,电路中的最小电阻R min=EI m=100 Ω,则定值电阻R0的最小阻值为50 Ω,B选项中额定功率太小,导致额定电流过小,故C选项正确.(2)根据原理图,连接实物图如图所示:(3)根据闭合电路欧姆定律可知,U =R R +R 0+r·E. 整理为1U =r +R 0E ·1R +1E .图象的截距为1E =0.20.解得,E =5.0 V .图象的斜率为r +R 0E =22.5,解得,r ≈53 Ω.2、低空跳伞大赛受到各国运动员的喜爱.如图所示为某次跳伞大赛运动员在一座高为H =179 m 的悬崖边跳伞时的情景.运动员离开悬崖时先做自由落体运动,一段时间后,展开降落伞,以a =8 m/s 2的加速度匀减速下降,已知运动员和伞包的总质量为80 kg ,为了运动员的安全,运动员落地时的速度不能超过4 m/s ,求:(1)运动员(含伞包)展开降落伞后所受的空气阻力f ;(2)为了运动员的安全,展开伞时的最大速度是多少?(3)如果以下落的快慢决定比赛的胜负,为了赢得比赛的胜利,运动员在空中运动的最短时间是多大?【参考答案】(1)1 440 N ,方向向上 (2)40 m/s (3)8.5 s解析:(1)展开降落伞后,分析运动员(含伞包)的受力情况,根据牛顿第二定律可知,f -Mg =Ma.解得,f =1 440 N ,方向竖直向上.(2)展开降落伞之前,运动员做自由落体运动,根据运动学公式可知,v 20=2gx.展开降落伞之后,v 2-v 20=-2a(H -x).联立解得,v 0=40 m/s.(3)运动员在空中先做自由落体运动,后做匀减速直线运动时,在空中时间最短.自由落体运动过程中,t 1=v 0g =4 s.匀减速直线运动的时间t 2=v 0-v a =4.5 s.最短时间t =t 1+t 2=8.5 s.3、如图甲所示,加在A 、B 间的电压U AB 做周期性变化,其正向电压为U 0,反向电压为-54U 0,电压变化的周期为2T ,如图乙所示.在t =0时,有一个质量为m 、电荷量为e 的电子以初速度v 0垂直电场方向从两极板正中间射入电场,在运动过程中未与极板相撞,且不考虑重力的作用.如果电子恰好在2T 时刻射出电场,则板间距离d 应满足什么条件?【参考答案】 d ≥ 9eU 0T 25m解析:分析电子的运动情况,在竖直方向上,0~T 时间内,电子向A 板做匀加速直线运动,在0~T 时间内,加速度a 1=eU 0md , 位移y 1=12a 1T 2,速度v 1=a 1T.在T ~2T 时间内,电子先做匀减速直线运动再反向向B 板做匀加速直线运动.在匀减速直线运动过程中,加速度a 2=5eU 04md ,位移y 2=v 212a 2. 分析题意可知,y 1+y 2=d 2,联立解得,d ≥ 9eU 0T 25m .4、如图所示,甲和乙是放在水平地面上的两个小物块(可视为质点),质量分别为m 1=2 kg 、m 2=3 kg ,与地面间的动摩擦因数相同,初始距离L =170 m .两者分别以v 1=10 m/s 和v 2=2 m/s 的初速度同时相向运动,经过t =20 s 的时间两者发生碰撞,求物块与地面间的动摩擦因数μ.某同学解法如下:因动摩擦因数相同,故它们在摩擦力作用下加速度的大小是相同的,由牛顿第二定律得到加速度的大小:a =μg ,设两物体在t =20 s 的时间内运动路程分别为s 1和s 2,则有:s 1=v 1t -12at 2,s 2=v 2t -12at 2,考虑到s 1+s 2=L 即可联立解出μ.你认为该同学的解答是否合理?若合理,请解出最后结果;若不合理,请说明理由,并用你自己的方法算出正确结果.【参考答案】该同学解法不合理,因为未考虑物体是否停止.物块与地面间的动摩擦因数为0.02解析:解答与评分标准:该同学的解答不合理因为四式联立,代入数据后解得a =0.175 m/s 2经过时间t =20 s ,两物块的速度分别为v ′1=v 1-at ,v ′2=v 2-at代入数据得v ′1=6.5 m/s ,v ′2=-1.5 m/sv ′2<0,表明物块乙在20 s 之前就已经停止运动,故该同学解答不合理.正确解答:物块2停止运动前滑行的距离s 2=v 222a将相碰之前的位移关系s 1+s 2=L 具体为(v 1t -12at 2)+v 222a =L ,代入数据得:100a 2-15a -1=0解得a =0.2 m/s 2和a =-0.05 m/s 2(舍去),再由a =μg 得μ=0.025、如图所示,空间中存在一个矩形区域MNPQ ,PQ 的长度为MQ 长度的两倍,有一个带正电的带电粒子从M 点以某一初速度沿MN 射入,若矩形区域MNPQ中加上竖直方向且场强大小为E的匀强电场,则带电粒子将从P点射出,若在矩形区域MNPQ中加上垂直于纸面且磁感应强度大小为B的匀强磁场,则带电粒子仍从P点射出,不计带电粒子的重力,求:带电粒子的初速度的大小.【参考答案】4E 5B解析:带电粒子在电场中做类平抛运动,设MQ长度为L,根据运动的合成与分解法则可知,竖直方向上,L=12×qEm t2.水平方向上,2L=v0t.带电粒子在磁场中做匀速圆周运动,画出轨迹如图所示:洛伦兹力提供向心力,q v B=m v20r,根据几何关系可知,(r-L)2+(2L)2=r2.联立上述各式可知,v=4E5B.。

2020届人教版高考物理二轮基础实验+计算练习(三)含答案

2020届人教版高考物理二轮基础实验+计算练习(三)含答案

2020届人教版高考物理二轮基础实验+计算练习(三)含答案1、为了探究弹力F和弹簧伸长量x的关系,某同学选了甲、乙两根规格不同的弹簧进行测试,根据测得的数据作出的x-F图象如图所示。

(1)甲、乙弹簧的劲度系数分别为_________N/m和_________N/m(结果保留三位有效数字);若要制作一个精确度较高的弹簧测力计,应选弹簧_________(选填“甲”或“乙”)。

(2)根据图线和数据进行分析,请对这个研究课题提出一个有价值的建议。

【解析】(1)由题图可知,弹簧的劲度系数分别为k甲= N/m=66.7 N/m,k乙=N/m=200 N/m;甲弹簧的劲度系数较小,受力相同时弹簧的形变量更大,减小了测量的误差。

(2)如题图,两弹簧的图线末端都弯曲了,说明弹簧受力过大,超过了弹性限度,进行研究时应避免这个问题。

答案:(1)66.7200甲(2)实验中弹簧受力应控制在弹性限度内2、如图所示,光滑斜面倾角为30°,A、B物体与水平面间的动摩擦因数均为μ=0.4,现将A、B两物体(可视为质点)同时由静止释放,两物体初始位置距斜面底端O的距离为LA =2.5 m,LB=10 m。

不考虑两物体在转折O处的能量损失。

(g取10 m/s2)(1)求两物体滑到O点的时间差。

(2)B从开始释放,需经过多长时间追上A?(结果可用根号表示) 【解题指导】解答本题应注意以下两点:(1)两物体的下滑高度不同,到达底端的时间和速度不同;(2)B追上A时,A可能已经停止运动,也可能仍在运动。

【解析】(1)物体在光滑斜面上的加速度a=gsin θ=5 m/s2A到达底端时间t A==1 sB到达底端时间t B==2 sA、B到达底端时间差Δt AB=2 s-1 s=1 s(2)A到达底端速度v A==5 m/s,经过分析B追上A前,A已停止运动A在水平面上运动的总位移s A==mB在水平面上运动的总位移s B=v B t-μgt2其中v B==10 m/s又s A=s B得t=s则B从释放到追上A用时t总=t B+t=s=2.33 s。

【最新推荐】2020高考物理二轮课标通用综合能力训练(三) Word版含解析

【最新推荐】2020高考物理二轮课标通用综合能力训练(三) Word版含解析

综合能力训练(三)(时间:60分钟满分:110分)综合能力训练第62页第Ⅰ卷一、选择题(本题共8小题,每小题6分,共48分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分)1.关于近代物理学,下列说法正确的是()A.一群处于n=4能级的氢原子向低能级跃迁时能辐射出4种不同频率的光B.重核裂变过程生成中等质量的核,反应前后质量数守恒,但质量不一定减少C.10个放射性元素的原子核在经一个半衰期后,一定有5个原子核发生衰变D.光电效应和康普顿效应的实验都表明光具有粒子性答案:D2.一个物体沿直线运动,从t=0时刻开始,物体的x-t图像如图所示,图线与纵横坐标轴的t交点分别为0.5 m/s和-1 s,由此可知()A.物体做匀速直线运动B.物体做变加速直线运动C.物体的初速度大小为0.5 m/sD.物体的初速度大小为1 m/s答案:C-t图像(即v-t图像)是一条直线,物体做匀加速运动,选项A、B错误;图线在解析:物体的xt纵轴的截距是初速度的大小,等于0.5 m/s,选项C正确,D错误。

3.人造卫星a的圆形轨道离地面高度为h,地球同步卫星b离地面高度为H,h<H,两卫星共面且运行方向相同。

某时刻卫星a恰好出现在赤道上某建筑物c的正上方,设地球赤道半径为R,地面重力加速度为g,则()A.a、b线速度大小之比为√R+ℎR+HB.a、c角速度之比为√R3(R+ℎ)3C.b、c向心加速度大小之比为R+HRD.a 下一次通过c 正上方所需时间t=2π√(R+ℎ)3gR 2答案:C解析:人造地球卫星绕地球做匀速圆周运动,由地球的万有引力提供向心力,根据牛顿运动定律求解卫星的角速度。

卫星绕地球做匀速圆周运动,建筑物随地球自转做匀速圆周运动,当卫星转过的角度与建筑物转过的角度之差等于2π时,卫星再次出现在建筑物上空。

绕地球运行的卫星,万有引力提供向心力,设卫星的线速度为v ,则G Mmr 2=m v 2r ,所以v=√GM r,可知a 、b 卫星的线速度大小之比为√R+HR+ℎ,故A 错误;设卫星的角速度为ω,G Mmr =m ω2r ,得ω=√GMr ,所以有ωa ωb=√(R+ℎR+H ) 3,又由于卫星b 的角速度与物体c 的角速度相同,所以ωa ωc=√(R+ℎR+H ) 3,故B 错误;根据a=ω2r 可得a b a c=R+H R,故C 正确;设经过时间t卫星a 再次通过建筑物c 上方,有(ωa -ωc )t=2π,得t=2πωa -ωc=√(R+ℎ)3GM -√(R+H )3GM=2π√gR 2√(R+ℎ)-√(R+H ),故D 错误。

新课标2020高考物理二轮复习综合模拟滚动三含解析

新课标2020高考物理二轮复习综合模拟滚动三含解析

高考物理二轮复习综合模拟滚动:综合模拟滚动小卷(三)(建议用时:45分钟)一、单项选择题1.目前,在居家装修中,经常用到花岗岩、大理石等装修材料,这些岩石都不同程度地含有放射性元素,比如有些含有铀钍的花岗岩等岩石都会释放出放射性惰性气体氡,而氡会发生放射性衰变,放出α、β、γ射线,这些射线会导致细胞发生癌变及呼吸道方面的疾病,根据有关放射性知识可知,下列说法正确的是( )A .β衰变所释放的电子是原子核内的中子转化成质子时产生并发射出来的B .β射线是原子核外电子电离形成的质子流,它具有很强的穿透能力C .已知氡的半衰期为3.8天,若取1 g 氡放在天平左盘上,砝码放于右盘,左右两边恰好平衡,则3.8天后,需取走0.5 g 砝码天平才能再次平衡D .发生α衰变时,生成核与原来的原子核相比,中子数减少了4 2.半径为R 的半圆柱形介质截面如图所示,O 为圆心,AB 为直径,Q 是半圆上的一点,从Q 点平行于AB 射入半圆柱介质的光线刚好从B 点射出,已知∠QBO =30°,现有一条光线从距离O 点32R 处垂直于AB 边射入半圆柱形介质,已知光在真空中的传播速度为c ,则该半圆柱形介质的折射率为( )A .2 B. 3 C. 2D.223.2018年12月8日我国嫦娥四号探测器成功发射,实现人类首次在月球背面无人软着陆.通过多次调速让探月卫星从近地环绕轨道经地月转移轨道进入近月环绕轨道.已知地球与月球的质量之比及半径之比分别为a 、b ,则下列关于近地卫星与近月卫星做匀速圆周运动的判断正确的是( )A .加速度之比约为b aB .周期之比约为 b 3aC .线速度之比约为b aD .从近地轨道进入到地月转移轨道,卫星必须减速4.如图所示,半径为r 的金属圆环放在垂直纸面向外的匀强磁场中,环面与磁感应强度方向垂直,磁场的磁感应强度为B 0,保持圆环不动,将磁场的磁感应强度随时间均匀增大,经过时间t ,磁场的磁感应强度增大到B 1,此时圆环中产生的焦耳热为Q ;保持磁场的磁感应强度B 1不变,将圆环绕对称轴(图中虚线)匀速转动,经时间2t 圆环转过90°,圆环中电流大小按正弦规律变化,圆环中产生的焦耳热也为Q ,则磁感应强度B 0和B 1的比值为( )A.4-π4 B.5-π5 C.42-π42 D.52-π52二、多项选择题5.A 、B 两质点在同一平面内同时向同一方向做直线运动,它们的位移时间图象如图所示,其中①是顶点过原点的抛物线的一部分,②是通过(0,3)的一条直线,两图象相交于坐标为(3,9)的P 点,则下列说法不正确是( )A .质点A 做初速度为零,加速度为2 m/s 2的匀加速直线运动 B .质点B 以3 m/s 的速度做匀速直线运动 C .在前3 s 内,质点A 比B 向前多前进了6 m D .在前3 s 内,某时刻A 、B 速度相等6.如图所示,M 、N 是组成电容器的两块水平放置的平行金属极板,M 中间有一小孔.M 、N 分别接到电压恒定的电源上(图中未画出).小孔正上方的A 点与极板M 相距h .与极板N 相距3h .某时刻一质量为m 、电荷量为q的微粒从A 点由静止下落,到达极板N 时速度刚好为零(不计空气阻力),重力加速度为g .则( )A .带电微粒在M 、N 两极板间往复运动B .两极板间电场强度大小为3mg2qC .若将M 向下平移h3,微粒仍从A 点由静止下落,进入电场后速度为零的位置与N 的距离为54hD .若将N 向上平移h 3微粒仍从A 由静止下落,进入电场后速度为零的位置与M 的距离为54h三、非选择题7.某同学从实验室天花板处自由释放一钢球,用频闪摄影手段验证机械能守恒.频闪仪每隔相等时间短暂闪光一次,照片上记录了钢球在各个时刻的位置.(1)操作时比较合理的做法是________.A .先打开频闪仪再释放钢球B .先释放钢球再打开频闪仪(2)频闪仪闪光频率为f ,拍到整个下落过程中的频闪照片如图所示,结合实验场景估算f 可能值为________.A .0.1 HzB .1 HzC .10 HzD .100 Hz(3)用刻度尺在照片上测量钢球各位置到释放点O 的距离分别为s 1、s 2、s 3、s 4、s 5、s 6、s 7、s 8及钢球直径,重力加速度为g .用游标卡尺测出钢球实际直径D ,如图所示,则D =________cm.已知实际直径与照片上钢球直径之比为k .(4)选用以上各物理量符号,验证从O 到A 过程中钢球机械能守恒成立的关系式为:2gs 5=__________.8.某物理社团受“蛟龙号”的启发,设计了一个测定水深的深度计.如图,导热性能良好的汽缸Ⅰ、Ⅱ内径相同,长度均为L ,内部分别有轻质薄活塞A 、B ,活塞密封性良好且可无摩擦左右滑动,汽缸Ⅰ左端开口.外界大气压强为p 0,汽缸Ⅰ内通过A 封有压强为p 0的气体,汽缸Ⅱ内通过B 封有压强为2p 0的气体,一细管连通两汽缸,初始状态A 、B 均位于汽缸最左端.该装置放入水下后,通过A 向右移动的距离可测定水的深度.已知p 0相当于10 m 高的水产生的压强,不计水温变化,被封闭气体视为理想气体,求:(1)当A 向右移动L4时,水的深度h ;(2)该深度计能测量的最大水深h m .9.如图所示,质量均为m=4 kg的两个小物块A、B(均可视为质点)放置在水平地面上,竖直平面内半径R=0.4 m的光滑半圆形轨道与水平地面相切于C,弹簧左端固定.移动物块A压缩弹簧到某一位置(弹簧在弹性限度内),由静止释放物块A,物块A离开弹簧后与物块B 碰撞并粘在一起以共同速度v=5 m/s向右运动,运动过程中经过一段长为s,动摩擦因数μ=0.2的水平面后,冲上圆轨道,除s段外的其他水平面摩擦力不计.求:(g取10 m/s2)(1)若s=1 m,两物块刚过C点时对轨道的压力大小;(2)刚释放物块A时,弹簧的弹性势能;(3)若两物块能冲上圆形轨道,且不脱离圆形轨道,s应满足什么条件.综合模拟滚动小卷(三)1.解析:选A.β衰变所释放的电子是原子核内的中子转化成质子时产生并发射出来的,故A 正确;β射线是电子流,并不是质子流,它的穿透能力强于α射线,弱于γ射线,穿透能力中等,故B 错误;氡的半衰期为3.8天,经3.8天后,有0.5克衰变成新核,新的原子核仍然留在天平左盘中,故取走的砝码应小于0.5克,天平才能再次平衡,故C 错误;发生α衰变时,电荷数减少2(即质子数减少2),质量数减少4,则中子数减少2,故D 错误.2.解析:选B.作出光路图:由几何关系可知,从Q 点射入的光线的入射角为i =60°由折射定律有:n =sin isin r=3,B 正确.3.解析:选B.根据a =GM r 2可知,a 地a 月=M 地R 2月M 月R 2地=a b 2,选项A 错误;由T =2πr 3GM 可得,T 地T 月=R 3地M 月R 3月M 地=b 3a,选项B 正确;根据v =GM r 可得v 地v 月=M 地R 月M 月R 地=ab,选项C 错误;从近地轨道进入到地月转移轨道,卫星必须要多次加速变轨,选项D 错误.4.解析:选A.保持圆环不动时,产生的感应电动势恒定,为E 1=(B 1-B 0)πr2t,则Q=E 21R t =(B 1-B 0)2π2r 4tR ①;线圈转动时,产生的感应电动势最大值:E 2m =B 1ωS =B 1π22t ·πr 2=π2r 2B 14t ,有效值E 2=π2r 2B 142t ,产生的热量Q =E 22R ×2t =π4r 4B 2116tR ②,联立①②式可得:B 0B 1=4-π4,故选A.5.解析:选BC.质点A 的图象是抛物线,说明质点A 做匀变速直线运动,将(0,0)、(3 s ,9 m)代入公式,x =v 0t +12at 2,解得:v 0=0,a =2 m/s 2,即质点A 做初速度为零加速度为2 m/s2的匀加速直线运动,故A 正确;质点B 做匀速直线运动,速度为:v B =Δx Δt =9-33 m/s =2 m/s ,故B 错误;在前3 s 内,质点A 前进位移为9 m ,质点B 前进位移为6 m ,所以质点A 比B 向前多前进3 m ,故C 错误;根据x -t 图象的斜率等于速度,知在3 s 前某时刻质点A 、B 速度相等,故D 正确.6.解析:选BD.由于粒子在电场中和在电场外受到的力都是恒力,可知粒子将在A 点和下极板之间往复运动,选项A 错误;由动能定理:mg ·3h =Eq ·2h ,解得E =3mg2q,选项B 正确;若将M 向下平移h 3,则板间场强变为E 1=U 53h =3U 5h =65E ,则当粒子速度为零时,由动能定理:mg ·(3h -Δh )=E 1q ·⎝ ⎛⎭⎪⎫5h 3-Δh ,可知方程无解,选项C 错误;若将N 向上平移h 3,则板间场强变为E 2=U 53h =3U 5h =65E ,设当粒子速度为零时的位置与M 极板相距Δh ′,由动能定理:mg ·(h+Δh ′)=E 2q ·Δh ′,解得Δh ′=54h ,选项D 正确.7.解析:(1)为了记录完整的过程,应该先打开闪频仪再释放钢球,A 正确.(2)天花板到地板的高度约为3 m ,小球做自由落体运动,从图中可知经过8次闪光到达地面,故有12g ×(8T )2=3 m ,解得T ≈0.1 s ,即f =1T=10 Hz ,C 正确.(3)游标卡尺的读数为D =45 mm +5×0.1 mm =45.5 mm =4.55 cm. (4)到A 点的速度为v A =s 6-s 42T =(s 6-s 4)f2,根据比例关系可知,到A 点的实际速度为v =k (s 6-s 4)f2,因为小球下落实际高度为H s 5=D d =k ,代入mgH =12mv 2可得2gs 5=14kf 2(s 6-s 4)2.答案:(1)A (2)C (3)4.55 (4)14kf 2(s 6-s 4)28.解析:(1)当A 向右移动L4时,设B 不移动对汽缸Ⅰ内气体,由玻意耳定律得:p 0SL =p 134SL解得:p 1=43p 0而此时B 中气体的压强为2p 0>p 1,故B 不动 由p 1=p 0+p h解得:水的深度p h =p 1-p 0=13p 0,故h ≈3.33 m.(2)该装置放入水下后,由于水的压力A 向右移动,汽缸Ⅰ内气体压强逐渐增大,当压强增大到大于2p 0后B 开始向右移动,当A 恰好移动到缸底时所测深度最大,此时原汽缸Ⅰ内气体全部进入汽缸Ⅱ内,设B 向右移动x 距离,两部分气体压强为p 2,活塞横截面积为S对原 Ⅰ 内气体,由玻意耳定律得:p 0SL =p 2Sx 对原Ⅱ内气体,由玻意耳定律得:2p 0SL =p 2S (L -x ) 又p 2=p 0+p h m联立解得p h m =2p 0,故h m =20 m. 答案:(1)3.33 m (2)20 m9.解析:(1)设物块经过C 点时速度为v C ,物块受到轨道支持力为F N C 由功能关系得:12×2mv 2-2μmgs =12×2mv 2C又F N C -2mg =2m v 2CR代入解得:F N C =500 N由牛顿第三定律知,物块对轨道压力大小也为500 N.(2)设A 与B 碰撞前A 的速度为v 0,以向右为正方向,由动量守恒得:mv 0=2mv ,解得v 0=10 m/s则:E p =E k =12mv 20=200 J.(3)物块不脱离轨道有两种情况①能过轨道最高点,设物块经过半圆形轨道最高点最小速度为v 1,则2mg =2mv 21R得:v 1=gR =2 m/s物块从碰撞后到经过最高点过程中,由功能关系有 12×2mv 2-2μmgs -4mgR ≥12×2mv 21 代入解得s 满足条件:s ≤1.25 m. ②物块上滑最大高度不超过14圆弧设物块刚好到达14圆弧处速度为v 2=0物块从碰撞后到最高点,由功能关系有:1×2mv2-2μmgs≤2mgR2同时依题意,物块能滑出粗糙水平面,由功能关系:1×2mv2>2μmgs2代入解得s满足条件:4.25 m≤s<6.25 m.答案:(1)500 N (2)200 J(3)s≤1.25 m或4.25 m≤s<6.25 m。

全国通用2020年高考物理二轮复习精练二计算题32分标准练三

全国通用2020年高考物理二轮复习精练二计算题32分标准练三

计算题32分标准练(三)24.(12分)如图1所示,水平光滑的平行金属导轨,左端与电阻R 相连接,匀强磁场B 竖直向下分布在导轨所在的空间内,质量一定的金属棒在垂直导轨的方向上搁在导轨上。

今使棒以一定的初速度向右运动,当其通过位置a 时速率为v a ,通过位置b 时速率为v b ,到位置c 时棒刚好静止。

设导轨与棒的电阻均不计,a 、b 与b 、c 的间距相等,则金属棒在由a ―→b 和由b ―→c 的两个过程中,回路中产生的电能E ab 与E bc 之比为多大?图1解析 金属棒向右运动时,切割磁感线,回路中产生感应电流。

根据左手定则可知,金属棒所受安培力阻碍其运动。

假设金属棒由a 到b 过程中,所受平均安培力为F 1,时间为t 1;由b 到c 过程中,所受平均安培力为F 2,时间为t 2;导轨之间距离为d 。

则F 1=BI 1d =B BL ab d Rt 1d =B 2d 2L ab Rt 1(2分) 同理F 2=B 2d 2L bc Rt 2(1分) 根据动量定理得-F 1t 1=mv b -mv a ,即B 2d 2L ab R=mv a -mv b ①(2分) -F 2t 2=0-mv b ,即B 2d 2L bc R=mv b ②(2分) 又因为L ab =L bc ③据①②③式得 mv a -mv b =mv b (1分)所以v a =2v b (1分)根据能量守恒有E ab =12mv 2a -12mv 2b =32mv 2b (1分) E bc =12mv 2b (1分)则E ab E bc =32mv 2b 12mv 2b =3∶1(1分) 答案 3∶125.(20分)在某项娱乐活动中,要求参与者通过一光滑的斜面将质量为m 的物块送上高处的水平传送带后运送到网兜内。

斜面长度为l ,倾角θ=30°,传送带距地面高度为l ,传送带的长度为3l ,传送带表面的动摩擦因数μ=0.5,传送带一直以速度v =3gl 2顺时针运动。

(课标版)2020高考物理二轮复习计算题规范练3课件

(课标版)2020高考物理二轮复习计算题规范练3课件
(1)金属棒 a、b 的最终速度; (2)整个过程通过金属棒 a 的电量. 答案:(1)15v0 25v0 (2)45mBvL0
解析:(1)给棒 a 一初速度 v0 向右运动,则 a 的电流指向外, b 的电流指向里,a 所受安培力指向左,b 所受安培力指向右, 所以棒 a 向右做减速运动,棒 b 向右做加速运动,两者产生的 感应电动势方向相反,当两者产生的感应电动势大小相等时, 电流为零,达到稳定平衡状态.AB 与 EF 宽为 L,是 CD 与 GH 宽的 2 倍,所以 CD 与 GH 宽为12L
(1)物块轻放在传送带上且加上拉力的一瞬间,物块的加速 度大小;
(2)物块从传送带底端运动到顶端所用的时间.
答案:(1)a1=12 m/s2
(2)t=t1+t2=
102-5 6s
解析:(1)物块放上传送带并加上拉力后的一瞬间,设物块 运动的加速度大小为 a1.
根据牛顿第二定律有 F+μmgcosθ-mgsinθ=ma1 求得 a1=12 m/s2. (2)第一段加速的时间 t1=av1=16 s 这段加速的位移 x1=2va21=16 m
计算题规范练3
时间:45 分钟
1.如图所示,长为 2 m、倾斜放置的传送带以 2 m/s 的速 度沿顺时针方向匀速转动,传送带与水平方向的夹角为 30°, 将一个质量为 1 kg 的物块轻放在传送带的底部,同时给物块 施加一个平行传送带向上、大小为 12 N 的恒力 F,物块与传 送带间的动摩擦因数为 μ= 33,重力加速度 g=10 m/s2,最大 静摩擦力等于滑动摩擦力.求:
解析:(1)B 点与 O 点等高,由几何关系得:小猫竖直位移 y=Rsin37°=0.8 m
B、O 间水平距离 x1=x+Rcos37° 小猫做平抛运动,x=v0t,y=12gt2 vy=gt,v0=vytan37° 解得 v0=3 m/s,x=1.2 m,x1=2.27 m. (2)从 P 到 C,对小猫,由能量守恒定律得 ΔE=12mv2P+mgR(1 -sinθ)-12mv2C,vP=sivn0θ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算题标准练(三)
满分32分,实战模拟,20分钟拿到高考计算题高分!
1.(12分)如图所示,在倾角为θ=37°的足够长固定斜面底端,一质量m=1kg的小物块以某一初速度沿斜面上滑,一段时间后返回出发点。

物块上滑所用时间t1和下滑所用时间t2大小之比为t1∶t2=1∶,g取10m/s2,sin37°=0.6,cos37°=0.8。

求:
(1)物块由斜面底端上滑时的初速度v1与下滑到底端时的速度v2的大小之比。

(2)物块和斜面之间的动摩擦因数。

(3)若给物块施加一大小为5N、方向与斜面成适当角度的力,使物块沿斜面向上加速运动,求加速度的最大值。

【解析】(1)设物块上滑的最大位移为L,根据运动学公式,
上滑过程:L=t1;
下滑过程:L=t2;
整理得:v1∶v2=∶1
(2)设上滑时加速度为a1,下滑时加速度为a2,
根据牛顿第二定律得,上滑时:
mgsinθ+μmgcosθ=ma1;
下滑时:mgsinθ-μmgcosθ=ma2;
由位移时间公式得:L=a1=a2;
联立三式代入数据得:μ=0.5
(3)设F与斜面的夹角为α,加速度为a,由牛顿第二定律得:
Fcosα-mgsinθ-μ(mgcosθ-Fsinα)=ma,
即:F(cosα+μsinα)-mg(sinθ+μcosθ)= ma,整理得:
F(cosα+sinα)-mg(sinθ+μcosθ)=ma
令tanβ=,则:F sin(α+β)-mg(sinθ+μcosθ)=ma
当sin(α+β)的最大值为1时,加速度的值达到最大,设最大值为a m,
则F-mg(sinθ+μcosθ)=ma m;
代入数据得:a m=2.5m/s2。

答案:(1)∶1 (2)0.5 (3)2.5m/s2
2.(20分)如图所示,在xOy坐标系中,坐标原点O处有一点状的放射源,它向xOy平面内的x轴上方各个方向发射α粒子,α粒子的速度大小均为v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小
为E=,其中q与m分别为α粒子的电量和质量;在d<y<2d的区域内分布有垂直于xOy平面向里的匀强磁场,mn为电场和磁场的边界。

ab为一块很大的平面感光板垂直于xOy平面且平行于x轴,放置于y=2d 处,如图所示。

观察发现此时恰好无粒子打到ab板上(不考虑粒子的重力及粒子间的相互作用),求:
(1)α粒子通过电场和磁场边界mn时的速度大小及距y轴的最大距离。

(2)磁感应强度B的大小。

(3)将ab板至少向下平移多大距离才能使所有的粒子均能打到板上?此时ab板上被α粒子打中的区域的长度是多少?
【解析】(1)根据动能定理:qEd=mv2-m;可得:v=2v0
初速度方向与x轴平行的粒子通过边界mn时距y轴最远,由类平抛知识:d=at2;Eq=ma;x=v0t;
解得:x=d。

(2)根据上述结果可知:对于沿x轴正方向射出的粒子,进入磁场时与x轴正方向夹角θ=,
若此粒子不能打到ab板上,则所有粒子均不能打到ab板,因此此粒子轨迹必与ab板相切,
可得其圆周运动的半径:r=d;
又根据洛伦兹力提供向心力:qvB=m;
可得:B=
(3)由分析可知沿x轴负方向射出的粒子若能打到ab板上,则所有粒子均能打到板上;其临界情况就是此粒子轨迹恰好与ab板相切。

由分析可知此时磁场宽度为原来的;
则:ab板至少向下移动Δy=d。

沿x轴正方向射出的粒子,打在ab板区域的右边界,由几何知识可知:
ab板上被粒子打中区域的长度:
L=2x+r=d+d。

答案:(1)2v0 d
(2)(3) d d+ d。

相关文档
最新文档